• Nie Znaleziono Wyników

Note on the optimum chemical balance weighing design for odd number of objects

N/A
N/A
Protected

Academic year: 2021

Share "Note on the optimum chemical balance weighing design for odd number of objects"

Copied!
10
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

_______ FOLIA OECONOMICA 216,2008

B r on is ła w Ceranka*, Małgorzata Graczyk

N O T E O N T H E O P T I M U M C H E M I C A L B A L A N C E W E I G H I N G D E S I G N F O R O D D N U M B E R O F O B J E C T S

ABSTRA CT. The problem o f the estimation o f unknown weights o f p objects is considered. The experiment is carry out according to the model o f the chemical balance weighing design under the assumption that the measurement errors are correlated. The existence conditions determining the optimum design are presented.

Key words: balanced bipartite weighing design, chemical balance weighing design, ternary balanced block design.

I. INTRODU CTIO N

The problem comes from statistical theory o f weighing designs. We consider the linear model:

у = X w + c ,

which describe how to find unknown measurements o f p objects using n Weighing operations according to the design matrix X. In the above model у is

и x 1 random column vector o f the observed weights, w is p x 1 column vector representing unknown weights o f objects. X, called a design matrix, can be interpreted as a weighing design for a two-pan scale or chemical scale. Assume

P objects are to be weighed in n weighings, each one o f them at most m

times. Object j th is placed on the left pan o f scale in the i th weighing if

Xy = - 1 , on the right pan if x tj = 1 and omitted in the i th weighing if x tj = 0, i = 1,2,..., n, j = 1,2,..., p . It is assumed that there are not systematic errors and

Professor, Department o f Mathematical and Statistical Methods, Agricultural University o f

Poznań.

Ph. D., Department o f Mathematical and Statistical Methods, Agricultural University o f Poznań.

(2)

they are equal negative correlated, i.e. for an n x 1 random column vector of errors с we have E(c) = On and e (cc ) = c r ‘ G , where 0 n is an / j x l column vector o f zeros, G is an n * n positive definite matrix o f known elements

G = ( l - / » ) l + /o l l ' , ^ - < p < 0 , (1)

v n - 1

H Q stands for the expectation o f (•) and (•) is used for the transpose o f (•). For the estimation o f unknown weights of objects we used the weighed least squares method and we get

w = (X G~'X) ' X G "'y

and the dispersion matrix o f \v is

V ( w ) = cr2 ( X

G"'x)

'

,

provided X is full column rank, i.e. r(X ) = p.

II. T H E O PTIM A LIT Y C R IT E R IO N

The concept o f optimality comes from statistical theory o f weighing designs. The optimality criterions which deal to the weighing designs are considered in the literature. For details see Pukelsheim (1993), Shah and Sinha (1989), Wong and Masaro (1984). In the case G = I„, some problems connected with the optimum chemical balance weighing designs have been studied in Hotelling (1944), Raghavarao (1971) and Baneijee (1975). In the situation when not all objects are included in each weighing operation and the errors are correlated with equal variances, the problem o f existing o f the optimum chemical balance weighing design was considered in Ceranka and Graczyk (2003). They gave the lower bound of variance o f each o f the estimators and the definition ot the optimal design. Hence we have

T heorem 1 In the nonsingular chemical balance weighing design with the design matrix X and with the dispersion matrix o f errors cr2G , where G is given in (1), we have

(3)

v ( * > 2 - ' ~ b ~ - J m u ...p m ---— ---- -7

\ + p ( n - \ )

where u = min{u,,M2...нр}, м; is equal to the number o f elements equal to - 1 in the j th column o f the matrix X .

Definition 1 Nonsingular chemical balance weighing design with the design 2 я

matrix X and with the dispersion matrix o f errors a G , where G is given in (1), is optimal if v / . \ * * 0 - p ) v ™ = --- Р ( т - £ Г \ + p ( n - \ ) m -for each j , j = 1,2,..., p.

Now, we can formulate the conditions determining the optimality criterion. We have

T heorem 2 Any nonsingular chemical balance weighing design with the design matrix X and with the dispersion matrix o f errors cr G , where G is given in (1), is optimal if and only if

o )

x x -

i >

-(ii) M, = U 2 =... = U p = U and

(iii) X 'l„ = z p,

where z p is the py. 1 v e c t o r f o r which the _/" th element is equal to (m —2ы) or

~ ( m - 2 u ) .

In next section we will consider the methods o f construction o f the optimum chemical balance weighing design based on the incidence matrices o f the balanced bipartite weighing designs and the ternary balanced block designs.

(4)

III. BALANCED DESIGNS

In this section we remind the definitions of the balanced bipartite weighing design given in Huang (1976) and of the ternary balanced block design given in Billington (1984).

The balanced bipartite weighing design there is a design which describe how to replace v treatments in b blocks such that each block containing к distinct treatments is divided into 2 subblocks containing k t and k2 treatments, respectively, where к = /с, + кг. Each treatment appears in r blocks. Every pair o f treatments from different subblocks appears together in A, blocks and every pair o f treatments from the same subblock appears together in blocks. The integers v, b, r, k t, k 2, A,, A^ are parameters o f the balanced bipartite weighing design. The parameters are not independent and they are related by the following identities vr = bk, 2 k,kj A ,[ L ,( * ,- l) + *2(fc2 —1)] ** = 2 ktk2 r M ( y - Q

Let N* be the incidence matrix o f such design with elements equal to 0 or 1, then

N * N * ' = ( / - - A 1 - A 2 ) l v + ( A 1 + A 2 ) l vl'v.

If in the balanced bipartite weighing design k } * k 2 then each object exist in r(|) blocks in the first subblock and in blocks in the second subblock,

r = r( 0 + r(2)- Then r( i ) - 4 ( v - 1) ( 2*2)~1. Г(2)=Л1 ( v - 1) ! 2* .)’

'-A ternary balanced block design is defined as the design consisting o f b blocks, each o f size к , chosen from a set o f objects o f size v , in such a way that each o f the v treatments occurs r times altogether and 0, 1 or 2 times in each

(5)

block, (2 appears at least ones). Each o f the distinct pairs o f objects appears A times. Any ternary balanced block design is regular, that is, each treatment occurs alone in blocks and is repeated two times in р г blocks, where p x and

р г are constant for the design. The integers v, b, г, к, Я, /?,, p 2 are

parameters o f the ternary balanced block design. Let N be the incidence matrix of the ternary balanced block design. It is straightforward to verify that

vr = bk, r = Pi +2Pi>

A(v —1) = p i ( k — l) + 2 р г {к — 2) = r (к — l) — 2 р г, NN' (/?, + 4р 2 Л)1„ + Ä í X ={r + 2р г Ä ) l v + A l X

-IV. O PTIM A L DESIGNS

Let N* be the incidence matrix o f the balanced bipartite weighing design with the parameters v, bv rp ft,,, k2i, Я,,, From the matrix N, we form the matrix N, by replacing k\\ elements equal to +1 o f each column which correspond to the elements belonging to the first subblock by —1. Thus each column o f the matrix N, will contain &ц elements equal to —1, &2i elements equal to +1 and v - k u - k 2, elements equal to 0. Let N 2 be the incidence matrix o f the ternary balanced block design with the parameters v, b2, r2, k 2, Ä2, p \ 2, p 22. From the matrices N, and N 2 we construct the

design matrix X o f the chemical balance weighing design in the form

Lem m a 1 Any chemical balance weighing design with the design matrix X given in (2) is nonsingular.

Proof. Since G is the positive definite matrix then X G X is nonsingular if and only if X X is nonsingular. Hence

(6)

X X - ( r , - Aj, +Л,, + r2 + 2 p 22- X 2) I„ + + (^2i ~ \ \ +b2 ~ 2гг + Л ) M v and

d e t ( x x ) = (r, - Я ,, + Л,, + r2 + 2 Ai •

4*2 1121

Because Ä:,, Ф k 2l then we get the thesis.

Theorem 3 Any chemical balance weighing design with the design matrix

• • • 2

X in the form (2) and with the dispersion matrix a G , where G is given in (1), is optimal if and only if

(Í) —A, I *^"^2 "^^2 —2a*2 < 0 and

(ii) p =

-( Г-( 21) r(ll)+ , 2 ^2) (^1 + ^2 0(^21 Л |'* '^ 2 + Л 2r2) Proof. It is the consequence o f the Lemma 1 and the Theorem 2.

From Theorem 3.4 o f Huang (1976) and Theorem 1.1 o f Billington and Robinson (1983) (see also Ceranka and Graczyk (2004a, 2004b)) we have

Theorem 4 If for p = - ( 4 s r 2 - t 1 - 5 t + 4s/ + 4) the parameters o f the balanced bipartite weighing design are equal to v = 2 r ( 2 .s - l) + l,

6, = f ( 2 /( 2 .y - l) + l), r, = ŕ ( 4 s - l ) , k u = 2 s - l , k2i=2s, A ,,= 2 s, Ál i = 2 s - l and the parameters o f the ternary balanced block design are equal to

v = b2 = 2 /( 2 s - l ) + l , r2 = k 2 = 2 t ( 2 s - \ ) - \ , ^ = p i2 = 2 t ( 2 s - l ) - 3 ,

p 22 =1, s, t = 1,2,..., st > 2 , then X in the form (2) is the design matrix o f the

optimum chemical balance weighing design with the dispersion matrix of errors ct2G, where G is given in (1).

From Theorem 3.4 o f Huang (1976) and Lemma 2.8 o f Billington and Robinson (1983) we have

Theorem 5 If for p = - 2 ( S s t 2 - 3 t 2 - 2 / + 8 j/) the parameters o f the balanced bipartite weighing design are equal to v = 2 / ( 2 i - l ) - t - l ,

b{ = /( 2 /( 2 s - l) + l), rx = r ( 4 s - l) , k u = 2 s - l , k 2 i = Á i [=2s, Л21 = 2 ^ - 1 and

(7)

v = b 2 = r2 = k 2 = 2 t ( 2 s - \ ) + \, /i, = 2 / ( 2 j - 1 ) , p i2= 1, p n = t ( 2 s - \ ) , s,t = 1,2,..., .V/ > 2, then X in the form (2) is the design matrix o f the optimum

chemical balance weighing design with the dispersion matrix o f errors cr2G, where G is given in (1).

From Theorem 3.4 o f Huang (1976), Theorem 4.4.3 o f Billington (1984) and Theorem 2 o f Saha (1975) we have

T heorem 6 If for a given p the parameters o f the balanced bipartite weighing design are equal to v = 2 / ( 2 i - l ) + l, fc, = / ( 2 i ( 2 s - l ) + l),

r, = / ( 4 j - 1 ) , *„ = 2 j - 1 , *21 = = 2s< ^ = 2 s ~ 1 and the Parameters o f

the ternary balanced block design are equal to

(i) p = - 3 ( l 2 i / 2 - 5 / 2 - 9 / + 24j/ + 3)_I, v = Jc2 = 2 / ( 2 s - 1 ) +

1

,

b2 = r2 = 2 ( 2 /( 2 .y -l) + l), /12=4/(25 — 1), p n = 2 ,, p 22 = 2t (2s — 1), (ii) p = - 3 ( l 2 s / 2 - 5 / 2 - 2 1 / + 48J/ + 15)"1, v = k2 = 2 t ( 2 s - \ ) + \, b2 = r2 = 2 (4 /(2 „ v -l) + 3), Л, = 4 ( 2 / ( 2 j - 1 ) + 1), P11 = 2 ( 2 /( 2 i - 1) + З), p 22 = 2 t ( 2 s - \ ) , (iii) p = - l ( \ 2 s ŕ - S t 2 - 2 1 / + 4 8 r f - 9 ) ’ ', v = k2 = 2 / ( 2 j - 1 ) + 1, Z>2 = r2 = 2 ( 4 í ( 2 i - l ) - l ) , K = 4 ( 2 / ( 2 i - l ) - l ) , P\i = 2 ( 2 /( 2j? — 1) — 1), A 2 = 2 / ( 2 . y - l ) , (iv) p = - { $ s t 2 - t 2 +t + 1ÓÍ/ + 19) , v = 2 f ( 2 s - l ) + l, A2 = 4 ( 2 / ( 2 í - 1 ) + 1), r2 = 8 ( / ( 2 s - l ) + l), k2 = 2 ( * ( 2 i - l ) + l) , Я ,= 4 ( 2 /( 2 5 - 1 ) + 3), p l2= & { 2 s - l ) , p 22 — 4> (v) /7 = —( 4 í/ 2 - t 2 + 9 / + I 65/ + 67) , v = 2 / ( 2 j - 1 ) + 1, b2 = 4 ( 2 / ( 2 s - l ) + l) , r2 = 4 ( 2 / ( 2 s - l ) - l ) , k 2 = 2 / ( 2 * - l ) - l , ^2 = Л 2 = 4 ( 2 / ( 2 i - l ) - 3 ) , /з22 = 4 > (vi) p = ^ ( \ 2 s t 2 - 5 í 2 - 2 1 í + 48s/ + 9) v = *2 = 2 / ( 2 s - l ) + l, b2 = r , = 4 ( 2 / ( 2 j - l ) + l), A ,= 2 ( 4 # ( 2 j- 1 ) + 1), A j = 4 ( í ( 2 s - l ) + l), p 22 = 2 / ( 2 í - l ) ,

(8)

(vii) p = -7)(\2st2 - 5 / 2 - 2 1 / + 4 8 .« + 15) , v = fc2 = 2 / ( 2 i - l ) + l, b2 = r2 = 2 ( 4 / ( 2 s - l ) + 3), Aj = 4 ( 2 / ( 2 i - l ) + l), Pn = 2 ( 2 / ( 2 .s - l ) + 3), p 22 = 2 / ( 2 i - l ) , (viii) p - - 3 ( \ 2 s r ~ 5 t 2 - 2 1 / + 48ä7 + 21) , v = k2 = 2 / ( 2 s - l ) + l, b2 = r2 = 8 ( / ( 2 j - 1 ) + 1). Aj = 2 ( 4 / ( 2 í - 1 ) + 3), Pn = 4 ( / ( 2 s - l ) + 2 ), p 22 = 2 / ( 2 s - l ) , (ix) p = - ( 4 s t 2 - ŕ - / + 8í/ + 5) , v = k2 = 2 / ( 2 s - l ) + l, b2 = 2 ( 2 /( 2 jt- 1 ) + 1), r2 = 4 ( / ( 2 i - l ) + l), Aj = 2 ( 2 / ( 2 s - l ) + 3), P u = 4 /(2 ä - 1 ) , p 22 = 2, (x) p = - ( 4 s t 2 - t 2 + / + 16.V/ + 19) , v= 2 / ( 2 j - 1 ) + 1, b2 = 4 ( 2 /( 2 .v - l) + l), r2 = 8 ( / ( 2 s - l ) + l), k 2 = 2 ( / ( 2 i - l ) + l), A j = 4 ( 2 / ( 2 í - 1 ) + 3), p n = 8 /(2 ä '-1 ), p 22= 4 ,

where s,t = 1,2,..., s t > 2 , then X in the form (2) is the design matrix o f the optimum chemical balance weighing design with the dispersion matrix of errors cr2G , where G is given in (1).

From Theorem 3.4 o f Huang (1976) and Theorem 2.9 o f Ceranka and G raczyk(2004a) we have

T heorem 7 If for p = - 2 > ( \ 2 s r - 5 r - 9 t + 24st+ 3u} the parameters of the balanced bipartite weighing design are equal to v = 2 /(2 .y - l) + l,

bt = / ( 2 / ( 2 s - l) + l) r, = /(4 j-1 ), k u = 2 s - \ , k 2i = A,, = 2s, Ä2l= 2 s - \ and

the parameters o f the ternary balanced block design are equal to

v = k2 = 2 /( 2 s —l) + l, b2 = r2 = 8 s / - 4 / + k + 1, Aj = 8 j / - 4 / + w -1,

p n = 2 s t - t + \, p n = 2 t ( 2 s - \ ) , s,t,u = 1,2,..., s t> 2, then X in the form (2)

is the design matrix o f the optimum chemical balance weighing design with the dispersion m atrix o f errors ct2G, where G is given in (1).

From Theorem 3.4 o f Huang (1976) and Theorem 2.10 o f Ceranka and Graczyk (2004a) we have

(9)

T heorem 8 If for p the parameters o f the balanced bipartite weighing design are equal to v = 2 / ( 2 i - l ) + l, bx = / ( 2 / ( 2 j - l ) + l) rx = / ( 4 5 - 1),

kxx = 2 j - 1 , k 2x = Яхх = 2s, Aj, = 2.i - 1 and the parameters o f the ternary

balanced block design are equal to

(О р = - ( Л и г + 4s/ 2 - ŕ +t + 4 s t u - 6 t u + u - \ } , v = 2 /(2 .y - l) + l, b2 = « ( 2 / ( 2 j - l ) + l), r2 = m ( 2 í ( 2 j - 1 ) - 1 ) , k 2 = 2 t ( 2 s - \ ) - \ , Яз = p x2 = w ( 2 ; ( 2 j - 1 ) - 3 ) , p 22=u, s,t,u = 1,2,..., st> 2, (ii) p = - ( 9 u 2 + 4 s t2 - ŕ +t + 4 s tu - 8 t u + u - \ y , v = 2 t ( 2 s - 1) + 1, b2 = m ( 2 /( 2 í- 1 ) + 1), r2 = 2 u ( / ( 2 s - l ) - l ) , k 2 = 2 ( / ( 2 i - l ) - l ) , A1 = u ( 2 t { 2 s - i ) - 5 ) , p X2= u ( 2 t ( 2 s - l ) - S ) , p 22 = 2 « i ( / ( 2 j - 1 ) - 4 ) , s ,t = 2,3... st> 6, u = 1,2,..., (iii)p = - ( \ 6 u 2 + 4 i / 2- t 2 + / + 4.9/1/- 1 0 iM + « - l) ', v= 2 / ( 2 j - 1 ) + 1, b2 = m ( 2 /( 2 í- 1 ) + 1), r2 = m ( 2 / ( 2 j - 1 ) - 3 ) , k2 = 2 t ( 2 s - l ) - 3 , ^2 = « ( 2 / ( 2 í - l ) - 7 ) , p X2 = m ( 2 / ( 2 í - 1 ) - 1 5 ) , p 21=6u, s,t = 2,3,..., st >6, u = 1,2,...,

then X in the form (2) is the design matrix o f the optimum chemical balance weighing design with the dispersion matrix o f errors <t2G, where G is given in

(1).

REFER EN C ES

Banerjee K. S. (1 9 7 5 ), W e ig h in g d e sig n s f o r ch em istry, m e d ic in e , e c o n o m ic s, o p e r a tio n s

resea rch , s ta tistic s. M arcel D ekker Inc., N e w York.

Billington E. J. (1 9 8 4 ), B alanced n-array designs: a com binatorial su rvey and so m e new results, A r s C o m b in a to ria 17, 3 7 -7 2 .

B illington E. J. and R obinson P. J. (1 9 8 3 ), A list o f balanced ternary d esig n s with

R < 15 and so m e n ecessary ex isten ce conditions. A r s C o m b in a to r ia 16, 2 3 5 -2 5 8 .

Ceranka В . and G raczyk M. (2 0 0 3 ), On the estim ation o f param eters in the ch em ical balance w eig h in g d esign s under the covariance m atrix o f errors cr2G . 18th

I n te r n a tio n a l W o rksh o p on S ta tis tic a l M o d e lin g , L e u v e n , In : V erb ecke G., M o h le n b u r g s G., A e r ts M .,F ie u w s (E d s.) , 6 9 -7 4 .

Ceranka В . and G raczyk M. (2 0 0 4 a ), B alanced ternary b lock under the certain condition.

C o llo q u iu m B io m e tr y c z n e 3 4 , 6 3 -7 5 .

Ceranka В . and G raczyk M. (2 0 0 4 b ), B alanced bipartite w eig h in g d esign under the certain condition. C o llo q u iu m B io m e try c zn e 3 4 a , 1 7 -2 8 .

(10)

Huang Ch. (1 9 7 6 ), B alan ced bipartite b lo ck d esigns. Journal o f Combinatorial Theory (A ) 2 1 , 2 0 - 3 4 .

H otellin g H. (1 9 4 4 ), Som e im provem ents in w eig h in g d esign s and other experim ental techniques. Ann. Math. Stat. 15, 2 9 7 -3 0 5 .

P ukelsheim F. (1 9 9 3 ). Optimal design o f experiment. John W illey and S on s, N e w York. Raghavarao D . (1 9 7 1 ), Constructions and Combinatorial Problems in designs o f Experiments. John W iley Inc., N e w York.

Shah K .R . and Sinha B.K.. (1 9 8 9 ), Theory o f optimal designs. Springer-V erlag, Berlin, H eidelberg.

W ong C .S. and M asaro J. C. (1 9 8 4 ), А -optim al d esign m atrices Х = (л:(() Л(,„ with x-j = —1 ,0 ,1 . Linear and Multilinear Algebra 15, 2 3 -4 6 .

Bronislaw Ceranka, Małgorzata Graczyk

U W A G I O O P T Y M A L N Y C H C H E M IC Z N Y C H U K Ł A D A C H W A G O W Y C H D L A N IE P A R Z Y S T E J L IC Z B Y O B IE K T Ó W

W pracy om aw ian y je s t problem estym acji nieznanych miar ob iek tó w w m odelu c h em iczn eg o układu w a g o w e g o przy założeniu , że b łęd y p om iarów są skorelow ane. Z ostały podane warunki określające istnienie p o w y ższy ch układów . D o konstrukcji m acierzy układu w ykorzystuje się m acierze incydencji d w u d zieln ych układów b lok ów i trójkow ych zró w n o w a żo n y ch układów bloków .

Cytaty

Powiązane dokumenty

burrows, shafts and tunnels, in different horizontal planes, is observed in the medium-grained fluvial sandstone of the Pliocene Lower Tipam Formation in the Amarpur area of Tripura

Przyjąć bowiem możemy, że o ile poststrukturalizm dzieli ze strukturalizmem wiele istot­ nych przekonań - wyróżniona rola języka i procesu tworzenia znaczeń, krytyczny stosu­

Koncepcja Latoura, a także actor- network theory, reprezentowana między innymi przez Johna Lawa są, podobnie jak konstruktywizm społeczny, próbami skonstruowani

Strumienia nowych pomysłów naukowych, prowadzących do nowych urządzeń technicznych bezustannie redefiniujących stosunki społeczne, nie uda się istotnie

[r]

For model evaluation we made a comparison of portfolios comprising nine stocks from Warsaw Stock Exchange, which are built using classical Sharpe’s and proposed

METODY OGRANICZENIA WPŁYWU EKSPLOATACJI PODZIEMNEJ NA OBIEKTY BUDOWLANE POPRZEZ ZASTOSOWANIE ROZWIĄZAŃ GEOTECHNICZNYCH.. Promotor pomocniczy

Na pierwszym rozpoznano dokładniej zachodnią strefę zabudowy mieszkalnej i odkry­ to zniszczony grób szkieletowy pod nawisem skalnym, na drugim zaś ujawniono bardzo