• Nie Znaleziono Wyników

Comparative seakeeping tests

N/A
N/A
Protected

Academic year: 2021

Share "Comparative seakeeping tests"

Copied!
37
0
0

Pełen tekst

(1)

Searbeiter:

G.Collatz

Tog:

3o.S.1963

HAMBURG MODEL BASIN (HSVA)

Hamburg, August 3o, 1963

prepared by

Comparative Seakeeping Tests (ITTC)

A report submitted to. the Seakeeping

Committee of the

10th

International Towing Tank Conference

London 1963

Hamburgische

Schiffbau-Versuchfranstalt GmbH.

(2)

Introduc t ion - =

Tie results of seakeeping experiments conducted by the towing tanks of various countries were compared for a model of the Series 60, 0.60 block coefficient, as part of the

1954

International Towing Tank Conference (ITTC). Agreement among the tanks was

found to be completely unsatisfactory. To eliminate some of the more obvious factors which might influence the results, such as differences in model size or In test methods, the Committee on Seakeeping of the ITTC initiated a controlled program to compare the results of model tests in waves conducted by the David Taylor Model Basin (TrB), the Netherlands Ship Model.Basin (NSMB), and the Admiralty Experiment Works (AEW), The program specified a

large number of head-sea variations using the same 10-ft model in all three tanks ,The results of these tests are communicated in TMB Report

1309.

In order to control the wave test methodes at the Hamburg Model Basin (HSvA) in the last year corresponding tests have been run with a 15 ft model. In this report a brief description of the methodes at the HSVA is given. The values of the original measured datas with respect to resistance, shaft rpm, torque, thrust, heave amplitude and pitch amplitude are communicated and as far as

possible compared with the results of TILB,NSMB and AEW. Phase angles have not been mea8ured.

Model and Proelier Particulars

Because the wave generator and the equipment for seakeeping

experiments at 'HSVA are adapted for models of about 6m length, the tests could not be done with a 10 ft model. Therefore it was resolved to build a 15 ft model as a compromise between the

original 10 ft model and the models usually employed at HSVA. The model was constructed from plastic and Fiberglas. Also a

corresponding propeller was build. The particulars of model and propeller are listed in the foilowiug table. In

Fig.2

the

character-istic curves of the HSVA propeller and the original TMB propeller are compared.

Beorbeiter: C. Collatz

Tag:30.8.1963

2

(3)

Beorbeiter: G. Collatz Tog: 30. 8. 63

Table of model and propeller particulars

Model: Nr 1512

Length between perpendiculars 4.572 meter

Beam 0.609 meter Draft . 0.243 meter Displacement 410 kilopond Waterplane coefficient 0.71 Block coefficient 0.60. Propeller: Nr

1147

Diameter

159.4

millimeter Number of blades 4

Exp. area ratio 0.73

Pitch / Diameter 1.064

The distribution of weights in the model was adjusted for the proper radii of gyration as well as for the trim. A longitudinal

radius o,f gyration of 1.157 in ( 0.253Lpp ) was measured by bifilar suspension.

Test Facilities and Test1n Procethire

The seakeeping experiments have been performed in the HSVA deep

water basin on april, 4; may, 8 and

9;

june, 26 and 27

1963.

The basiii is 200 meter long, 18 meter wide and 6 meter deep. A carriage on fixed rails spans the width of the basin. Waves are generated from one end of the tank by a plunger wavemaker.

The test program included a range of model speeds from 0 to 2.3 meter/second in calm water and in waves with lengths of 75, 100,

?5 and 150 percent of the model lendth L. Two series of tests were performed: one with constant wave height corresponding to

L/48,

and a second series with wave height corresponding to ./30 ( constant wave slope ). The resistance test which took place

first, indicated that the model used has relatively poor

sea-keeping characteristics. These include low pitch and heave damping, low resonant speeds, and inadequate flare and freeboard. By that large motions and extreme wetness are generated in the more

3

(4)

Bearbeiter: Q. Collatz Tog: 30. 8. 1963

-4

severe wave conditions. ( See the two photographs Fig. 31.) Therefoi'e

it was renounced to accomplish the other measurements in waves with a heightcorresponding to ./3O.

During the experiments the model was joined with the carriage by wires, which run over rolls. Weights fore and aft served for guiding the model in its direction. For measuring resistance the forward directed wire was connected with an electric d,ynamometer, a daniper and a spring. ( See Fig. 1 ) These guiding allows the model freedom

in pitch and heave. Freedom in surge, therefore, is affected somewhat by the action of the spring. The damper was necessary to reduce the free surging during the start of each experiment. The spring was so that the swinging system was overcritical.

The test procedure for measuring shaft rpm, torque, thrust, heave and pitch amplitude was to operate the carriage at a predetermined

spee'd and to adjust the revolution of the propeller until the model has the same speed as the carriage. To compare the results of rpm with the results of the 10 ft model the propeller loading was

corrected aecordiigto Reynolds number.

For particulars of the measuring equipment see the following table.

Wave Recording:

Carriage Speed Measurements:

RPM Measurements:

Resistance Measurements:

Torque and Thrust Measurements :

Heave Measurements:

Acceleration Measurements:

Pitch Measurements:

Sonic-Wave -Recorder,

travelling with the carriage

Time and Distant Marks on a revolving drwn

Revolution Marks on the same drum

Eaectric-Ring-Dynamometer (Straingauges)

Electric Dynamometer (Straingauges)

Calculated from acceleration

Electric Accelerometer (inductive)

Gyro-Horizon

(5)

-5

Test Results

The original values of the results arid faired curves are plotted against the velocity of the 15 ft model. For particular the

following figures show:

Fig. 3 Resistance (pond) in Calm Water and. in Waves with a Height corresponding to L/48 plotted against the Velocity of the Model

(meter/second)

Fig. 4 Resistance (pond) in Waves with a Height corresponding to

/30 (constailt Wave Slope) plotted against the Velocity of the

Model (meter/second)

Fig. 5 Revolution (1/second) of the Propeller in Calm Water and

in Waves of Height corresponding to L/48 plotted against the Velocity of the Model (meter/second)

Fig. 6 Torque (cm pond) in Calm Water and in Waves with a Height corresponding to L/48 plotted against the Velocity of the Model

(meter/second)

Fig. 7 Thrust (pond) in Calm Water and in Waves with a Height corresponding to L/48 plotted against the Velocity of the Model

(meter/second)

Fig. 8 Heave/Wave - Height Ratio in Waves with a Height

âorresponding to L/48 plotted against the Velocity of the Model

(meter/second)

Fig. 9 Pitch/Wave - Slope Ratio in Waves with a Height

corresponding to L/48 plotted against the Velocity of the Model

(nieter/second)

To compare the results with the results from TMB, NSMB and AEW due to Froudos law from the faired curves resistance, shaft rpm, heave and pitch ratios are calculated for a 10 ft model and

plotted against the velocity of the 10 ft model in knots. Fig.10

til Fig.30 shows the confrontation with the original values taken

from the TMB Report

1309.

W240 PM

(6)

Beorbeiter: Q.Collatz Tog:

o.8.63

Conclusion

During the experiments it became evident that the measuring apparatus and methodes are not responsible for the partial unsatisfactory results of the comparative tests but the waves. In the range of the tested wave lengths the wave generator is not

operatin under optimum conditions therefore the waves are not completely uniform. That effect became worse because of the unsatisfactory seakeeping characteristics of the model.

(7)

.Spanpgew,ch(

rE

'8

Oehnur?g.s me&,lreifen

R,ngwoage

JuIi -1963 Towing Arrangement Fec/er (etasf,sche Befei/1911 179 am 5ch/eppwagsui)

5par,n

Grob9ew/ch/e

-- FlJs3Igke//.s-dàmplung (DompfLIr7g c1n5/e//bar) fi'ingwaage

(8)

IN!LqIIIIII -t

II9ih FHllilliIi?:I

: aI iiw

rzi:muu: mru

rnHuuuu:::j:u1uuu :w uj

:r:::::up8:::

ilk i! ''

i.I

fL.:h

Hilli011iOH!Pillll1___

Oil WOIIIIOHO!OIq : IilWUmflIFUPPmP!.r.: :::

gniir.u!i.J

EiliLiiik

HSVflpe4er Nf:

11

D ?S9rnm

RCt) A4 2lOx29lrnm i)

Comparison of the Characteristic Curves of

12 9 '

HSVA Propeller and TIv Propeller

(9)

3OOQ.

Lt

g

A3 297x42Onr,

A::: 1O

1esistance (pond) in aIm ater and in .aves witn a Height corresooning to L/48 plotted against the

Velocity of the el (meter/second

(10)

4_IIl

163

kesistance (pond) in Vaves with a height corresponding

to /30 (constant ::ave Slope) plotted against the Fig.4 Velocity of the Model (meter/second)

(11)

:

29fl42On

Juli 4963

20

[m/5]

Revoluton (1/'second) of

tre

ropel1er in aim Water

and in Waves a Height corresponding to 11/48 plotted Fig. 5 against the Velocity of the Model (meter/second)

(12)

_20000

45000 10000 rn

5000

0,5 3(1/i' 1963 -tO Torque (cm pond) 1,5

in Calm Water and in Waves with a Height corresponding to L/48 plotted against

Velocity of the Model (meter/second)

2,0

25

V the Fig. 6

I

I I I

(13)

75LQ0

5000

2540.

0,5

1,5

20

Thrust (pond) in Calm Water and in Waves with a Height

corresponding to 1/48 plotted against the Velocity of Fig.7 the odel (meter/second)

(14)

Juh '1Q63

Heave/Wave - Height Ratio in Waves with a Height

corresponding to L/48 plotted against the Velocity Fig. 8 of the Model (meter/second)

I

/fo

A

(15)

,- * 11/

05

JuIi 1963

25I

15 -I-V

Fitch/Wave - Slope Ratio in waves with a i-ieight

corresponding to L/48 plotted against the Velocity Fig. 9 of the Model (meter/second)

(16)

ass_s

ll1!IllIlltL

hhJWllhhih

a p

:.

r:::::r

#r:'

..

LIkhi

IllIIrH

riIi!br!i Lqfl!IIU :1

w 9p

chliihbP

9hl1LJbIhJT1

9JjIJ

14htr'irFH9 iurnr

:

JJj

J!I

hHl: 94JI

llHLLI!!illh?

!illiii5 JT

LILLr

ILI

II1I II .saa..a.;

1.sIsJ::.

hhL!! ELiiu

11

rh'

dhlqh-

-Lj

Jrd

!H1 J

LWII!H1

I4!PII

.!WLllidL.9ll

9flilP

j

huJd hEihi

!L : 4 1 & A4 210x297mm S

Comparison of Resistance between H3VA, TI,

NSMB and AW. Calm Water

(17)

JulI 1963

A4 2O29?mm liE Ei!!!E : P .

r

::rn:i::.w pU9:::.':::

:ir

i

-m'.Iilkr

r1 i uupq u.P r

-

i.!.

i

:r ii

iJ!

i.

Li i

jj.

!

=:uur:i

i. r A- !

.! p

::m:::::E::: :::::!::::::h:-::u.

:i;;;;..

!iEEP

:::: : .i

- 1

'

--

..: :

r

..n.

-

-L

:r-rU#:;th:U::w ILg

.j

..

...1F igji

Ig

- I

r

IFI.

U:::::: U.:L....j:::::::::::::.::::.

mvr:::1:U UpIj::::n:U::jI:::::.::::::::

JHII

II III!r

--

m .

-!L1ii

:'zi

.

'

AL..:

:

Nft411..: r...11 U

-

-..

::U:U::

Ir

4.Pt

L:i.:::::::

T

:

-

I. I

.::di::r.m..ii!

.;;: .::::i:i

-

.J. .0 8

-

:

i!]

.. 1 l U 1

1:d:l flfr_

-

'

huirP

,:1.

II

I

-

I

:!iTh2.:#: ::::::i::#::JI:::Ul:1

iFhi

r1:

U

:::::#::::U::U#

P .. .i

-I

L\r1

J

#;,

r

r.. 'l

ir

-'

a

jp

-:

a

jIlL

:r

I"

JL. I .#.:

-

i.--

r

1u

11 - u

:#:::iii:::#:--U1

9u:

:

-

-u

II_

:.qJI.r

:116- I

g 1 C

-iF

C

Comparison of Resistance between HJVA,

TM,

(18)

1t 111111111

ll1llgIkItIllgllr

1iitL'II

J! IIIPk

'1I!thll

0 x 0

Comparison of Resistance between HSVA, TMB,

NSMB and AEW.

7=

1, Lpp, H = L/48 0

2,o

Modcwn 94eitnJ

Fig. 12

35

(19)

1411 1 A4 210 x29lmm ti r. H S VA

O

H

A

0

J

25

Comparison of Resistance between HSVA,

T,

NSIVIB and. AEW.

2=

1,5 Lpp, H = L/48

HodllqewIiidigI4' [knj

Fig. 13

(20)

'1,0

3,0

W,äand

o1 x c1:L A4 210x291mm H S VA

0

B

0

Comparison of Resistance between HSVA, TMB,

NSLB and AEW. ?

1,-Lpp, H = L/48

I I

.3,0

3,

Moflgethwik

[kn]

(21)

- * Jj1i '9&3 A4 2Wx29lmm H 5 V4 X ' m x

Comparison of Resistance between

HSVA, TMB,

NSMB and AEW.

2=

1,00 Lpp, H

/30

M//e.c/?wIno'ieit [k7

(22)

-Ii

1!I9P TLr rrLJOIIL!!I

Lthi!! II!i

+ii!II

!th 9bL Wild

ifl I

ilJEi

!III!

Filhi'IIli

i

!!L!ff

'h

hIW! ri,t

! F::::ii!!! !

i;:i:.. :::::.:.:::

:r ..:..z

.. . : .. .. :

.::::rL.lh :::::::nir.;;u::

:::: :1::::: .

.

: .'. :::::::::thr

.::::h:::::::::.:::i:::!h::E:::m

::::: -..r.::::::::::::::

L_--

UI!

._::.::1:1i

-. li!

:!:9--

.i

-:

--:.. !:.

:::::::::::::::::::::::::: .

' . . .. ::::::::r:r

:r ::th:::::h::!:::.unm::::::::.

i_.::::::

..J

.

:-

IL _:: 1 ':F:-L.' : L

....

.. T::

:r

:L . ..

rr ..

r

FdWP..

.-- 1.

.- I

uud.

: u

r

s z

--

.-- :.. : .

i.±"!

r

;i:s 1-

.!::

-:....

..

::1

.. ..

_;1ii.-L

_:

:ii:

.!!Er: !!E!!EE'...

:!!I!i!!!E

:u:::::::::::

':

Lt..

..r_

'z

'

LE %'

'

.

r

u

....

:::i:::::

...:::r...::::....

::i:::::::r...i: ... ::::::.

:::::::::i:

;::::..::

:-

:

ri...:... ...

h:::::

--

Iii

i:i

: - i

iz

r

.'L-

:: .L :i 1

::::i:

:::::::::::::::::::::::::::

... :...

.:::r : .::r.::::::::::

:: :

r

_ _

i:

.4_a: .._

...:::::;r.:::::::::::::::r.p...

'..

FhI..

u

r

-N 51ri

,1:iri4.'

...

''-1v:

:Ih::!E

...:::::::::!::::::::::::::::r

LF'..

:

-... ..

:'

u_

-

--

.r.

.r

..

...::::-- ...-

..:::r...:::: ...::::::i: :m i:r.:::::::.::::r

Lih...

5 P I

::::::::::::::::.

-

Z .

: uj:! hE

;- h u

: z r

:::::::r::":r :::: ...::::-:::::;:i;::::::::;:

:: 1 u SI-ij

Ls!.!. .':..

:

ii

n.

::i::::::::::::::

.2h.::

...

ipr1ui r

i

::::::::::...

...

1.:::::::::::::::::::::1:B;;:::::i:

...

ri

:-

r

:

15_g: i;

i:: 45I5 sL L

1PFLP

I

isIjjh UI!I,

.

r

Ei :

ii

P ui.isiI9

u.

r

.1.:

. Pi k. IiE i:

li'i' JIJjJ1

...r?

hJ1h9J !SI

:JL1

IIII

:i:uw

uur:::r::

.

uir1J

Wi1!

I

iI

h

': 'P

'E, P diiiifl11q5:

dl

(fIC) A4 2Wx297mm

Comparison of Resistance between HSVA, TMB,

(23)

A

0

Jki

..

P1

LLr

-, a

1:

Wfii

ii

L

i'

9

L

?L--

_:i:Li;

.;4

Id1hll1

r-51LIW

II F liii IFJIIIII1!IOH!IIIII JL/Ii 1963 A4 210 .297mm i) rn.

'LiIIll

i 1,0 C

2.o

25

3.0

3,5

/4o'eiIqekfrmnd&kth[knj

Comparison of Resistance between HSVA, TJB,

(24)

rehzahJ 4

1oo

Juli 1963 (ELE(t) A4 2IO29lmrn

05

h'S VA

xyV54

AEW F

25

3O 3,5

HodèIenikeif fknj

Comparison of Propeller Revolution between HSVA,

ThLB, NSI and AEW. Calm Water.

(25)

j1:::::q:::

1000

t

aq:r1#::i: ur'-u

pi:iq

I

L Ft1

1III!Si1LJ99 hIIli'

: : :!J9 ;

j

Juk 1963 A4 21O291mm 7

lo

-.

iIIOIIIII

llI!

ii

25

Comparison of Propeller Revolution between HSVA, TMB, NSMB and AEW. . =

0,75

Lpp, H L/48

3,0

Fig. 19

(26)

. .

-..

r..

L. ::

::

E

a::: ::::r.::::::I:::E::::.

LIL

--.. 1I._.. I ... :__

jZ:LFff: :

....

I:

. J!:::II:I

'

u:::::

:hYr :.

:UUUUU::U:UL :::UUUUI:UUiilh ::: .JI::UhUhU:::mflU:.: 4

i 1:pz

r'

:

:L

--

:

_I.

.. : i. .

::,ri

L !:L2

L

u:sL

ir:

1 1.i I: I

n- :: iS

:i ri L

1

-=

.11

U..i..

1!i 11111

5IuiEI.::

_L1!55

_r

: ]SS:.;:. ..

_tLSSbL 51

:

-

-!5 u LSL.5 55155 3fl IL

411.III:J

I_I

5 5 1.1 U 5555:5:.5

$.. 5:

i..

%:th

- :

i..

:

ir:..j....

--.519:

!Ij!55 !I!-!!ij!E!'!1555

fl

uijL:r nu:::h.:::::h:::rJ

___rF1ffiI

!IJSffhIII5J p.

:

ss- : :::g

h:::dS::::.::::::: 55F. 5: 55! 55555!! 555 555th.!.!! -.5555 :4 1 T

11!ffi

ii

iPI4!thi

.. . A4 210x297mm 1 4i x Hti

25

Mo&él/ge3thw,ndlg4eg /

Comparison of Propeller Revolution between HSVA,

(27)

-III

iIiIfflhiI

HOIIIIIIiiOF

LI

ihi :t.

IIIIIIiIII

I IIIIOF 1111111

E3!

1111

31

3i1 d

Hi1101U

111Whr

1i1H9 P1iJJb1P:

i::.

q:jp

jq

pjqp .ur

*

:s:ni;i; i

1111111111 11H!L ELECV) A4 21O297mm th :Lj 4 E :biL

]11Wk1L

i rE

!# qj1

-

:i:::rna:rnz

- .. II? 11111 11111110111L

.il!!hE!W

1ll1

Comparison of Propeller Revolution between HSVA, TMB, NSMB and AEW. k= 1,25 Lpp, H = L/48

25

5.

MBschketf 4nJ

(28)

.

::i:E.jr..::n::.

. - .. :

Ej5EE3999j#

bi:.:::!::::::::::wi::::!hg::: 2L:::::Inu:u:::.

.::r::ra:urur.

.. . m::ru : -:.

!.j:U1i61

I L: : :

.J!3!IP .

.

::u:::i::.: h:I:::::!fi::: u::. . .

!WP'L2'P I

i.::r.r1!

! Ei

.

'..

. .; :n::::z:#::::::::: :: .

hP!EW1'..c.:r:i!ftff!liE4

: Fi!i!EI5EjE

.. r.k :: ;

i:::::::id: .

rim .: :

: IflBj9Ui..

iPI

P:. -P

iiit1

uL U :h P L th

:f'

!:d8

P

!i !''

:

iii:

.. .._ --94 .jJq!irhuuiqHP9 "h1- iF

:

:uI I. .. ::::

_j

:fl:.uui: 1-i(u

:

i&

j

p

!ff!!

L: .. .::::

..:h::h::iu :g::.

. : : .

i::::::::i::::Edh:::th::,j:m!,

..:2j:dk..::th::z::. 1 ::

_V:1_n

: -

. .::::: i:m:':: .

u::!

. -. EE .

r

u

:J:....

: .

.::::::::i:::

Jr

. . 1i :...

1L

::T,.

Jdiu 1

..9 ii;

rp

19r

. :.

fi::!fi !!!

r-

:...---

:r ::

L_

:

idIL

: I:,

bj

..

9Jr1: I!.1L'

.!iF

:.!r..i

': i: :

-::::

: EiJu

. - -

::rz.

j-j

-

L

Eu 'zE1: : -91 .. E

r

1 liZ

Z::igi

.j

n

1Z::::::L::rn:::w-J

: 11'i

L:Z:9u::Eh1

P :

- q

..

r pjj

E.ii:in

r

'

L r'r E4j

:''

.. L

-:

gU11

rpI

-

-

ii

.1

91

--

:L

...

I:

L!!- I .k

fl l

p "LI wi

hu

"'jIhE:

di

:

,,:i'ZL !IIJ'j 1

u r

!!

hI.L

. i!, 91F P ii jj

-

"

1Pi'1'11 T!!

'1AWiE

:iih:Lh-9rJ....

- -

r:::

:!:ri:h:::umr:.:rh :h:flIb!hZhZ

- :::iwrr....

:9:.,:

¼'jIII9 L' U...E

'rmior

20

...r:::::u:Z::ni:::ri:u

:

...

II'

:::::I.

I .Z

d1

I :

i.r'U

1uh

1.

:.i

Tit 0 ;tj

t

Comparison of Propeller Revolution between HSVA,

TMB, NSMB and I4EW.

? = 1,50 Lpp, H = L/48

3.0

e#eshwmigkeifr [ki]

x

(29)

cg

21O291mr

Comparison of Heave/Wave - HeIght Ratio between HSVA, TMB, NSMB and. AEW. a =

0,75

Lpp, H L/48

ox.

- LLSYA

o

Ttt.

'C

NIP

REW

0

Ixx

)( I D

ff,deIIyecc/wInd,yge,t

[kaqi

Fig. 2

I,0

(30)

493

A 4 2G x i97 m

WY4

o X

NSffIj

0,5 2,0 2,

35

Comparison of Heave/iave

- Height Ratio between

HSVA, TIV1TB, NSMB

and kEW.

= 1,00 Lpp, H

L/48

Mode/lye ch win dirg He, t (Kn .7

(31)

:::

L i

JiiE-JiF

.::!Ei#a:

_::F

r-

i.idI

Iij-496:

A4 2O297mm 0 2,0

Comparison of Heave/Wave - Height Ratio between HSVA, TMB, NSMB and AEW. I 1,25 Lpp, H = L/48

x

Mod.1/fesckw:wdf /('est

rknJ

(32)

L H A

0

)(

i:5

0

ofl

x x

Comparison of Heave/Wave Height

Ratio between

HSVA, TMB, NSMB

and AEW. t= 1,50 Lpp, H

= L/48

3.0

tfodE!1qe c ci'

dtg K it f1(.J

(33)

rxa

n-

rirr

I4!!

'Lj

LLJ

ikih:

j

ill 19t3

LECE A4 210x297mrn .iD 'm

gyg

4

:I 44q

2,0

2,5

Comparison of Pitch/Wave

Slope Ratio between

HSVA, TMB, NSMB and kEW. t=

0,75

Lpp, H = L/48

A

lO

)*oW4qe sck',øa'ij4e,t [44,1

(34)

A4 2Ox297mr

)(

.4

REW

40

4S 2,0

frfoó11jt4wird:yJ(ei t [AnJ

Comparison of Pitch/Wave

- Slope Ratio between

(35)

A4 21O297rn 4;o 'C x 'C x TtTt 1-Ff 2,5 3,0

M.dlld'wind,,9I(Wt fknj

Comparison of Pitch/Nave - Slope Ratio between

(36)
(37)

Cytaty

Powiązane dokumenty

Uczniowie z ADHD to dzieci o specjalnych potrzebach edukacyjnych, którym często sprawia trudność sprostanie wymaga- niom szkolnym, co wynika ze specyfiki ich

Gdy w gr' wchodz% (co jednak zdarza si' raczej rzad- ko) dostatecznie bogate i dobrze zachowane materia y pi- sane, w tym dokumenty osobiste, takie jak wspomnienia, pami'tniki,

Nie można mówić o chrystianizacji prawodawstwa państwowego po prze- łomie konstantyńskim bez rozeznania stanu prawodawstwa kościelnego w tym czasie, bo to absorpcja tego prawa

Гиляров-Платонов и русская литература 1850–1880-х годов, Институт русской литературы (Пушкинский Дом) РАН, «Родник»,

In the GOCE case the algorithm results in two separate cross-wind data sets, one derived from linear accelerations (force-derived), the other from angular

could not be deemed satisfactory for bending moment capacity at all safety levels (as defined in Table 1), since for the Design safety level, the Unity Check is larger than 1. Table

The Land Administration Domain Model (LADM) and the related Social Tenure Domain Model (STDM) functionalities can be used for documenting primary and secondary land... rights

Given the range of the Reynolds numbers of interest for AWE and the specific topology of the LEI kite airfoil, the flow separation on the suction side may occur already from a