• Nie Znaleziono Wyników

Electrode interface polarization formation in dielectric elastomer actuators

N/A
N/A
Protected

Academic year: 2021

Share "Electrode interface polarization formation in dielectric elastomer actuators"

Copied!
11
0
0

Pełen tekst

(1)

Published in

Sensors and Actuators, A: Physical

Citation (APA)

Iannarelli, A., Ghaffarian Niasar, M., & Ross, R. (2020). Electrode interface polarization formation in

dielectric elastomer actuators. Sensors and Actuators, A: Physical, 312, [111992].

https://doi.org/10.1016/j.sna.2020.111992

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

SensorsandActuatorsA312(2020)111992

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Electrode

interface

polarization

formation

in

dielectric

elastomer

actuators

Alessandro

Iannarelli

,

Mohamad

Ghaffarian

Niasar,

Rob

Ross

DCSystems,EnergyConversionandStorage,FacultyofElectricalEngineering,MathematicsandComputerScience,DelftUniversityofTechnology, Mekelweg4,2628CDDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23December2019

Receivedinrevisedform31March2020 Accepted31March2020

Availableonline5May2020 Keywords:

DIelectricelastomeractuators Dielectricspectroscopy Electrodepolarization Reliability Spacecharges Interfacepolarization Electroactivepolymers

a

b

s

t

r

a

c

t

Dielectricelastomeractuators(DEAs)areaclassofelectrostaticactuatorsthathavepromising applica-tionsinfieldslikesensors,soft-robotics,microfluidics,andenergyharvesting.Thecrucialpointsinthe workingprincipleofDEAaretheapplicationofhighelectricfieldandtheuseofcompliantelectrodes. Theseelectrodesaretypicallycomposedofamixtureofasoftpolymerbasefilledwithhighlyconductive particles.Inthiswork,weshowthatthechargedimpurities,possiblypresentintheelectrodes com-posite,incombinationwithahighelectricfieldcancausetheformationofpolarizationinterfacelayers betweentheelectrodesandtheinnerdielectric.Theselayerscan,inthelongterm,diminishtheactuation performanceoftheDEA.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dielectricelastomeractuators(DEAs)areaspecificclassof elec-troactivepolymer(EAP)transducersthatexploitstheelectrostatic forceexertedbetweentwoconductorstoperformadisplacement. Becauseoftheirpliability,highefficiency,noiselessoperation,and fastelectromechanicalresponse[1–4]theyaresuitablefor vari-ousapplicationsuchasartificialmuscles,robotics,optics,sensors, microfluidics,andenergyharvesting[5–14]andreceivedattention incommercialapplications[15].

Despitetheirversatileproperties,DEAsexhibittwomain oper-ationaldisadvantages:theneedfor flexibleelectrodesand high electricfields[16].Manufacturingelectrodeswithhighcompliance andconductivityrepresentsachallengingtaskasthetwo proper-tiesareoftenmutuallyexclusive[17].Whereas,theintrinsically lowpermittivityεofelastomersmakesnecessarytheuseofa rel-ativelylargeelectricfieldEzforasufficientactuationforceFz.This

followsfromtherelation:

Fz=εAEz2=εA(V

d)

2

(1)

∗ Correspondingauthor.

E-mailaddress:a.iannarelli@tudelft.nl(A.Iannarelli).

whereAistheelectrodearea.Intheright-handsideoftheequation, thefieldEzisre-writtenintermsoftheappliedvoltageVandthe

elastomerthicknessd.Ahighelectricfieldcan,thus,beobtained eitherbyreducingthedielectricthicknessorusingasubstantial voltagepotential[18].

Toovercomethesedisadvantages,compliantelectrodesare typ-icallypreparedwithhighlydopedelastomercomposites[19–24] andinorganicfillersareusedtoartificiallyaugmentthedielectric’s permittivity[25–31]aswellasthechemicalfunctionalizationof theelastomer[32].

Despitetheefforts,stilltypically highelectricfield strengths needtobeinvolvedforasignificantactuationdisplacement.The influenceofhighelectricfields(orvoltages)onthedielectric prop-ertiesofDEAsystemisscarcelyinvestigatedasmostoftheresearch isperformedatlowvoltages[33].Inthepresenceofstrong elec-tricfields,newphenomenacanestablishanddrasticallyimpactthe dielectricproperties.Adistinctiveexampleisgivenbythe forma-tionofspacecharges(SC)atlow-frequencyhighfields[34,35].

Space charges formation in dielectrics exposed to high DC voltages is a known effect for polymeric materials used in DEAs fabrication [36–40]. However, the evolution of SC at the electrodes–dielectricinterfacesanditsconsequencesontheDEA actuationperformancearemuchlessstudied.

Ourresearchinvestigatesthedielectricphenomenaatthe inter-faces.Specifically,westudiedthroughdielectricspectroscopy(DS)

https://doi.org/10.1016/j.sna.2020.111992

(3)

Fig.1.Schematicrepresentationofthespacechargeformationattheinterface.(a)Samplepanview.Intheinset,theformationoftheelectrodepolarizationlayershappens attheelectrode-dielectricinterfaces(b)Consequencesofelectrodepolarizationlayersonrealcapacitanceanddielectriclosses(tanı)spectrum.Theselayersresultina parasiticcapacitanceCpol,thataddstoandmodifythepre-existingdielectriccapacitanceCPDMS.

howthechargedimpuritiesmigratingfromthedopedelectrodes (forcedby thehighelectric field employed)canform polariza-tionlayersattheelectrodes/dielectricinterfaces.Successively,we observedtheconsequencesofthesechargedlayersformationon themechanicalcapabilitiesoftheDEAsystembymonitoringits actuationperformanceovertime.

Thefirstpartof this workpresentsthe equivalentelectrical modelusedtodescribetheinterfacephenomenon.Thesecondpart addressestheresultsaboutspacechargemeasurementperformed withdielectricspectroscopyandtheperformancecharacterization overtimeofDEA.

2. DielectricphenomenaatinterfaceofDEAs

Compliant electrodes used in DEAs are typically composite materials.Theyarepreparedbyaddinghighlyconductivefillers (e.g.metalparticles,carbonblacks,ionicgels,dopants)toan elas-tomerbase material until the percolation threshold is reached [22,19].Dependingonthefabricationmethodused,these compos-itescancontainionicimpuritiesaswellasfreeionsresultingfrom residualcatalysts,solventsorthefillerthemselves[41,42].Under theinfluenceofasufficientlyhighelectricfield,theseimpurities arepushedacrosstheelectrode-dielectricinterface(seeFig.1(a)) leadingtothedevelopmentofachargedaccumulationlayer[43]. Thisphenomenonisknownaselectrodepolarization(EP)[44].The resultantcapacitanceoftheseparasiticlayerssuperimposestothe realsamplecapacitance.Becauseofthelargeinertiaofthe impu-rities,theeffectisdominantatlowfrequency,i.e.whentheyare slowlyacceleratedandexposedtoaunipolarfieldforalongertime. Asaresult,thecapacitancesuperimpositioncanbeobservedvia dielectricspectroscopy asa low-frequencysignalenhancement, Fig.(1(b)).

Whenanexternalvoltageisapplied,thepresenceofthe para-siticlayermodifiestheinternalelectricfielddistribution.Apartof theappliedelectricfieldconcentratesnexttotheinterfacesandthe remainingpartinthebulk.Thisunwantedeffectisacommon prob-leminelectrochemistryfield[45]becauseitdisguisesthedielectric contributionoftheactualsample.InthecaseofDEA,however,its presencecanbeusedtoassesstheactuatorperformanceovertime anditsreliability.

Fig.2.Total impedanceZTOT modelofDEA usinglumpedelements. Boththe

interfacesandthedielectricbulkaredescribedbytheconstantphaseelements impedancesCf,polandCf,PDMSinparallelwiththerespectiveresistiveelementsRpol

andRPDMS.TheelectrodesaremodeledastwopureresistiveelementsRser.Due

tosymmetry,theequivalentcircuitcanbere-writteninareducedform(bottom equation).

2.1. Interfacemodeling

To investigate the formation of the space charges at the interface,weconstructanequivalentelectricalcircuittofitthe experimental impedance spectra obtained via dielectric spec-troscopy, Fig. 2 [46]. We emulate the parasitic and sample capacitances using constant phase elements (CPE). The CPE is specificallysuitabletodescribeinterfaceeffects[47,48].Itis char-acterizedbythetwoparameters˛andCCPE

ZCPE=

1 (jω)˛·CCPE

, ˛≤1 (2)

Herej2=−1istheimaginaryunitandωistheanglularfrequency oftheappliedsignal.TheparameterCCPE hastheunitof[CCPE]=

(4)

A.Iannarelli,M.GhaffarianNiasarandR.Ross/SensorsandActuatorsA312(2020)111992 3

Fig.3. Minimalisticrepresentationofthedielectricspectrumanalyzer.The gener-atedsignalandtheresultingcurrentaremeasured.Theimpedanceiscalculatedas teratioofthetwocomplexquantitiesU(voltage)andi(current).

F·s˛−1.When˛=1,CCPEisacapacitance.Inthiswork,weaddress

totheCPEsimplyasamodifiedcapacitiveelementwithunit ˜pF= pF·s˛−1.

3. Experimental

3.1. Dielectricspectroscopy

Dielectric spectroscopy (DS)measurements were performed usingaMeggerIdax300InsulationAnalyzerunitincombination withtheMeggerVax020HighVoltageAmplifier,Fig.3.Thetests weredonein normal environment conditions (20◦C an1 atm). Acustomrigwasusedtoholdthesamplesinplaceduringthe test. DS wasperformed onthesamplesin three stages: firstly, low-voltage (Vpeak(LV )=10 V,corresponding toa field Epeak(LV )=0.19 kV/mm)DSwasperformedintherangefrom10mHzto10kHz toassessthecapacitancebaselineofnewDEAsamples.Inthe sec-ondstage,theDSwasexecutedathighvoltage(Vpeak(HV )=1980V, henceE(HV )peak =37.2kV/mm)inareducedfrequency-rangefrom10 mHzto2kHz.Thehighvoltageinthisstagehasatwofoldfunction: itisneededfortheDSspectrummeasurementatahigher elec-tricfield,anditsimultaneouslyforcesthemigrationofthecharged particlesat theinterfaces.In thethird and laststage,the sam-plesweresuccessivelyre-testedwithlowvoltageatdefinedtime intervals.

ThereducedfrequencyrangeoftheHVtestisduetothe limi-tationoftheamplifier.Itisworthmentioningthatthefrequency sweepwasperformedfromhightolowfrequenciesinallcases. Fromnon-reportedtests,however,wefoundthatthesweeporder won’tinfluencethefinalresults.

3.2. Samplepreparation

Thesamplesinthisanalysiswerepreparedusingcommercially availableWackerElastosilFilm2030polydimethylsiloxane(PDMS) films.The100␮mthicksiliconesheetswerecutindiscsof50mm diameter.Aradialstretchofr=1.5wasimposedonthe

result-ingmembranesbytheOpen-SourceRadialStretchingSystem(RSS) [49].Toholdthemembranestensioned,thesewereanchoredto rigidring-shapedpolymethylmethacrylate(PMMA)framesof34 mminnerdiameterand2mmthickness.Adouble-sidedpolyamide siliconeglue tape wasused as fastenlayerbetween thePDMS andthePMMA.Theelectrodeswerethenpatternedonbothsides ofthemembranesusingthespray-painttechnique.Aconductive andelasticink[50]wassprayedwithanairbrushthroughshadow masksofpropershape.Theinkwaspreparedbydispersingthrough ahigh-speed mixer(ThinkyARE-250) carbonblackfillers (Cabot BlackPearl2000)intoanuncuredsiliconebase(NusilMED-4901). Isopropyl-alcoholandiso-octanewereusedasthinnerforthis

pro-Fig.4.RealpartoftheDEAcapacitanceresultingfromthefirstdielectric spec-troscopystageperformedatlowvoltage,V(LV )

peak=10V.Thehigh-frequencydecrease

isduetotheelectrodeshighresistivity,whichmakesthesystemactasanRCfilter. Theerrorbarsrepresentthemeasurementsstandarddeviationover5samples.

cess.Thepainteddeviceswerecuredinaventilatedovenat50◦C for40min.Afterthistime,contactswereaddedtotheelectrodes bypaintingtwosilverinkpads(RSPROSilverConductivePaint). Thedevicewasthenputbackintotheovenforalastcuringstepof 12hat50◦C.Theresultingelectrodeshaveacircularshapeof12 mmdiameterandanaveragethicknessof10␮m,measuredusing thesurfaceprofilometerDektak150.

ThesamplespreparationwasperformedinanISO7controlled environmenttoavoidexternalparticulatecontamination.

4. Resultsanddiscussion

4.1. Interfacepolarization

4.1.1. Dielectricspectroscopyatlowvoltage

Thedielectricspectroscopyperformedon5newDEAsamples atlowelectricfield(lowvoltage)showstheexpectedbehaviorof aparallelplatecapacitor,Fig.(4).Therealpartofthecapacitance isapproximatelyconstantinthewholemeasuredfrequencyrange. Inthehighfrequency(f>2kHz)tail,theresistiveeffectofthe elec-trodesbecomespredominant.Inthisregion,thesystembehavesas anRCfilterattenuatingtheflowingcurrentandalteringthevoltage distributionalongtheelectrodesurface[51].Theelectrostatic com-pressionforthislowvoltageisnegligible,andthereisnovaluable capacitancechangeresultingfromitinthedielectricspectroscopy. Themeasuredcapacitanceintherangefrom0to500Hzhasan averagevalueofCLV=50.26±0.09pF.

4.1.2. Dielectricspectroscopyathighvoltage

TheDSissuccessivelyperformedathighvoltageVpeak(HV )(Epeak(HV )) onthesamesamplespreviouslytestedatLV.Significantchanges appearinthedielectricresponseoftheDEAs,Fig.5.Fortheir anal-ysis,itisconvenienttodividethespectrumintwoadjacentregions delimitedbythecentralvaluef∗=10Hz.Thelowfrequencyrange

FLFcontainsfrequenciesfrom10mHzuptof∗=10Hz,whereas

thehighfrequencyrangeFHFcontainstheremainingfrequencies

abovef∗.

Followingthefrequency-sweepdirection,i.e.fromhightolow, itisobservedacapacitanceincreasewithdecreasingfrequencyof about1pFintheFHFrangewithrespecttothepreviouslowvoltage

(5)

enhance-Fig.5. RealpartoftheDEAcapacitanceresultingfromtheseconddielectric spec-troscopystageperformedathighvoltage,i.e.V(HV )

peak=2kV.Anoticeableincreaseof

capacitanceisvisibleforfrequencieslowerthanf∗=10Hz.Theerrorbars repre-sentthemeasurementsstandarddeviationover5samples.Thelowvoltageaverage value(dashedline)isalsoreportedforreference.

Fig.6. tanımeasurementoftheseconddielectricspectroscopystageperformed

atVpeak(HV )=2kV.Thepeakislocatedaround1.45Hz.Theerrorbarsrepresentthe

measurementsstandarddeviationover5samples.Itisvisiblethelargedifference withthelowvoltagelosses(dashedline).

mentoftheoriginalcapacitance.Thevaluesinthis rangeshow small scattering and hence a uniform change for all the sam-ples.

Continuing on the lower frequencies of f∗, instead, a steep capacitanceincreaseappears.Thecapacitancevalueskeep mono-tonicallyincreasing withdecreasingfrequencies, with a milder slopefrom500mHzto10 mHz.Thescatteringofthevalues is largerinthisrange,withastandarddeviationofLF,HV=2.2pF.

Largevariationsarepresentinthemeasurementoftanı,i.e.the medium’sdielectriclosses,Fig.6.Morethananorderofmagnitude ofadditionallossesaremeasuredforfrequencieslowerthanabout 100Hz.Allthemeasurementsshowapeakvalueofaround1.45 Hz.

Athigherfrequencies,thetanıbehaviorisdominatedbythe contributionoftheresistiveelectrodesused.Incontrast,forlower

Fig.7.Realpartcapacitanceevolutionovertimemeasuredinthethirdstageof dielectricspectroscopy.Thehighvoltage(dashedredline)andlowvoltage(dashed blackline)arereportedforcomparison.Allthetestsareperformedatthelow

volt-ageVpeak(LV )=10V.Novoltageisappliedtothesamplesbetweentwoconsecutive

measurements.

frequencies,weobservethecontributionofthePDMSandits inter-faceswiththeelectrodes.

ThecapacitanceenhancementrecordedinFHF,isexplainedby

themembranethinning,whichresultsfromtheelectromechanical actionoftheelectrodes.Inthepresenceofhighelectricfields,the electrostaticforcecausesasignificantcompression.Fromthewell knownparallel-platecapacitorrelation

C= ε0εrA

d (3)

(whereAistheareaoftheelectrodes)itisreadilyunderstoodthat adecreaseinthicknesscausesacapacitanceincrement.In princi-ple,thissameargumentcouldbeusedtoexplainthebehaviorin

FHF.Itcouldbearguedthatatlowfrequency,thesamplecan

com-pressmore,becauseofalessviscoelasticeffectandtherefore,an evenmoreconsiderablecapacitanceincreasecouldfollow.Thelast hypothesisisprovedtobecontradictedbytheoutcomesofthenext Section4.1.3.

4.1.3. Dielectricspectroscopyevolutionovertime

TheDSwasrepeatedonthesamesamplesatlowvoltageafter theHVinvestigation,Fig.(7).Apersistentcapacitanceincreasefor frequencyintherangeFLFisstillmeasured.Suchatrendwasnot

encounteredinthepreviouslowvoltagemeasurementsshownin Fig.(4).But,itwasrecordedforthefirsttimeunderhighvoltage conditions,Fig.(5).

Thecompressionargumentexploitedtoexplainthecapacitance increaseinFHF(Section4.1.2),cannotholdinthiscasebecausethe

induceddisplacementatlowvoltageisreasonablynegligible.Also, thecapacitancemeasuredinFHF areinthiscaselowerthanthe

baselinebyapproximately2pF.

Thetwophenomenatogetherindicatethatthehighelectricfield imposedduringthehighvoltageDSchangedtheDEAsproperties undertest.Theseresultsshowedtobereproducibleforallthe sam-plestestedinacoherentmanner.Thesampleswereleftapartin controlledtemperatureconditions(20degreeCelsius)andwere re-testedwithlowvoltageatsuccessivetimeintervalstoassessthe stabilityofthechanges.ThecurvesinFig.7showthetimeevolution oftheobservedcapacitanceforarepresentativespecimen.

Rightafterthehighvoltageapplication,thelowvoltageDSstill registershighcapacitancevaluesintheFLF range.Thesevalues

(6)

A.Iannarelli,M.GhaffarianNiasarandR.Ross/SensorsandActuatorsA312(2020)111992 5

Fig.8.Evolutionoftanıovertimemeasuredatthethirdstagedielectric spec-troscopyatlowvoltage.Thecentralpeakshiftsleftwardsovertimebecauseofthe gradualreductionofthepolarizationlayersinabsenceofanexternalelectricfield.

at50◦Cfortwohoursandtestedagainoncecooleddowntoroom temperature.After42hnodifferenceinthecurveswasnoticeable anymore.

Anequivalenttimeevolutioncanbeobservedalsoforthetanı measurement,asshowninFig.8.Thecentralpeak(fpeak(t=0)=

3.6Hz),whichappearedwiththehighvoltageapplication,shiftsto lowerfrequencywiththetimepassing.Afterthe42hoursperiod, itstabilizestoitsfinalposition(fpeak(t=42h)=7.5mHz). 4.1.4. Inceptionthreshold

TheDSwasperformedatsuccessivelyhighvoltagelevelson untestedsamplestomeasuretheelectricfield thresholdforthe inceptionofthepolarizationeffect.Namely,thisisthethreshold abovewhichapermanentdielectricchangeisobservableinthe DEAsystem.

Tenvoltage-peaklevelslogarithmically-spacedbetween198V and1980Vwerechosenforthetest.InFig.9,sixofthese volt-agelevelresultsarereported.Amildcapacitanceincreasedueto polarizationisvisibleatlowervoltagesforfrequencieslessthan 100mHz.Forvoltagesupto711V(about13kV/mmnominal elec-tricfield),therealpartofthecapacitancestaysnearlyunchanged, Fig.9(a).Asthevoltagereachesaround918Vpeak(orabout16 kV/mmnominalelectricfield),asuddenincreaseisobservedwhich persistsforhighervoltages(electricfields).Ananalogouschangeis observedinthedielectriclossesinvestigationforthesame volt-age,Fig.9(b).Inthisfigure,theformationofahumpisobserved betweenthetwovoltages918Vand1187V.Thephenomenoncan alsobeobservedinaNyquistplotforthecapacitancevalues.When thepolarizationsets,therespectivecurvesbendtillforming arc-likecurvesatlowerfrequencies,ascanbeobservedinthecurves inFig.9(c).

ThevalueEth=16kV/mmisthereforeconsideredtheelectric

fieldthresholdfortheinjectionofpermanentpolarizationlayerfor thisspecificsystem.

4.1.5. Lumpedmodelfitting

Thepermanentdielectricvariationisexplainedbytheformation ofspacechargesattheinterfacesduringthehighvoltagestageof DS.Theimpuritiescontainedintheelectrodes,movedtowardsthe interface,creatingastablepolarizationlayer.

Thepolarizationlayersareschematizedusingthelumpedmodel presentedinSection2.1andshowedinFig.2.BoththePDMSbulk andtheinterfacesaremodeledwiththeCPEelementsCf,PDMSand

Cf,pol.ParalleltotheCPEs,theparasiticresistancesRPDMSandRpol

areincludedtoaccountforthematerialandinterfacelosses, respec-tively.

Thetotal impedance ZTOT measuredthroughdielectric

spec-troscopyinSection4.1.3hasbeenfittedwiththislumpedmodel usingtheMEISP3.0(MultipleElectrochemicalImpedanceSpectra Parameterization)softwarebyKumhoChemicalLaboratories.The resultsareshowedinFig.(10).Theevaluatedfitparametersofthe impedancedatatotheequivalentcircuitarereportedinTable(1). Wecantrackthetimeevolutionofthechargedinterface: ini-tially,asthepolarizationlayerisformed,itischaracterizedbya largecapacitanceCf,pol.Atthesametime,alargecapacitanceCf,PDMS

relativetothePDMSbulkismeasured.Comparingthisvaluetothe initialC0,LVisevidentalargeenhancement.Thisisexplainedbythe

reducedPDMSeffectivethickness ˜d.Overtime,thevalueofCf,pol

graduallydecreases:theformedchargesstartdiffusingand recom-bining,shrinkingtheinterfacelayerdepth.ThePDMScapacitance Cf,PDMSdiminishesaccordingly:theeffectivePDMSthickness ˜d is

nowincreasing.

Wecanfinallycomparetheevolutionofthetanıpeakswhich appearintheFLFrange.Accordingtotheproposedlumpedmodel

thisareroughlyproportionaltotheratio ∝C 1

˛,1·Rpol

Wecomparedthesevalueswiththeonesactuallymeasuredover thetimeevolution,andwereportedtheminTable(2).Inallthe casesthereisadirectproportionalitykbetweentheestimated val-uesbythemodelandtheactualmeasuredones.Thisisafurther confirmationofthevalidityofourfit.

4.1.6. Comparisonwithothermaterialsandconditions

Thethree-stages-dielectric-spectroscopytestwasperformedon differentmaterialstoassesstheformationofpolarizationlayers. Tworigidpolymersfilms,namelylow-densitypolyethylene(LDPE) andpolyvinylchloride(PVC),weretestedusingthesamesample preparationmethodexploitedinthePDMScase.Duetothe stiff-nessofLDPEandPVC,nopre-stretchwasappliedtothesesamples. Themeasuredfilmthicknesseswere103␮mand160␮mforthe LDPEandPVC,respectively.ThehighvoltageVpeak(HV ) usedforthe high-voltagedielectricspectroscopystagehasbeenchosentohave theresultingrespectiveelectricfieldE,suchthatE>Eth.Thevalue Eth=16 kV/mmis theelectricfieldthreshold measuredfor the

PDMS-basedDEA.

AscanbeseenfromFig.11,thesematerialsshowsimilar behav-iortothePDMScase.Atlowvoltage,bothLDPEandPVCexhibit onlybulkpolarization[52].DuringthesecondstageDS,performed underthehighelectricfieldE,theEPsettlesandpersistsevenafter thehighvoltageisremoved.Thepolarizationpersistencecanbe observedinthethirdandlaststageofDS,whichisperformedagain atlowvoltage.

AfinaltestwasconductedonPDMSusingnon-compliant,pure aluminiumelectrodes.Therigidaluminiumpreventsthepresence ofimpuritiesorfreeionsthatcanformtheEPlayer,likeinthe caseofthecarbon-siliconecomposite.Thepeakvoltagewas grad-uallyincreaseduptoVpeak(HV )=1980Vandthenrevertedbacktolow voltage.Theresults(seeFig.12)showthat,withthisconfiguration, nopermanentpolarizationlayerisformedduringtheHVphase. Aminorcapacitanceincreasealloverthespectrumisexplained bytheelectrostaticforcesqueezingthesiliconelayer,thus reduc-ingitsthickness,Eq.(3).Whenre-testingatlowvoltage,thesample recoversitsoriginalcapacitanceshowingtheabsenceofpermanent EP.

(7)

Fig.9. Polarizationinjectionstudycomparedwiththelowvoltagebaselinemeasurement.(a)Capacitancefrequency-sweeps.(b)tanıdielectriclossmeasurement.(c)Nyquist plotofthecapacitance,thearrowindicatesthedirectionofincreasingfrequencyω;theformationofanewarcinthecurvesisnoticeableasthepolarizationsettles.

Table1

Timeevolvingfit-parametersresultingfromthelumpedmodelfortheDEAactuator.

Time Rser() Cf,pol( ˜pF) ˛pol Rpol() Cf,PDMS( ˜pF) ˛PDMS RPDMS()

t0 11.64×104 401.7 0.9984 1.14×107 60.17 0.99 1.86×1014 t1 11.16×104 395.1 0.9983 1.59×108 59.72 0.99 1.85×1014 t2 11.79×104 331.5 0.9961 1.00×109 59.22 0.9941 1.85×1014 t3 11.92×104 318.6 0.9962 3.83×109 58.07 0.9964 1.85×1014 t4 11.93×104 315.1 0.9941 3.80×109 58.23 0.9968 1.85×1014 t5 12.03×104 321.5 0.9957 4.19×109 58.25 0.9965 1.8×1014

TheteststogethershowthatthemeasuredEPisindependent bychoice ofthe dielectric medium,but rather depends onthe electrodesused.Explicitly,it confirmsthatahighconcentration ofimpurities orunbonded chargescontainedin theconductive carbon-siliconecompositesusedaselectrodescanpromotetheEP formation.

Finally,theseresultsencouragetheuseofpuremetalelectrodes forthefuturedevelopmentofinterface-polarization-freeDEAs.For example,ithasbeenrecentlyshown[53]thatgoldcancovalently bondtothiol-functionalizedsilicone(SH-PDMS)surfacetoforman ions-freecompliantconductivelayer.

4.2. Actuationeffects

Thepolarizationeffectsweremeasuredontheactuation perfor-manceoftheDEAovertime.Twosetsofsampleswerecontinuously actuatedwith1HzsquareandsinewaveAC4kVpeakvoltage,

respectively.FromresultsofSection4.1.4,thisvoltageensuresthe creationofpolarizationatinterfaces.Bothsetswerevideo-recorded fortheentirelengthofthetest.Afterwards,theinformationabout theradiuschangewasextrapolatedfromtherecordingswiththe aidofcustomMATLABcode.

Fig.13(a)showshowtherelativeactuationstrokes%(t)defined

as

s%(t)=100×

rON(t)−rOFF(t)

rON(0)−r(0)OFF

(4) whereristhemeasuredradius,diminishesovertime.The ON-(OFF-)radiusisdefinedasthemaximum(minimum)radiusmeasured overavoltagecycle.

Thehighestperformanceloss(intermsofactuationstroke)is measuredfortheACsinewavecase.Theformedchargedlayers, concentratetheelectricfieldattheinterfacesattenuatingthebulk electricfieldresponsibleforthecompression.Asaconsequence,

(8)

A.Iannarelli,M.GhaffarianNiasarandR.Ross/SensorsandActuatorsA312(2020)111992 7

Fig.10.FittingofthetimeevolvingtotalcapacitanceC=C+iCandimpedanceZ=Z+iZwiththeproposedlumpedmodelincludingconstantphaseelements.(a–c)

Realandimaginarycapacitancefitting.(b–d)Realandimaginaryimpedancefitting.Solidlinesrepresentthefittingofthedatapoints,representedbythemarkers.

Fig.11. CapacitancemeasurementsresultingfromthethreestagesdielectricspectroscopyperformedonLDPE(left)andPVC(right).Theinitiallow-frequencycapacitance enhancementforthelowvoltagecurvesisduetothebulkpolarizability.

(9)

Fig.12.CapacitancemeasurementonPDMSfilmusingrigidaluminiumelectrodes. TheelectrodesradiusisinthiscaseslightlylargerthantheCB-PDMSandahigher capacitanceisthusrecorded.AreversiblebulkpolarizationofthePDMSisvisible forlowerfrequencies.

theavailableelectrostaticpressureinthebulkisreducedaswellas theresultingdisplacement.

TheON-radiusreducesovertimebecausethebulkelectricfield, whichcausesthecompression,reduceswiththechargedinterface formation,Figs.13(b)-(c)(darklines).

Similarly,intheOFFstate,thegrowingpermanentpolarization chargessettleanelectricfieldthatholdsthecompressionand pre-ventstheDEAtorecovertoitsinitialunperturbedstatefully.This explainstheincreasingradiusintheOFFstate,Figs.13(b)-(c)(bright lines).

Thisstudyaimedtoassess thepolarizationchargescreation at the electrodes-insulator interface and to measure its effects ontheactuationperformance ofa dielectricelastomeractuator (DEA)systems.Dielectricspectroscopy(DS)wasperformedonthe sampleinthreestages.Asystematicandpermanentcapacitance increase was measuredwhen exposing thesample to low fre-quency(<10Hz)andhigh-intensityelectricfields(>16kV/mm). Theresultwasattributedtothecreationofspacechargesat inter-faces.Anequivalentcircuitwasmodelledtoquantifytheinterface polarizationmechanism,anditsuccessfullyfittedtheexperimental data.

Theeffectsofthepolarizationchargeswerestudiedonthe actu-ationstrokeovertime.Itwasgenerallyobservedastrokereduction over timecaused bythe formationof polarizationcharges.The worstperformancewasmeasuredinthecaseofACsinedriving signal.

Fig.13.(a)Relativestrokereductionovertimeforthetwodifferentinvestigatedwaveforms.In(b)and(c)itisshowedhowtheradiusrONincreasesovertimewhereasrOFF

(10)

A.Iannarelli,M.GhaffarianNiasarandR.Ross/SensorsandActuatorsA312(2020)111992 9 Spacecharges(interfacepolarization)canexplainthesevere

reductionofactuatorperformanceovertime.Itistherefore sug-gested tomakea deliberatechoiceof thematerialusedduring electrodesfabrication,and,inparticular,itissuggestedtoavoid theuseofmaterialwithsignificantimpuritiesorionscontent.

CreditAuthorStatement

AlessandroIannarelli:Conceptualization,Methodology, Soft-ware, Validation, Formal Analysis, Investigation, Data Curation, Writing-Originaldraftpreparation.

MohamadGhaffarianNiasarh.:Investigation,Data Curation, Resources,Writing-Review&Editing.

RobRoss:Visualization,Supervision,Writing-Review& Edit-ing,Projectadministration

Acknowledgements

This work was possible thanks to the financial of Marie Sklodowska-CurieInnovativeTrainingNetwork (MSCA-ITN-2014-ETN)grant641822.

References

[1]K.Jia,T.Lu,T.Wang,Responsetimeanddynamicrangeforadielectric elastomeractuator,Sens.ActuatorsA:Physical239(2016mar)8–17. [2]P.Maiolino,F.Galantini,F.Mastrogiovanni,G.Gallone,G.Cannata,F.Carpi,

Softdielectricsforcapacitivesensinginrobotskins:Performanceofdifferent elastomertypes,Sens.ActuatorsA:Phys.226(2015may)37–47.

[3]S.S.Nakshatharan,U.Johanson,A.Punning,A.Aabloo,Modeling,fabrication, andcharacterizationofmotionplatformactuatedbycarbonpolymersoft actuator,Sens.ActuatorsA:Phys.283(2018nov)87–97.

[4]G.Y.Gu,J.Zhu,L.-M.Zhu,X.Zhu,Asurveyondielectricelastomeractuators forsoftrobots,BioinspirationBiomimetics12(2017jan)011003. [5]C.Tang,B.Li,H.Fang,Z.Li,H.Chen,Aspeedy,amphibian,roboticcube:

Resonanceactuationbyadielectricelastomer,Sens.ActuatorsA:Phys.270 (2018feb)1–7.

[6]M.Follador,F.Tramacere,B.Mazzolai,Dielectricelastomeractuatorsfor octopusinspiredsuctioncups,BioinspirationBiomimetics9(2014sep) 046002.

[7]I.A.Anderson,T.A.Gisby,T.G.McKay,B.M.O’Brien,E.P.Calius,

Multi-functionaldielectricelastomerartificialmusclesforsoftandsmart machines,J.Appl.Phys.112(2012aug)041101.

[8]C.T.Nguyen,H.Phung,T.D.Nguyen,C.Lee,U.Kim,D.Lee,H.Moon,J.Koo,J.do Nam,H.R.Choi,Asmallbiomimeticquadrupedrobotdrivenbymultistacked dielectricelastomeractuators,SmartMater.Struct.23(2014apr)065005. [9]S.Shian,R.M.Diebold,D.R.Clarke,Tunablelensesusingtransparentdielectric

elastomeractuators,OpticsExpress21(2013)8669–8676.

[10]X.Ji,S.Rosset,H.R.Shea,Softtunablediffractiveopticswithmultifunctional transparentelectrodesenablingintegratedactuation,Appl.Phys.Lett.109 (2016nov)191901.

[11]M.Duduta,D.R.Clarke,R.J.Wood,Ahighspeedsoftrobotbasedondielectric elastomeractuators,2017IEEEInternationalConferenceonRoboticsand Automation(ICRA),(Piscataway,NewJersey)(2017may)4346–4351. [12]F.A.M.Ghazali,C.K.Mah,A.AbuZaiter,P.S.Chee,M.S.M.Ali,Softdielectric

elastomeractuatormicropump,Sens.ActuatorsA:Phys.263(2017aug) 276–284.

[13]A.Charalambides,S.Bergbreiter,Rapidmanufacturingofmechanoreceptive skinsforslipdetectioninroboticgrasping,Adv.Mater.Technol.2(2017nov) 1600188.

[14]R.vanKessel,B.Czech,P.Bauer,Energyharvestingusingdielectricelastomers, in2012IEEEPowerandEnergySocietyGeneralMeeting(2012jul)1–8. [15]A.Behboodi,S.C.K.Lee,Benchmarkingofacommerciallyavailablestacked

dielectricelastomerasanalternativeactuatorforrehabilitationrobotic exoskeletons,IEEE16thInternationalConferenceonRehabilitationRobotics (ICORR),(Toronto,ON,Canada)(2019)499–505.

[16]R.Pelrine,R.Kornbluh,Q.Pei,J.Joseph,High-speedelectrically287(2000feb) 836–839.

[17]D.McCoul,W.Hu,M.Gao,V.Mehta,Q.Pei,Recentadvancesinstretchableand transparentelectronicmaterials,Adv.Electron.Mater.2(2016mar)1500407. [18]T.Töpper,F.Weiss,B.Osmani,C.Bippes,V.Leung,B.Müller,Siloxane-based

thinfilmsforbiomimeticlow-voltagedielectricactuators,Sens.ActuatorsA: Phys.233(2015sep)32–41.

[19]S.Rosset,H.R.Shea,Flexibleandstretchableelectrodesfordielectric elastomeractuators,Appl.Phys.A110(2012)281–307.

[20]M.Bozlar,C.Punckt,S.Korkut,J.Zhu,C.C.Foo,Z.Suo,I.A.Aksay,Dielectric elastomeractuatorswithelastomericelectrodes,Appl.Phys.Lett.101(2012 aug)091907.

[21]Y.R.Lee,H.Kwon,D.H.Lee,B.Y.Lee,Highlyflexibleandtransparentdielectric elastomeractuatorsusingsilvernanowireandcarbonnanotubehybrid electrodes,SoftMatter13(37)(2017)6390–6395.

[22]M.Kujawski,J.Pearse,E.Smela,Elastomersfilledwithexfoliatedgraphiteas compliantelectrodes,Carbon48(2010aug)2409–2417.

[23]L.Maffli,S.Rosset,M.Ghilardi,F.Carpi,H.Shea,Ultrafastall-polymer electricallytunablesiliconelenses,Adv.Funct.Mater.25(2015jan) 1656–1665.

[24]S.Huang,Y.Liu,Y.Zhao,Z.Ren,C.F.Guo,Flexibleelectronics:Stretchable electrodesandtheirfuture,Adv.FunctionalMater.29(2019nov)1805924. [25]D.Yang,L.Zhang,H.Liu,Y.Dong,Y.Yu,M.Tian,Leadmagnesium

niobate-filledsiliconedielectricelastomerwithlargeactuatedstrain,J.Appl. Polym.Sci.125(2012jan)2196–2201.

[26]M.D.Bartlett,A.Fassler,N.Kazem,E.J.Markvicka,P.Mandal,C.Majidi, Stretchable,High-kDielectricElastomersthroughLiquid-MetalInclusions, Adv.Mater.28(2016may)3726–3731.

[27]W.Hu,S.N.Zhang,X.Niu,C.Liu,Q.Pei,Analuminumnanoparticle–acrylate copolymernanocompositeasadielectricelastomerwithahighdielectric constant,J.Mater.Chem.C2(9)(2014)1658–1666.

[28]L.Yu,A.L.Skov,ZnOasacheapandeffectivefillerforhighbreakdown strengthelastomers,RSCAdv.7(72)(2017)45784–45791.

[29]L.Namitha,M.Sebastian,Highpermittivityceramicsloadedsilicone elastomercompositesforflexibleelectronicsapplications,Ceram.Int.43 (2017feb)2994–3003.

[30]T.Chen,J.Qiu,K.Zhu,X.He,X.Kang,E.liangDong,Poly(methyl methacrylate)-functionalizedgraphene/polyurethanedielectricelastomer compositeswithsuperiorelectricfieldinducedstrain,Mater.Lett.128(2014 aug)19–22.

[31]S.Vudayagiri,S.Zakaria,L.Yu,S.S.Hassouneh,M.Benslimane,A.L.Skov,High breakdown-strengthcompositesfromliquidsiliconerubbers,SmartMater. Struct.23(2014sep)105017.

[32]D.M.Opris,Polarelastomersasnovelmaterialsforelectromechanical actuatorapplications,Adv.Mater.30(2017dec)1703678.

[33]T.Vu-Cong,C.Jean-Mistral,A.Sylvestre,Impactofthenatureofthecompliant electrodesonthedielectricconstantofacrylicandsiliconeelectroactive polymers,SmartMater.Struct.21(2012sep)105036.

[34]I.Ples¸a,P.Not¸ingher,S.Schlögl,C.Sumereder,M.Muhr,Propertiesofpolymer compositesusedinhigh-voltageapplications,Polymers8(2016)173. [35]Y.Zhang,Y.Zhou,M.Chen,L.Zhang,X.Zhang,Y.Sha,Electricaltreeinitiation

insiliconerubberunderDCandpolarityreversalvoltages,J.Electrost.88 (2017)207–213.

[36]R.Kochetov,I.A.Tsekmes,P.H.F.Morshuis,Electricalconductivity,dielectric responseandspacechargedynamicsofanelectroactivepolymerwithand withoutnanofillerreinforcement,SmartMater.Struct.24(2015jun)075019. [37]A.Francis,A.Martinez,K.Thompson,K.Burke,J.Zirnheld,Spacecharge

accumulationasacontributortopartialdischargeactivityindielectric elastomeractuatorsunderhighvoltageDC,in2016IEEEInternationalPower ModulatorandHighVoltageConference(IPMHVC)(2016jul)330–335. [38]Z.H.Shen,J.-J.Wang,X.Zhang,Y.Lin,C.-W.Nan,L.-Q.Chen,Y.Shen,Space

chargeeffectsonthedielectricresponseofpolymernanocomposites,Appl. Phys.Lett.111(9)(2017)092901.

[39]J.Qiang,H.Chen,B.Li,Experimentalstudyonthedielectricpropertiesof polyacrylatedielectricelastomer,SmartMater.Struct.21(2012jan)025006. [40]B.Li,L.Liu,Z.Suo,Extensionlimit,polarizationsaturation,andsnap-through

instabilityofdielectricelastomers,Int.J.SmartNanoMater.2(2011apr) 59–67.

[41]Y.Oka,N.Koizumi,Effectsofimpurityionsonelectricalpropertiesof poly(vinylidenefluoride),PolymerJ.14(1982)869–876.

[42]C.C.Liu,A.Walters,M.Vannice,Measurementofelectricalpropertiesofa carbonblack,Carbon33(12)(1995)1699–1708.

[43]M.Ezoe,K.Kuwada,T.Kawashima,“Icsd’01:proceedingsofthe2001ieee7th internationalconferenceonsoliddielectrics:June25-29,2001,dorinthotel, eindhoven,thenetherlands,”(Piscataway,N.J),IEEE,2001,pp.85–88. [44]P.B.Ishai,M.S.Talary,A.Caduff,E.Levy,Y.Feldman,Electrodepolarizationin

dielectricmeasurements:areview,Measure.Sci.Technol.24(2013)102001. [45]P.Lunkenheimer,A.Loidl,Dielectricspectroscopyonorganiccharge-transfer

salts,J.Phys.:CondensedMatter27(2015)373001.

[46]P.B.Ishai,M.S.Talary,A.Caduff,E.Levy,Y.Feldman,Electrodepolarizationin dielectricmeasurements:areview,Measure.Sci.Technol.24(2013)102001. [47]H.Sun,H.Zhang,S.Liu,N.Ning,L.Zhang,M.Tian,Y.Wang,Interfacial

polarizationanddielectricpropertiesofalignedcarbonnanotubes/polymer composites:Theroleofmolecularpolarity,Compos.Sci.Technol.154(2018) 145–153.

[48]K.S.Cole,Electricimpedanceofsuspensionsofspheres,J.Gen.Physiol.12 (1928sep)29–36.

[49]S.E.Schausberger,R.Kaltseis,M.Drack,U.D.Cakmak,Z.Major,S.Bauer, Cost-efficientopensourcedesktopsizeradialstretchingsystemwithforce sensor,IEEEAccess3(2015)556–561.

[50]S.Rosset,O.A.Araromi,S.Schlatter,H.R.Shea,Fabricationprocessof silicone-baseddielectricelastomeractuators,J.VisualizedExp.108(2016). [51]A.Iannarelli,M.GhaffarianNiasar,R.Ross,Frequency-independent

breakdownstrengthofdielectricelastomersunderACstress,Appl.Phys.Lett. 115(2019)092904.

[52]Z.Li,Y.Yin,Y.Wang,P.Jiang,Theeffectoffillerconcentrationonslow polarizationinLDPE/SiO2micro-andnanocomposites,in2008International

(11)

Cytaty

Powiązane dokumenty

Antropologia języka i komunikacji – bo tak zdecydowano się nazwać ten kierunek – okazała się interesującą propozycją edukacyjną nie tylko dla absolwentów

Zjednoczone Stany głoszą pierwsze umarcie We środę się w Pradze gwoli szerzenia nakażenia nowym typem koronawirusa w Europie uskuteczni schadzka wyszehradzkiej czwórki (V4),

Niezależnie jednak od typu zespołu Münchhausena, rozpoznanie choroby jest bardzo trud- ne i niejednokrotnie bardzo frustrujące dla lekarza diagnozującego, wymaga

Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with

jest niedotrzymywanie dopuszczalnej liczby dni z przekroczeniami do- puszczalnego poziomu średniodobowego pyłu zawieszonego PM10 oraz dopuszczalnego średniorocznego poziomu

Poezja Engelkinga natomiast jest swego rodzaju nowością, ponieważ do tej pory tylko raz jego wiersze publikowane były na łamach serbskiej prasy (w roku 2007 uka- zało się kilka

aan zorgpersoneel te compenseren, een verschuiving van ziekenhuisgerichte zorg naar  patiëntgerichte zorg, en meer remote care en telehealth.  

In one hand, the results of adding a courtyard within the dwelling showed that it reduces the indoor operative temperature in summer, and consequently the number of