• Nie Znaleziono Wyników

Tests for Normality Based on Skewness and Kurtosis Measures

N/A
N/A
Protected

Academic year: 2021

Share "Tests for Normality Based on Skewness and Kurtosis Measures"

Copied!
19
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FO L IA OECONOMICA 48, 1985

C ze sław O om ański*, W ie s ła w Wagner * *

TESTS FOR NORMALITY BASED ON SKEWNESS ANO KURTOSIS MEASURES

1 , In t r o d u c t io n

I n th e th e o r y of s t a t i s t i c a l in f e r e n c e a w ide c l a s s of goodness o f f i t t e a t s in c lu d e s t e s t s f o r n o r m a lit y . They a llo w to v e r i f y the goodness o f f i t of norm al and e m p i r ic a l d i s t r i ­ b u tio n s o f the te s t e d random v a r i a b l e . The problem o f th e v e r i ­ f i c a t i o n o f n o r m a lit y assu m p tio n s o f a d i s t r i b u t i o n i s o f v i ­ t a l Im p o rta n ce f o r tho m a th e m a tic a l s t a t i s t i c s s in c e m a jo r it y of the methods a re based on t h i s a ssu m p tio n .

T h ie p a p e r p r e s o n ts a c la s s o f t e s t s f o r n o r m a lit y based on m easures o f the d i s t r i b u t i o n sh a p e . Those m easures in c lu d e skew ness (a s y m m e try ) measure and k u r t o s ls m easure. On the b a s is o f th e se m easures the d e p a rtu r e o f the c o n s id e re d d i s t r i b u t i o n from the norm al d i s t r i b u t i o n can be d e te rm in e d . They assume ¡ o r each d i s t r i b u t i o n f ix e d v a lu e s i f th e re a re f i n i t e v a lu e s of the f i r s t fo u r c e n t r a l moments o f the d i s t r i b u t i o n . F o r in s t a n ­ c e , the m easures o f skewness in the case of sym m e tric d i s t r i » b u tio n s assume th e v a lu e o f z e r o .

* D r . , L e c t u r e r , I n s t i t u t e o f E c o n o m e tric s and S t a t i ­ s t i c s , U n i v e r s i t y o f Ł ó d ź .

(2)

2. M easures o f Asymme t r y and K u r t o s lo L e t ( 1 ) X - ( x a ... xp ) ' be a p - d lm e n s io n a l random v e c t o r w it h f i n i t e d i s t r i b u t i o n p a r a ­ m eters

EX - R - ( * V

Pp)'

(

2

)

OX - £ ■ ( where E i s a p o s i t i v e d e te rm in e d m a tr ix . O

In th e ca se when p * 1 we s h a l l use X , y and ct , r e s p e c t i v e l y . L e t

( 3 ) ( X j ... Xn ) - { X j }

d eno te an n-eiem ant random sam ple o f p - d lm e n e io n a l in d ep e n d en t v e c t o r s w it h a u n ifo rm d i s t r i b u t i o n , w hich a re th e r e a l i z a ­

t io n s of random v e c t o r X.- I f P • 1 the random sam ple I s de-oted as ( x . , X ) ■ f x . } . U n b ia se d e s t im a t o r s o f the

pa-i ' n J 2

ra m a te r sam ple £ , 2 j as w e l l as (j and d a re denoted as

. X - ( X x ... X ) ' ( 4 ) J L S - ( s u 4 - £ £ ( X j - x x x j - x ) ' J - i — 2 and X , S , r e s p e c t i v e l y . We assume t h a t the d i s t r i b u t i o n o f v e c t o r X i e d e te rm in e d by d i s t r i b u t i o n f u n c t io n F p (x_), w h ile o f v a r i a b l e X - d i s t r i b u ­ t io n f u n c t io n F ( x ) , where x e R*3 and x e R ; R* d e n o te s an 1- - d im e n s io n a l r e a l s p a c e . We In tr o d u c e n o t a t io n e i>p ( x ) and $ ( x ) f o r d i s t r i b u t i o n f u n c t io n p - v a r ia t e and u n i v a r i a t e norm al d i ­ s t r i b u t i o n . Next by HQp ; F p ( x ) - $ p ( x ) we d eno te a n u l l hypo­ t h e s is s t a t i n g t h a t v e c t o r X has a p - d im e n s lo n a l norm al d i s t r i ­ b u tio n w h ile f o r v a r i a b l e X vie have HQ s F ( x ) - $ ( x ) .

(3)

'.Vo e h a l l d o f ln e naxt d i s t r i b u t i o n paroraotora f o r p » 1 - c e n t r a l moment o f the r- th o rd er ( 5 ) ■ E C (X “ ^/"1» r ■ 0# 1« 2 , . . . w# - asym m etry (s k e w n e s s ) c o e f f i c i e n t ( e ) - e 3/ e ? /?‘ o r P i ■ t*3 ^ 2 * - k u r t o s is c o e f f i c i e n t

(

7)

|

32

-Thfe f o llo w in g i n e q u a l i t i e s o c c u r among the abovo m entioned cot f i c i e n t s

( 8 ) (S2 > 1 ♦ (3±

(32 < 3 ♦ 1 .5 (3A

The m easures and (3

2

o re a p p lie d m a in ly to

1) a c h o ic e o f r e p r e s e n t a t i v e s in a f a m ily o f d i s t r i b u t i o n s ( o . g . in th e f a m ily o f P e a r s o n 's d i s t r i b u t i o n s ) ,

2

) a d e te r m in a tio n o f t e s t s f o r n o r m a lit y ( e . g . the t e s t ba­ sed on the s ta n d a rd iz e d f o u r t h c e n t r a l sam ple moment) ,

3) s tu d y in g the ro b u s tn e s s o f some t e s t in g p ro c e d u re s f o r d e p a rtu r e from norm al d i s t r i b u t i o n ( e . g . u sin g the c o e f f i c i e n t

in s tu d y in g r o b u s tn e s s o f t- S tu d e n t t e s t in th e v e r i f i c a ­ t io n o f h y p o th e s is * yo , whore i s an e x p e cte d v a lu e in the p o p u la t io n , and i t s h y p o t h e t ic a l v a l u e ) .

A d e c i s i v e p o in t in in t r o d u c in g the d i s t r i b u t i o n o f t- S tu d e n t s t a t i s t i c o f a q u o t ie n t fo rm , i s indep en d en ce o f th e num erato r from the d e n o m in a to r w hich o c c u rs a t the h y p o th e s is HQ. I f the sam ple comes from a p o p u la t io n w it h non-norm al d i s t r i b u t i o n , then from the c e n t r a l l i m i t theorem , e s p e c i a l l y from th e L ln d e n b e rg - - L e v y theorem , i t f o llo w s t h a t th e mean from th e sample ( x ) and u n b ia sed v a r i a n c e e s t im a t o r ( s ^ ) has an a s y m p to tic norm al d i s t r i ­ b u tio n ( c f . [ 4 ] ) .

L e t k d eno te th e r - t h cum ulant in a p o p u la t io n , where k2 ■ r

(4)

p

" ^

2

*

^3

” f

3

*

k4

* t

*4

"

3

Tho In f lu e n c e o f n o n n o rra a lity on t s t a t i s t i c used In t e s t i n g tho h y p o th e s is p ■ I s e x p re s s ­

ed by the c o r r e l a t i o n c o e f f i c i e n t between the v a r i a b l e s X and 5 o f tho form

( 9 )

COV ( X . S 2 ) k3/n

k ( » * * S i * l

)]1/2

M u *

* 1)У/г

because a t n —>oot ~ x —► 1 . I f the non-norm al p o p u la t io n l e sym­ m e t r ic , k j ■ 0 and hence g - 0 , thon X and S 2 a re a s y m p to ti­ c a l l y Ind ep end en t w hich a llo w s to a p p ly the th e o r y o f norm al d i ­ s t r i b u t i o n f o r la r g e n. F o r k^ 4 0 , g ta k e s s m a ll v a lu e s when k

4

i s l a r g e , but £ * 0. E q u a tio n ( 9 ) I s now w r it t e n in the form

(

10

)

Ц

T 2 Щ ")1'2

( ł P l

)V2

assum ing t h a t k^ »

0

.

As a r e s u l t , under the above a s s u m p tio n s , th e c o r r e l a t i o n c o e f f i c i e n t ç can be t r e a t e d a s skewness m easure. Assuming th a t V fil “

0

, we have £ » 0 and th u s , th e v a r i a b l e s X and S

2

a re u n c o r r e la t e d . The c o e f f i c i e n t ( 3 i s a p p lie d , f i r s t o f a l l , in the v e r i f i c a t i o n o f h y p o th e s is t h a t the e x p e cte d v a lu e o f j o i n t v a r i a b l e s becomes z e ro when th e re i s no a ssu m p tio n o f n o rm a lity . B o x

8

nd A n d e r s o n [ 2 ] u s in g P it m a n 's p e rm u ta tio n t e s t , showed t h a t the sq u a re o f t s t a t i s t i c used in the v e r i ­ f i c a t i o n o f the above m entioned h y p o th e s is o f the e x p e cte d v a ­ lu e , has F d i s t r i b u t i o n w it h end (n - l)t^ d e g re e s o f freed o m ,

(5)

(1 1) - 1 +

P * - 3 » a - 3 /1 S

--- . , --- . <>(,-). n ( l - ( 3 ,) / " ♦ 2

T h is r e s u l t has been d e r iv e d under tho la c k of th e n o r m a lit y a s ­ sum ption f o r th e d i s t r i b u t i o n from w hich the sample { x j } was drawn.

L e t us d e f in e now the b a s ic p a ra m e te rs f o r m u l t i v a r i a t e d i s ­ t r i b u t i o n s p > 1 :

- the mixed c e n t r a l moment o f v a r i a b l e s ( s i p )

1 . s of th e ( r j + . . . ♦ r 6) - t h o rd e r

(

1 2

)

( 1. # . . . • e r r " 1 r l ... r 0 k=*l

where ( i . . . . . . 1 ) i s an a r b i t r a r y s-elom ent subooquence from

1 9 _

the sequence ( l , . . . » p ) and r j * . . . » r 0 * 0» 2 * •** - the asym m etry c o e f f i c i e n t [ l l ]

C13) 'v \ A

«

1 2 * 3 1 ’ 2* 3 where 2 ” ^ » ( d ^ ) , - k u r t o s ia c o e f f i c i e n t [ l l ] U 4 ) A . , A . , 1* 2 1* 2

B e s id e s , we In tr o d u c e p a ra m e te rs from tho sam ple f o r p ■ 1: - the r - t h o r d e r c e n t r a l moment ( 1 5 ) mr * Ï Ï Z CXJ “ X ) r * J - l r ■ 2 , 3* - th e aeym m otry c o e f f i c i e n t /

(6)

( 1 6 ) "y/b^ ■ o r • m^/m^ ,

- the k u r t o s is c o e f f l c i o n t

(1 7 ) b2 ■ m^/m,, .

S i m i l a r l y , f o r p > 1 , we have

- the mixed c e n t r a l moment o f v a r i a b l e s X. , X. o f the

l l e ( r a ♦ . . . ♦ r 8) - t h o r d e r (1 6 ) m r i ... * ’ r 8 “ n n Z_, 5 ^ I I F I ( X 1 l k j " X i ^l k J - l L k -1 - th e asym m etry c o e f f i c i e n t [ l l ] P P * 111213 i l 12l <1 9 ) bi . P Z £ s V l s l 2 ‘ 2 s l 5 ‘ 3 * m - i n l j , 12 , i 3" l i l f i 2 , i 3» l where S ^ ■ ( S ^ ) - the k u r t o s ie c o e f f i c i e n t [ l l ]

(

2 0

)

2,p

E

Z

1l ' i 2-1 1l i 2 "1 S S mi l l l

The m easures d e te rm in e d by fo rm u la e (1 9 ) and (2 0 )c a n be g iv e n in th e form o f c e r t a i n pow ers in t w o - lin e a r and sq u a re form s

( 2 1 )

J . i - l n

<2 2 > b

2

.p ■ 7; Y , K ' ‘ *3 ' - } ] J - l

(7)

« 3 and (3, • (p ♦ 2 )p . H**nco thoeo hypotho .38 c an bo p ro - sen te d In the e q u iv a le n t fo rm s : h; , (3X - 0 A (J2 - 3 and Hop : (31#p - O * 0 2 fP " P ( P + 5?)« ■>« F u r t h e r on we s h a l l c o n s t r u c t t e a t f u n c t io n s f o r tho v e r i < i c n t i o n of h yp o th e se s Hq and Ho p . 3. T e s t Based on -j/b^

Now, we s h a l l d is c u s s th e a tte m p ts o f d e te rm in in g the d i s t r i b u t i o n under the assu m p tio n o f th e h y p o th e s is HQ. The b e at r e s u l t s have been o b ta in e d u sin g Dohnson s system of c u r v ej

[ 9 ] . Such a r e s u l t i s p re s e n te d by D 'A g o

0

t 1 n o

who reduced th e s t a t i s t i c to a random v a r i a b l e w it h N (C ,1 ) d i s t r i b u t i o n assum ing th e h y p o th e s is HQ and n > n.

L e t [ ( n * l ) ( n * 3 ) l 1/2

Y " V^l L 6

(n-

2 )

j

*

„ /i->\ 3 (n 2* 2 7 n - 7 0 )(n + l)(n + 3 )

P2 T V ‘ fn^TCn+5)

TnV7)(n+9T^ •

w2 ■

- 1

[ 2

( p 2( V ^ ) - O ] 1^“ * S - 1/ [ i n w ]a/2 , t - [

2

(vv2 - l ) ] ^ , then the v a r i a b l e ( 2 3 ) Z - i In [ y/ T + V ( Y / T ) 5' ♦ l ] has a p p ro x im a te ly th e N ( 0 , l ) d i s t r i b u t i o n .

The h y p o th e s is HQ i e r e j e c t e d i f | z | > u^. where $ ( u a ) • - 1- « / 2 , and a i s a g iv e n s i g n i f i c a n c e l e v e l .

(8)

c o m p a r . T t i v o o t v d i e s o f v a r i o u s a p p ro x im a tio n s o f th e d l-f > * n b u ; i o n t a k i n g i n t o a c c o u n t t h e f o llo w in g r e s u l t s (c f . T a b ls l ) : a ) t b o i r own s im u la t io n r e s u l t s , b ) t h e c u r v e s (th o a p p ro x im a tio n o f O 'A g o s t 1 n o [

5

]), c ) th e ap p ro xim ated t- S tu d e n t d i s t r i b u t i o n , d ) C o r n is h - r ic h e r e x p ro c e io n [

3

] , e ) t h o m o d ifie d C o r n is h - F ls h e r e x p r e s s io n [ 8 ] , f ) t h e a p p ro x im a tio n by norm al d i s t r i b u t i o n .

The a p p ro x im a tio n by t - d i s t r l b u t i o n o r V U - t y p o c u r v e s from f \ > a r 3 o n " ' 3 system i s os f o ll o w s :

( 2 4 )

The s t a t i s t i c g iv e n in fo rm u la (2 4 ) has t- S tu d e n t d i s t r i b u t i o n .v ith v d e g re e s of freed o m , w ith

(.15) V = - , ti2 ( ) - 6 (n-2 )/ft [3 ],

where y5 £ i s d e te rm in e d in fo rm u la ( 1 6 ) , n ^ - n ( n - l ) . . . ( n - k * l ) . The a p p ro x im a tio n by norm al d i s t r i b u t i o n ta k e s In t o s c c o u n t as a v a r i a b l e w ith norm al d i s t r i b u t i o n and w it h i t s e x p e c­ ted v a lu e e q u a l zo ro and v a r ia n c e t*

2

(V ^ l )*

On th e b e s is o f T a b le 1, we can n o te th a t tho a p p ro x im a tio n o f v a r i a b l e y ? £ by norm al d i s t r i b u t i o n i s o f r e l a t i v e l y s m a ll a c­ c u r a c y . I n o t h e r c a s e s s l i g h t d i f f e r e n c e s o c c u r In q u a n t l le s o f Vb7 d i s t r i b u t i o n .

The c r i t i c a l v a lu e s f o r n > 25 were g iv e n by P e a r s o n and H a r t 1 3 y [ i 5 ] arid f o r n < 2 5 by M u l h o l l a n d [ l 4 j (cf. T a b le 2), ivho found them on th e b a s is o f some a n a l y t i c a l s t u d ie s on the s i n g u l a r i t y o f the d e n s it y f u n c t io n of d i ~ s t r l b u t i o n .

O 'A g o s t i n o and T i e t J e n [

7

] ( c f . T a b le 3 ) e ls e gave the c r i t i c a l v a lu e s f o r n - 5 (1 )1 1 ,1 3 ,1 5 ,1 7 ,2 0 ,2 3 ,2 5 ,3 0 ,

(9)

the-T a b l e 1

Q u a n t ilo s o f ap p ro xim ated d i s t r i b u t i o n s

n Approxim a­ t io n а

____ ________

I

0.1 0 0 .0 5 0.0 1 с . оси 8

C e )

0.7 60 0.991 1.455 1.073 ( Ь ) 7 -1 -34 56 I ( с ) 7 -1 -34 56 ( d ) 8 14 -14 -17 ( в ) -4 17 19 1 ( f ) 12 1 -52 -10 15 ( в ) 0 .6 40 0.8 62 1.275 1.775 ( b ) 2 -12 -13 27 ( с ) 2 -12 -16 27 ( d ) 0 -12 -9 48 ( о ) -1 -12 -7 49 ( f ) 19 -6 -64 -1G7

---20 ( в ) 0 .5 9 3 0.7 7 7 1 .1 52 1.614 ( b ) -4 -5 -2 30

C c

) -4 -6 -4 38 C d ) -6 -9 1 76

C e )

-6 -9 2 76

C f )

13 1 -52 -153 35

C o )

0.4 7 4 0 .6 2 4 0 .9 3 2 1.332 Cb) 1 -3 -9 -13 Cc) 1 -3 -11 -13 -4 C d) 0 -4 -7 Cf) 12 2 -47 -156

(10)

T a b l e 2 Q u a n t ile o of d l a t r l b u t l o n o f s t a t i s t i c n a n a 0 .0 5 0.0 1 0 .0 5 0 .0 1 4 0 .9 8 7 1.120 15 0.851 1.272 5 1.049 1.337 16 0 .8 34 1.2 4 7 6 1.042 1.429 17 0 .8 1 7 1.2 22 7 1.018 1.4 5 7 18 0.801 1.199 8 0 .9 9 8 1.452 19 0 .7 8 6 * 1.176 9 0 .9 7 7 1.433 20 0 .7 7 2 1.1 55 ¿0 0.954 1.407 21 0 .7 58 1.134 11 0.9 31 1.381 22 0 .7 4 6 1.1 1 4 12 0 .9 10 1.3 5 3 23 0 .7 3 3 1.096 13 0 .8 90 1.3 25 24 0 .7 2 2 1.078 14 0.8 7 0 1.298 25 0.7 1 0 1.060 S o u r c e s On tho b a s is o f [1 4 T a b l e 3 Q u a n t ile s o f d i s t r i b u t i o n o f - y ^ s t a t i s t i c

1

n 5 6 7 8 9 10 11 0.0 5 1.058 1.034 1.008 0.9 91 0 .9 7 7 0 .9 5 0 0.9 2 9 0.0 1 1.3 42 1.415 1.4 3 2 1.425 1.408 1.3 9 7 1.3 76 n 13 15 17 20 23 25 a L 0 .0 5 0.9 0 2 0.8 6 2 0 .8 2 0 0 .7 7 7 0 .7 4 3 0 .7 1 4 0 .0 1 1.312 1.275 1.188 1.1 52 1.119 1.0 73 S o u r c e : On th e b a s is o f [

5

]. se v a lu e s w it h th e r e s u l t s o f M u lh o lla n d shows s l i g h t d if f e r e n c e s between them.

(11)

4 , T o s t Based on

An a c c u r a t e d i s t r i b u t i o n o f b_ f o r n > 4 assum ing t h a t the h y p o th e s is H i s t r u e , has not been known so f o r . T h at i s why v a r io u s a p p ro x im a tio n s f o r b „ by Dohneon's S u

IV - t y p e d i s t r i b u t i o n have boon found. and P e a r s o n 's

d i s t r i b u t i o n The ap p ro ­ x im a tio n by S d i s t r i b u t i o n has the f o llo w in g form [ l ] i

( 2 6 )

r ♦

•vhore c o n s ta n ts

'f ♦ 5 ln

• M

♦ 1

5ln iV x -“

n < 25

S , | and A. w i l l be found u s in g th e method o f moments, p re s e n te d among o t h e r s , by P e a r s o n and H a r t l e y [ l 5 ] . The v o r i a b l e 2 has a p p ro x im a te ly norm al N

H con-( 0 , 1 ) d i s t r i b u t i o n . The v e r i f i c a t i o n of the h y p o th e s is s i e t s in a com p ariso n o f th e v a lu e s o f Z w it h a v a lu e of u a , where i> ( u a ) - 1 - a . o f the d i s t r i b u t i o n o f b. H a r t l e y [ l 5 ] ( t a b l e 3 4 c ) f o r n <200 A ls o f o r the same v a lu o 3 o f a c r i t i c a l va-C r i t l c a l v a lu e s

P e a r s o n and

and a - 0 .0 5 , 0 .0 1 .

c o rre s p o n d in g

w ere g iv e n by

lu e s w ere g iv e n a d d i t i o n a l l y by the a p p ro x im a tio n and V l- t y - pe a t n ■ 5 0 (2 5 ) 150, 200, 400. These v a lu e s do not d i f f e r from each o t h e r up to th e second p la c e a f t e r comma. U sin g the sim u­ l a t i o n method O 'A g o 8 t 1 n

0

and T i e t J e n [ 6 ] gene­ r a te d c r i t i c a l v a lu e s f o r s m a ll sam ple s i z e s n ■* 7 ( l ) l 0 , 1 2 , 1 5 ( 5 ) 50 ( c f . T a b le 4 ) . T a b l e 4 Q u a n t ile s o f d i s t r i b u t i o n o f b,, s t a t i s t i c

01

n 0 .0 5 0.0 1

lo w e r upper lowe r upper

1 2 3 4 5

7 1.41 3.5 5 1.25 4 .2 3

(12)

T a b le 4 ( c o n t d . ) 1 2 3 4 5 9 1 .5 3 3.86 1.3 5 4 .8 2 10 1 .5 6 3.95 1 .3 9 5.00 12 1.6 4 4 .0 5 1.4 6 5.20 15 1 .7 2 4 .1 3 1 .5 5 5.30 20 1 .8 2 4 .1 7 1.65 5 .3 6 25 1.9 1 4 .1 6 1 .7 2 5.30 30 1 .9 0 4.11 1.7 9 ,5 .2 1 35 2 .0 3 4 .1 0 1 .8 4 5 .1 3 40 2 .0 7 4 .0 6 1.09 5.0 4 45 2.11 4 .0 0 1 .9 3 4 .9 4 50 2.15 3.99 1.95 4 .0 8 S o u r c e s On th e b a s is o f [ 6 ] . 5. P r o p e r t ie s o f b, S t a t i s t i c * lP Now we s h a l l d i s c u s s t h e p r o p e r t i e s o f t h e g e n e r a l i z e d s k e w -i k b c o e f f i c i e n t b ^ p s ( i ) The b j s t a t i s t i c i s i n v a r i a n t in r e l a t i o n to th e o r th o ­ g o n a l t r a n s f o r m a t io n ^ ■ Ç X . I t r é s u l t a Im m e d ia te ly f r o » the form o f e q . ("21) to w hich vie s u b s t i t u t e X j - X ■ Ç '

( i i ) The s t a t i s t i c " i s I n v a r i a n t in r e l a t i o n to the non- - s in g u la r t r a n s f o r m a t io n X » A X. ♦ ÎL* * t r e s u l t * from th e form

o f e q . (2 1 ) and X j - X - A Y^ - Y.

( i i i ) The b., _ s t a t i s t i c In c lu d e s f ■ p ( p ♦ l ) ( p ♦ 2 )/ 6 d i- s t i n c t o le m e n ts .

I n the summation form o f bA p e t a t i e t i c we have 2P e le m e n t« ( v a r i a t i o n w it h r e p e t i t i o n s ) , but o n ly f ■ (t h r e e - e le m e n t c o m b in a tio n s w it h r e p e t i t i o n s ) o f d i s t i n c t e le m e n ts .

(13)

Lot S j - s " 1/ 2( x J - x ) , then n n b 1>p • i Z { s ' s j } 3 I P 3 • K • " j . j ' - i 3 . J -1 2 3 p «* np3

( v ) The b„ s t a t i s t i c oxproseod by moans o f a n g le s and

Moha-1

lP

la n o b ls d istan ce*» assumes the form [1 3 ]

n n 3 ( 2 8 ) b1<p - - ig X ! Z C r j r r c oa e j r ) , n J - l j ' - l / 2 2 ,2 \/2 w here coa r j j ' " v j * rj # " 3J ' d ) J - ‘ ( 2 J ' - 2 j ') end f j ■ ( X j - X ) ' S 1 ( X j - X ).

( v i ) . The e x p e c te d v a lu e o f b, l a e x p re s s e d by the formu-i r

l a

( 2 9 ) E ( b l , p ) " Cn*‘S f e ^ J ^ (n + 1 )(p * 1) " 6 ^‘

T h ia fo rm u la l a g iv e n by M a r d i a [ 1 2 ] f o r n -*■ oo, E ( b 1>p) H i Oua to th e in v a r ia n c e o f th e l i n e a r t r o n e fo r m a tlo n we can p r e s e n t the b j p s t a t i s t i c in the form

-

i

f e w

1l ' i 2 , 1 3

(14)

-whoros ml l l 12 * 1 * 2* ^ l 1! 1^ {11* 111 m3 w h ile 4 1 ’ - i

X

<*11 - * ! > ’ ■

J-l

n

(

1 2

)

1

m21

r E < \ i - S l ) ( x 2 i - * * ' •

J-l

■ i l l 3 ’ ■ S Z <■*!} - *1> ( X 2 j * * 2 > (x 3 i - V - j - l

Assum ing t h a t the h y p o th e s is th a t the sam ple { * , . } comes from a m u lt id im e n s io n a l norm al p o p u la t io n N ( 0 , I ) , i s t r u e , we have

-1 P ~ r 1

moments up to the n - th o r d e r , o f th e form L U J

(3 1 ) ‘ E ^ i } 12* 3 ) • 0 . . O2 ^ 1 * ) - 6/n, c o v ^ m D2 ( » ‘ J 2 )) . 2 / n ,

0

*(.< ‘ P > ) - »/«.

V j >_ „ . 0> t i _ l 2 t j „

N o te , t h a t the a ssu m p tio n o f ^ « 0 and £ * I i s p o s s ib le due to th e p r o p e r t y ( l i ) .

(15)

then I ( 3 3 ) bl j f } • K M On th e b a s la o f fo rm u la e (3 1 ) wo have (3 4 ) E ( M ) » 0 D (M ) - E (M M ') ■ d la g (6 / n , . . . . 6/n, . . . . 6 / n ) - ( C / n ) l . Hence (3 5 ) M ~ Nf ( 0 , 6/n I ) , i w h ile ( 3 6 ) nM'M/6 - n b ^ p / 6 ~ X 2 .

Form ulao (3 5 ) and (3 6 ) o c c u r whon n~+oo. An a c c u r a t e d i s t r i b u t i o n o f th e v a r i a b l e b. 1 f p I s not y e t known. ' B e s id e s no o t h e r appro- x lm a tlo n s o f the v a r i a b l e b^ p o re known os in th e u n i v a r i a t e c a s e . F o r p > 7 the f o llo w in g a p p ro x lm o tIo n con bo a p p lie d

( 3 7 ) (2 n b , n/ 6 ) 1/2 ~ N ( 2 f - l , l ) .

X ,

p

M a r d 1 a [ l 2 ] d o te rm ln ed the c r i t i c a l v o lu e 3 f o r the d i s t r i ­ b u tio n o f b^ u c in g th e M o n te - C a rlo method f o r n « 1 0 (2 )2 0 ( 5 ) , 30(10 ) | P 1 0 0 (5 0 ), 2 0 0 (1 0 0 ), 4 0 0 (2 0 0 ), 1 0 0 0 (5 0 0 ), 3000 (1 0 0 0 ), 5000 and a m 0 .0 0 1 , 0 .0 1 , 0 .0 2 5 , 0 .0 5 , 0 .0 7 5 , 0 .1 0 ( c t . T a b le 5 ) . F o r p - 3 and p - 4 M a rd la d e te rm in e d th e c r i t i c a l v a lu e s , how ever th e y have n ot been p u b lis h e d .

(16)

T a b l e 5 Q u e n t ilo a o f d i s t r i b u t i o n o f b. - s t a t i s t i c n 10 12 14 16 10 U

20

25 30 40 50 0< 0 .0 5 3.604 3. 319 3J031 2.7 75 2.556 ... 2. 356 1.9 6 9 1 .6 87 1.319 1.0 69 O .O i 5.9 3 0 4 .9 3 8 4.581 4.231 3.962 3.669 3.106 2.681 i 2.0 87 1.744 s

0

u r c s : On th e b a s is o f [

1 2

] . T a Q u a n t lle s o f d i s t r i b u t i o n o f b , _ s t a t i s t i c J 1 e 6 n 10 12 14 16 18 20 25 30

1

40 50 . -■ a 0 .0 5 4 .8 8 7 9 .2 0 3 5 .0 5 3 9 .5 9 3 5.179 9.7 6 9 5.3 18 9.941 5.3 82 10 .00 5 5.533 10.114 5.689 10.159 5.855 10.156 6.139 10.109 6.239 9 .9 8 7 0 .0 1 4.5 80 10.378 4 .7 3 2 10.881 4 .8 4 2 11.159 4 .9 7 7 11 .38 7 5.0 45 11.478 5.1 75 11.609 5.353 11.628 5.5 18 11 .59 4 5 .7 0 3 11.453 5.909 11.181 S o u r c e : On th e b a s is o f [

1 2

] .

(17)

F o r th e b2 p s t a t i s t i c the f o llo w in g p r o p e r t ie s o c c u r .

( 1 ) The b * s t a t i s t i c i s i n v o r ia n t due to the o rth o g o n a l 2|p

t r a n s f o r m a t io n Y ■ Ç X and n o n - s in g u la r X » A Y + b. ( l i ) The e x p ected v a lu e of bg p assumes the lorm [ l l j

\ p ( p * 2 ) ( n - l )

(3 8 ) E ( b 2 ,p ) n+I

( i l l ) The v a r i a n c e o f b0 _ i s d e te rm in e d by tho Tormula [ l 2 ]

(3 9 )

‘ B p (p + 2 )(n - 3 )--- ( n—p—l ) ( n—p * 1 ) (n+-l) ( n * 3 ) ( n * 5 )

S B l B l i ) a t n“ l .

Tho f i r s t fo rm u la was in tr o d u c e d by t a k in g in t o a cco u n t tho m ul­ t i v a r i a t e b e ta d i s t r i b u t i o n , and th e 6econd one by u s in g L a- w 1 e y ' s method [ l o ] ,

( l v ) b „ can be e x p re sse d in the form Z »P

n

J - l

where r . i s M a h a la n o b is d is t a n c e betweon X , and

X*

T a k in g fo rm u la e (3 8 ) and (3 9 ) we can o b t a in two t e s t a v e r i f y ­ in g the h y p o th e s is Ho p , whoso e t a t i s t l c s a re as f o llo w s .

{ ( n » l ) b g p - p ( p + 2 ) ( n - l ) } ‘ {(n * 3 )(n - » 5 )}1^ 2 1 | 8 p (p + 2 )(n - 3 )(n - p - l)(n - p + 1 )}1^2 f o r th e a c c u r a t e v a r i a n c e u (bg and ( 4 2 ) N9 - Z b2 n ” P< P*2 >r --- -—l i /i {a p (p + 2 )/ n }1/2 f o r th e ap p ro x im ated v a r ia n c e D2 (b g ^ p ) up to th e n o r d e r .

(18)

S t a t i s t i c s (4 1 ) and (4 2 ) hove the N (0 ,1 ) d i s t r i b u t i o n by v i r ­ tue o f the c e n t r a l l i m i t theorem .

An a c c u r a t e d i s t r i b u t i o n o f the v o r i a b l e b2 p under the a s ­ sum ption th a t tho h y p o th e s is Hop i s t r u e , i s unknown. Tho ne- c o s o o ry c r i t i c a l v o lu e 3 f o r the d i s t r i b u t i o n o f b? 2 hove been g e n e ra te d by M o r d 1 o [

1 2

] u sin g the M o nte-C orio method in the some rango o f n as f o r b j 2 , and a - 0 .0 1 , 0 .0 2 5 , 0 .0 5 , 0 .1 0 g iv in g two v a lu e s - upper and lo w e r . T a b le 6 p r e s e n t s th e ­ se v a lu e s f o r n < 50.

BIBLIO G RAPH Y

[ 1 ] B o w m a n K. 0 . , S h e n t o n L . R . , (1 9 7 5 ), Omnibus T e s t C o n to u rs f o r D e p a rtu re s from N o r m a lit y Based on

and b2 , "B io m e t r lk a * 62, p . 243-250.

[ 2 ] B o x G. E . P . , A n d o r s o n S . L . (1 9 5 5 ), Perm uta­ t io n T h e o ry in the D e r iv a t io n o f Robust C r i t e r i a and the S tu d y o f D e p a rtu re s from A s s u m p tio n s , O . R . S . S . B . 17, p. 1-34. [ 3 ] C o r n i s h E. A . , F i s h e r R. A. (1 9 3 7 ), Moments

and C um ulants in the S p e c i f i c a t i o n o f D i s t r i b u t i o n s , R e v. I n s t . I n t . S t a t i s t . 5 , p . 307.

l4 ] C r o m e r H. (1 9 5 8 ), Metody m otem atyczne w s t a t y s t y c e , PWN, W arszaw a. [ 5 ] D 'A g o s t 1 n p R. B . , T 1 e t

3

e n G. L . (1 97 3), Ap­ p ro a c h e s to the N u ll D i s t r i b u t i o n o f -j/b^, “ B io m e t r lk a " 60, p . 169-175. [ 6 ] D 'A g o s t l n o R. B . , T i e t j e n G. L . (1 9 7 1 ), S i ­ m u la tio n P r o b a b i l i t y P o in t s o f b2 f o r S m a ll S am p le s, " B io - m o trik a " 58, p . 669-672. [ 7 ] D A g o s t i n o R. B . (1 9 7 0 ), T r a n s fo r m a tio n to Norma­ l i t y o f the N u ll D i s t r i b u t i o n o f g1 , " B io m e t r lk a " 57, p. 679- -681. [ 8 ] G e a r y R. C. (1 9 4 7 ), The F re q u e n c y D i s t r i b u t i o n o f f o r Sam ples o f a l l S iz e s Drawn a t Random from a Normal Po­ p u l a t i o n , " B io m e t r lk a " 34, p . 68-97.

[ 9 ] 0 o h n 8 o n N. L . (1 9 4 9 ), S ystem s o f F re q u e n c y C u rv e s G e n e ra te d by Methods o f T r a n s l a t i o n , " B io m e t r lk a “ 36, p. 149- -176.

(19)

[ 1 0 ] L a w 1 e y D. N. (1 9 5 9 ), T e s t o f S i g n i f i c a n c e in Cano­ n i c a l A n a l y s i s , “ B io m e t r ik a " 46, p . 59-66.

[1 1 ] M a r d 1 a K. V . (1 9 7 0 ), M easures o f M u l t i v a r i a t e Skew­ n ess and K u r t o s is w it h A p p l i c a t io n s , "B io m e trik a * ' 57, p. 519- -530.

[1 2 ] M a r d i a K. V . (1 9 7 4 ), A p p lic a t io n s o f Some M easuros o f M u l t i v a r i a t e Skewness and K u r t o s is in T e s tin g N o r m a lity and R o b u stn e ss S t u d ie s , "Sa n k h y o " 36, s e r . B . , p . 115-128. [1 3 ] M a r d i a K. V . (1 9 7 5 ), Assessm ent o f M u lt in o r m a lit y and

the R o b u stn e ss o f H o t e l l i n g 's T?' T e s t , A p p l, S t a t i s t . 24, p . 163-171.

[1 4 ] M u l h o l l a n d H. P . (1 9 7 7 ), On the N u ll D i s t r i b u ­ t io n o f f o r Sam ples o f S iz e a t Most 25, w it h T ab les, " B io m e t r ik a ” 64, p . 401-409. [ 1 5 ] P e a r e o n E. S . , H a r t l e y H. 0. (1 9 6 6 ). Biom e­ t r i k a T a b le s f o r S t a t i s t i c i a n s , V o l. 1 , Cam bridge U n i v e r s i t y P r e s s . [1 6 ] P e a r s o n E. S . , H a r t l o y H. 0 . (1 9 7 2 ), Biom e­ t r i k a T a b le s f o r S t a t i s t i c i a n s , V o l. 2, Cam bridge U n i v e r s i t y P r e s s .

C z e sław Dom ański, W ie s ła w Wagner

TESTY NORMAljNOŚCI

OPARTE NA MIARACH SKOSNOSCI I SPŁASZCZEN IA

W a r t y k u le p rz e d s ta w io n o t e s t y w e r y f ik u ją c e h ip o te z ę o n o r­ m a ln o ś c i ro z k ła d u zarówno Jednow ym iarow ego, Ja k i w ie lo w y m ia ro ­ wego, o p a r te na m ia ra c h s k o ś n o ś c i i s p ła s z c z e n ia . Do w ię k s z o ś c i omawianych te s tó w podano n ie k t ó r e k w a n ty le ro zk ła d ó w f u n k c j i t e ­ s to w yc h . Zam ieszczono ró w n ie ż podstawowe w ła a n o ó c i u o g ó ln io n e j n l a r y sk o ó n o ó ci - b^ o ra z m ia ry k u r t o z y - b2 .

Cytaty

Powiązane dokumenty

Edw ard Stachura Siekierezada albo zima leśnych ludzi. Stefan Themerson Tom

i obrońcy — przypominając, że Baudouin de Courtenay wywodzi się od Ludwika IX, że jego przodkowie brali udział w wyprawach krzyżowych, stwierdza z emfazą:

Stąd uwzględniając wagę rolnictwa w całokształcie gospodarki kraju, jak i fakt, że w ujęciu globalnym wyka­ zywało ono w latach 1913— 38 tendencje rozwojowe

N ajw ażniejszym jednakże dziełem pro­ fesora Lin Hong L ianga pozostaje niew ątpliw ie biografia jego um iłow anego po­ ety, zatytułow ana M ickiew icz, Seczuan

Jednak mężczyzna stary staje przede wszystkim w obliczu nowej sytuacji, spada z piedestału i musi ustąpić miejsca „na scenie”, albowiem nie jest już dłużej

The main methodological principle of our study consists, first of all, in exploration of the interconnections between the constituents of oil – and gas-

She says that teachers’ knowledge about diff erent aspects of cultural diversity is important in predetermining the learning outcomes for students, who are representatives of

Making use of dif­ ferent properties of the characteristic function, empirical dis­ tribution function and empirical characteristic function we dis­ cuss