• Nie Znaleziono Wyników

Diffusive Properties of Interfacial Layers

N/A
N/A
Protected

Academic year: 2021

Share "Diffusive Properties of Interfacial Layers"

Copied!
13
0
0

Pełen tekst

(1)

Technische lh~oschool De.ft 1:fd. Weg- en Waterhouwkl!:l'e Lab.

v

.

Vloeisto' e(,..u.!ll:..~a.

22-C-13

DIFFlrSIV E PROPERTIES OF INTER -FACIAL LATER

Cont:dbution to the XiIth lAHR congr ess by

Anders Sjö berg D.;vision of Hvd rau.lics Cha lrn er s Iri s t.it ute of Technology

Göteborg, Swcden 1967

(2)
(3)

1 NTERNATI ONAL ASSOCIATI ON FOR HYDRAULI C RESEARCH

Dl FFUSIVE PROPERTI ES OF I NTERFACI AL LAYERS By Mr. Anders Sjöberg, Civ.eng.

Divi sion of Hydr a ul.ics, Chalmers I nstitute of Technology, Göteborg Sweden

SYNOPSIS

The vertical stability of submerged s ewage fields is a matter of great im-por tance in Sweden where the coastal waters are strongly stratified. 'I'he

diffusive pl'operties of interfacial Iayers are there{ore di s cus sed and the

expe rimental results of different authors are compared.

SOMMAIRE

La stabili

verticale des eaux polluées suhmergées est diune grande im-portance en Suède ou les eaux cotiè r e s s ont sournises à une importante

stratification. C"est pourquoi 1"auteur a étudié les propriétés de diffusion des zones de transition et comparé les résultats expérirnentaux de diffé-rent s auteurs.

(4)

;. (

,", '; :

(5)

L INTRODUCTION

The Swedish coastal waters - particularly on the West Coast - have a pro-nounce d density stratification. This g.ives an opportunity to design a subma-rine outfall in s uch a way that a. s ubrne r ge d sewage field is established.

One of the questions whi.ch ha s to be answered is how the vertical stability of such a subrne rged sewage field is affe cted by surface cu r rent s, wind gene-rated waves, turbulence pr od uc ed at the bottom, etc.

The knowledge of the properties of interfacial layers is not satisfactory. No

feaaible theoretical a nalys is axi sts , and one must resort to model studies of density currents. Howe ve r, there art> few experimental investigations of str a« tified flow upon which a theoz-y c a n be ba.sed. It is the refor-e ne ce ss a ry to ex -tract as rnuch inform.ation as po.ssibl.e from these investigations.

The purpose of the following d.iscu ssiori is to present experimcntal data in a manner suitable te the de scripri on of turbulent transfer of matt er and rnorn err-turn acr o s s the interface.

H. DIMENSIONAL ANALYSIS

Let us corrs ider- an interfa.c ia l Ia ver between two pa r-a.IIel strearn s of different de nsit ies. As a fi r st app r oxi.mat ion this layer is supp o s ed not 1:0 be affected by rhe outer strearn s, 'I'h e properties of the la/er ca n then be described by its own independent var i.able s , which h e re are taken as

(1)

wh e r e U is a char a c t.e r is t.ic veIo c ity, ]:1 is a cha r a ct e r is t.ic elngth, p is tb e rn e a n

de ns ity of tbe two stre arns , .6p<'< p is th e de ne i.ty differ-enc e, g is the a.cc e l era> tion of gravity and

v

is the rne a n vaIu e of the kinematic viscosity. A dimension-al a na.Iys is then shows t.hat a.lI dirnensionless r atios cf interfacial data are

fUIlC-tiori s of two par am etc r s i fo r e xa.rnp Le

or (Za)

(Zb)

whe re

Re

::: "1'

Uh

;::;

Rc yno Id Ïs nurn b e r

).)

ê.e

G -

-P_

!. -

_

1-

_

::

sta.bil ity parameter p r opo s ed by Keule gan [1) .

- U3 - Re F2

A

The r e a scn for th€: introduction h e r e of the pa r arn e ter @ was that plots of experi-mental data against FA and Q seem tO be the mo st c onveni ent on~s for extrapola-tion. On tbe basis of stability analyses by Rou s e and Ma cagno [2] one ca n a150 ex-peet a neutral stability cur ve to have the sarne f orrn as the function Re F'c.2::,;constant.

[.ij

Kelllegan, G. H: Interfacial in stability and mixing in str a tiIi ed flow. Journal of Research of NBS, Vol. 43, 1949.

[2] Ma c agno, E. O. , Rou se, H: Interfacia.l mixing in str at ified flow. Transaction of the ASCE. VoL 127, 1962.

(6)
(7)

T'he selection of the characteristic quantities U and hare very important. Dif-ferent systems claim different quantities. Rous e a nd Macagno used

Dx

and h

as indicated in Fig. 2. In a [ree two-layer system thc corresponding variabiês

are Usand hs (Fig. 4).

Iriste ad of defining the geometrie variabie h from the velocity distribution one

can u s e density distribution. Such a length is lp:::lip/(dp /dz)max first introdu ced

by LöfquisL [3J . From the practical point of VIew, howe ver , 1 does not seem

to be a convenient. variabie . p

An alternati\~ cha ra ct.eristic velocity, used by Larsen

[

4] ,

is the s hea r

velo-city UI'x

=

,

rr:-

/

p, wherc

T

.

is the maximum value of the stress in the interfacial

~-i' 1

layer.

rn.

CHOICE OF REFERENCE PLANE IN THE lNTERFACIAL LAYER.

'I'he idea of rn a ki ng the reference plane the plane of maximum s hea r stre s s

se ern s to be va r ifi e d aeproximately by th e experimental investigations of Mi chon ,

Goddet and .Bonnefille

L

S

]

.

A reworking of their experimental data, now car rie d

out by Sjöber g [6J . shows good agreement within experimental error between the

levels of rnaxi rn um s he a r stress. maximurn velocity g r a dienr. and maximum den

-sity gradient, although the turbulence is not syrnmetric, see Fig. 1. The plane

of maximum s h e a r stress (z=O) is thu s chosen as the reference plane and is here

called the interface. All quantities assigned to the interface are given the index "I".

When treating experimental data, (dujdz)i =(du!dz)max and (dp/dz)i =(dp jdz)max'

IV. INT ERF ACIAL SHEAR STRESS

lnstead of directly consiclering the interfacial shear stress

T

i'

Rouse and Macag

-no analyzed the ratio

T-

u.2. 1 IX (3.

I

dÛI

=

j/

I~

I

=

1

j/

P dz . dz . 1 1

of the total stress to its laminar component. The experiment values showed de

fi-nite c or r e Iat ion with Re and F.a. . In Fig. 2. the plot has been transferred to th e

form of (2b) .

If Löfqui st"s results are treated in an analogous way, we obtain Fig. 3, which shows a significant dependenee on the quantity .1p /p. F.ó is approximately con

-stant throu gh out the experiments. This indicates that the me chanism of the i

n-terfacial layer is governed by th re e parameters F.a.' Q and .:lp/p. but it se e m s

difficult to give this observation a theoretical justilication. Itmust a150 be

poin-ted out that the density di fferences in Löfqui st"s experiment are extremely high. As Rouse and Macagno do not give the absolute values for their experimental data the corresponding c ornpar is o n is not p oss ibl.e.

[3J Löfq ui st,K: Flow and stress ne ar an interface be tw e e n stratified liquids.

The Physics of F'Iuid s , Vol. 3, No. 2, 1960.

[4] La r sen, I: Om tolagsströrnninger Il , Lab. for Havnebygning. Da ni s h

Insti-tute of Technology, Kopenhagen, 1962 (in Da nish]

[5] Michon, X.. Goddet,J. ,Bonnefille, R: Etude théorique et expérimentale des

c ou r a nt s de densité, T'orn e Ir. Laboratoire National d"Hyd r auIique ,

Chatou 1955.

[

6J

Sj

ö

b

e

rg,A: lnterfacial s h e a r stress and rate of mixing. Report to be

comple-ted during 1967. Divi sion of Hydraulies. Chalmers Institute of

(8)

Sjöberg [6] ha s d e ter mincd

13

i from the experimental data given by Michon,

Goddet arid Bonricf'il le, Fig. 4. T'he spread is large, but the trend is similar to that in Fig. 2.

Fig. 2 -4 ind ica te , at least app r oxi rna.tc Iy , that.F~ =cons ta nt along curve s(.3•• 9= ~ constant. Possiblv (3. in c r e a ses faster with dc c r e as in g Q than these cu/ves show. At ve r y high 'delsity di ffe r e n ces,(.3. mayalso depend on the absolute va l-ue of the dcnsity diffe rence. No significari.t infl ue nc e of neighboring so Ii d boun

d-ar ies ha s been found.

A quanti ta ti vo c orripa ris on between the fi gu r es is not p os siblc due to the different

bourida ry conditions. Mo reo ver, salt: water was used by Löf'qui st and by Rou se

and Maca gno while Michon, Goddet and Bonnefille used a clay suspension.

If the cha ra c.te r istic U<u . and h=l quantities are s elect cd , the plots show -the s a m c trend as indicated h~ove, bu~ the spread is not so large. F'u r tbe rrn o re,

the dependenee on .1p

l

p

in Fig.

3

disappears

[6J

V. DENSITY AND VELOCITY DISTRIBUTIONS

Löfquist gives the ernp ir ical e xpr es s ion

p

(z) -p A 1 [ z

;1

..1p

=

"2

1 - tanh

(\72}J ;

(3 )

for the density di str ibuti on in the interfacial layer. PA is the density of the l ower

current. This equ at ion is roughly satisfied by the data of Michon, Goddet and

Bonnefille [6J .

The practical UBC of the exprcssions 1.3.=f(FA19) requi r e s a connection between

(.3. a nd the velocity distribution. In the1present instance no feasible expression

exlsts to des c r ibe the velocity distribution in turbulent and strongly stratifïed

flows. When the density variations are s rn a l l, as in the lower layers of an adia

-batic atmosphere, the profile

?

I

d-

I

df [ ] 1/2

=-

==

1

2 ~ ...E. 1 -

v'

R.(z) .

p (z) dz dz 1 • (4)

ha s been proposed (see for exa rnp le Syono a nd Harnu r o

['IJ).

1 is a "mixing

length", (J is a function of "mixing lengths" and Ri(z) is the Ri chàr d s onIs num -ber

Ri(z) (5 )

Eq.

(4)

is essentially

th

e equation for homogenous flow given by Prandtl and

transferred to stratified flow. It cannot be integrated as long as we do not know

the length 1.

Thc expres sion

(6)

[7J Syono, S., Harnu r o ,M: Notes on the wind profile in t.h e Iowe r Iayers of a n adi abat ic atmosphere. J ourn. of the rneteorologi cal society of Japan, Series lI, Vol. 1, 1962.

(9)

p,iveI~by von Karman s e e m s rT10J:t' USCfllJ. as a w o rxing hvpothv sis. T'h e assurnp -(:jon't == constant [;i"l,(' 5, afL'!' double int c grat ion

dü 11

-

n.

1

I

}

f

~

d~)

i

I 1

+

ln (

zl

I \

--

_. )(

+

) u.

-

u. Ut Ut

(

7

)

Drawing all jIUa..i()gy to s e dirrie nt laden s tr e a rn s

[B]

,

}[

C,Ul be expected to he 11'58

th a n 0,4 (X :-~O,4 for a b orn oge nou s flow) a nd to bc- a funct ion of

(Sf!.)

dz .

._

_R

.

--

·

2..·

}J 1-" {~)é. dz' i

Bc low the interface .-q. (7) fits the expe rirne nt.al r esul ts of Löfq ui st q ui te well with X. = 0.3. As exp e cte d , a bo vc the interface tbe correlation decreases with

th« tu rbuIe nce level, i. c . the vei.ccity of the hot.torn current. It must be pointe d out, howc v er, that th e expc r irn e nt.aI points ar ..' pr esented as a srn o ot.hed curve,

so syste m atic var iations in .l{ c o uld h~LV~'di.sapp eared. Ri(O) fal ls within th e lim

-its 1<. Ri(0)<- 10.

Ri (0) (8)

When cornp a red with expe rirne nta I data of Miehon, Goddet and BonnefilJe, cq,(7)

fails. The c ocffi cie nt Xs e ern s to vary in an i.rre gu Lar way. Several different vel o-city distribut.ions have been tried, for exarriple a profile a nalo gou s to the distri -bution between mixing strearn s (see Rousc [9J ). How o ver , no significant c o rr c«

lation betwo on the pararn et e r s in volvo d h as yet be c n Iound. VI. INTERF'ACIAL MIXING

Rous c and Ma cag no [2J a ssurrie d thr: volurnetr-I.cflux a cr o s s th« interface to be

Zero a nd defi ned a. rnass transfer velocity W by

<1

x

[(

P

(Z)ü(Z)dzJ + W 6p :-;;0;

A

Löfquist introduced a veloc:ity of entrairirnent , W , which does not seem to be derived from a complete salt o r rnass balance. I~owever, we here as s urne W_==W,

The dimensionless quantities

w

j

u

and

w

j

u

s show properties similar to t3.t:t?J,[6]

This could be expected , sinc e W a~d W d~pend on diffusion of rriat.ter , whil~

(3. depends on diffusion of mornent.um. eA cornpar is on between a c oe ffi ci e nt Io r tu.Èbulent tr a.ns fcr of rnat ter , é , and a coefficient for turbulent transfer of

mo-rnentum , êm, se ems then natur~L The former cocfficient is defined by (9)

(10

)

where qs is the resultant vertical transport of matter and D is the coefficient of rn ole cu lar diffusion. é:, is given by the relation m

T

d-=---

(

)=(v+ e )~. p z m d z • (11) 'I'hu s , at thc interface the ratio of ê. to

c

is s rn

[8J Progress report: Sediment transpo rta.tion rnecha.ni cs. Suspension of sediment.

Proceedings of th e ASCE. J'ou rnaLof the Hy dra ul ic Division, Vol. 89,

No. 45, Septernber 1963.

(10)

( 12)

On theoretica! basis Ellison and T'urne r [10] pos tulated

Rf 1,4 ( 1 - Rf)

c

_ Rf) 2 ( 13)

where Rf=Ri(z) é

I

e.

(the flux Rich ard s onïs nu m her ) arid Rf ha s a va lu o

about 0, 15. Munk. abd AWderson [1ijgive the e xp res sio n C

( 14)

which shows a s orn e wha t slow e r va riari on of ésl êrn wi th Ri( z).

Löfqu ist ~s exp c r i.rn e nta ldata rn ako it pos si bl(~ to c alc.u.late the ratio ê

,I

ê ,

ac c or ding to eq. (12) if we a ssurne W=We, Fig. 5 shows that the cxper~trll~nHH

points are low er than the t.he oretic al cur':..~ given by Ellison a nd Turner, but th at

.the tre nd is sirniIar. D is ch ose n 1,4·10 m2/ s, and experiments which give

ési <:D and ê .< V are not included. Thus, very s mall vaIues of the ratio ê /é

1 rni, 1 .fi d 1 s: rn c an oe e xpe ct ~d In strong y str ati H' a y ers . VI I. CONCLUSIONS A suitable r ep rese ntation of the interfacial s h ear stress

r.

is 1

T

v~g _1

=

i3

-

f(9

=

-~P-3 -P

J/!~

~

I

.

i U 1 FÀ

The experimental data indicate that

}"'.c.

=: constant aIon g curves

(3

.

.

I:) -= constant. At v ery high d e n s ity differences, /3. mayalso depend1 on thc

absolute value of thc density d iff ercnc e. 1

'I'h e rate of rnixing acr o ss the interface shows an analogous correlation with G and F4 . T'h e ratio of the coefficient of turbulent transfer of matter to the

coe ffi.cient of turbulent transfer of momentum, h owe ver, dc cr eas es with

in-creasing Richa r d so n nurnbe r.

~oJ

Ellison. T. H., Turner, 1. S: Mixing of dense Huid in a turbulent pipo flow,

Journalof Fluid Mecha.nics. Vol. 8, 1960.

G

1J Munk , W. H., Anderson, E. R: Not e s on a theory of t.h.e thermocline.

Journalof Marine Research, Vol. VII. 1948.

(11)

1,5---..---I . ~ 1,01-...;:1---1

-•

Sa tet 10 0,1 0,5 1,0 1,5 1,5

E

1,0

.

....

x

ro 0,5 ...

S

... 0 ..-: H .~ Il>"d .... (Ij Il> Jo<

E

eo

Level in meter of maximum s hea r stress. Level in meter of rnaxirnurn s he a r stress Fig. 1 Correlation between the level of rnaxirnurn velocity gradient and thc levels

of maximum shear stress and maximum density gradient in the interfacial • layer. Cal cul.ated from data give n by Miehon, Goddet and Bonnefille [5] .

T.

10

(3

.

1

=

1 dil lJP(dz). 1 5

Fig.2 Variation of interfacial she ar with Q and FA

by Rou s e and Macagno [Z] , 15

..

Q.yz 11. 21

29

40 47

56

74

7-

10 K 0

0

4

"

(3.

=

1 dtt 1 Jlp{dz)i 5 s

---_.

,2.J x 1~---~----4-~G4~

O,5~'_---

----

~--

--

~--

---

----~~~~~--10-4 5.10-

4

10-3 5'10-3 10-2 1,5' 10-2

Variation of interfacial she a r with Q and FA' Calculated from data

gi ven by Löfquist [3] Fig.3

(12)

.~.

I1

~:C

104 I Lake Mead . ! and

_d

_

l

~

,.

L(~§_a_:.ll.ç_~

l"

·

lJ,)t

f'l ~

').]1

t:

a

~)

_.

~

1

,,7.6

103

I

. _ 5· 10- 7:1û -6. (i ~ ~~~lt __

~~~---b----~---

·

---

~----

--

'_----~

'2~

.

10-6

:;Ï.

10 - (; 10- 5 5 . 10 - 4 10 -3 2· 10 ~3 j.I~g Q::;____e_::: "<T3 V s

Va riat.ion of inte r Ia ci a l s h e ar wii.h 0 and FA' Ca.lcu lat.e d f1'o1"1'1data given by Mich.on , Go dd et and Bonnefille

U

>J.

Ll

p/p

<11'10-3. Fig. 4

6

_

---.-

-4·

t.

2 51 1U

._-6

mi

c

c

10

(

9.ë

)

dz . Ri(0) == _ g_ • 1 P (dfi) dz . 1

V~.~iat.ion of

êj?/

e,

i with Ri(O). Calculated hom data given by

Löt quist [3

J

.

Sym

hms.

sec Flg. 3.

1 .5

Fig.5

(13)

DIFFUSIVE PROP~R Tl~S OF INTERFACIAL LA YER

by

Mr

.

Ander" Sjöberg, cl v. eng. Pi,cusston 'qy the author.

In fig, 2.3 and

4-

te ntatfve \o'\lrves ~i' Q

=

constant with FA ::a constant

have been drawn. The cu r ve s

eau

a l s o be gaven by the equation

lJ

i

Re

=

constant; FA

=

constant

..

,

.

(15)

Thls relation is easily found by an {nspectional analysis of the equation of motion for Inhomogeueoua and fully turbulent flow.

The equatton of motion may be written in dimensionless farm by int r o>.

,ducing constant f'eference quantities .. These quantities form dimensionless groups. According to the theory of rnodeIa , similitude is achieved if the dimensionless rorrn ot the ditferential equation governing the phenomenon is identical in both model and prototype systems. This requires that Froude' s number

F

and a characteriatic concentration care nurn erica Il.y equal in model and prototype (influence of vi scosdty is neglected). In most cas e s the concentra-tion

c

may

be

replaced by a characteristic density difference

A

pip. The requirement may then be stated as

Fm

=

Fp;

(.Ê..e..)

= (~)

P ril P P

when the subscript m refers to the model and p to the prototype.

(16)

If we now introduce time average s , turbulent fluctuations and eddy viscosity

e

we wiU find that similtude requires that

(17)

• where

D

=

uL/e

is a Reynolds nutnber in which kinematic viscosity j)

is replaced by eddy viscosity é, . As the introduction of D is a pure con-struction it follows from equatron

(16)

and (17)that

D

=

f1(F. ~).p' (18)

aearrangement and introduction of the densimetric Froude number F.A gives

~ - A - Re . f (F

A.e.) .

J) - fJ i - Z À' P •

( 19

)

FA

=

constant and

!e

=

constant now gives

13i

=

Cytaty

Powiązane dokumenty

Historia jest „interaktywną grą w działa- nie/myślenie w/o świecie” (Freire, 1979, s. 52), mając na myśli proces dziejowy jako proces transformatywny, w którym konstruuje

Wydaje się, że w roku 2015 zakończą się marzenia o gazie łupkowym, do czego wydatnie przyczyniły się żmudne i długo- trwałe procedury uzyskiwania różnych

[r]

Rząd Ła- stowskiego zgodził się na wykorzystanie białoruskich formacji wojskowych do obrony terytorium Litwy.. Strony zawarły osobną umowę w tej

Tego rodzaju zmiany czynią zdaniem rzeczni- ka zadość zamiarowi sformalizowania procedury korzystania z klauzuli odpowiedzialnego za rozpatrzenie wniosku o udzielenie

For the translating rigid and moderately flexible wings, the flow is completely detached from the wing surface, however, for the highly flexible wing, the flow that separates at the

Monografi a składa się z wprowa- dzenia, trzech rozdziałów: Przedsię- wzięcia władzy radzieckiej i wpływ radzieckiego partyjnego systemu na socjalno-ekonomiczne warunki

In quantitative terms: when a material has an iso- thermal Robertson crack arrest temperature of 10°C which means that cracks up to about 30 cm can be arrested then it will be able