• Nie Znaleziono Wyników

On the Efficiency of Weighted Least Squares Estimators in the Case of a General Linear Model

N/A
N/A
Protected

Academic year: 2021

Share "On the Efficiency of Weighted Least Squares Estimators in the Case of a General Linear Model"

Copied!
17
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N 3 1 3 F O L IA OECONOHICA 43 , 1905___________________

W ia d y s lo w M i lo * , Z b ig n ie w W o s ile w s k l

ON THE E F F IC IE N C Y OF WEIGHTED LEAST SQUARES ESTIMATORS IN THE CASE OF A GENERAL LINEAR MOOEL

1. In t r o d u c t io n

The co n ce p t o f " e f f i c i e n t e s t im a t e s ( e s t i m a t o r s ) “ woo i n t r o ­ duced by R. F i s h e r ( c f . [ 3 ] ) f o r d e n o tin g c o n s ia t e n t a- s y m p t o t lc a lly norm al (C A N ) e s t im a t o r s w it h the a s y m p t o t i c a ll y mi­ n im a l v a r i a n c e .

F i s h o r ' s re a s o n in g c o n s is t e d in showing th a t

a ) i f 0 i s th e maximum li k e l i h o o d e s t im a t o r (M L E ) o f the p a ra m e te r e . then under the f o llo w in g r e g u l a r i t y c o n d it io n s .

a t ) th e d e n s it y f u n c t io n f y ( y , 6 ) o f th e d i s t r i b u t i o n f u n c t io n F y o f a random v a r i a b l e Y i s tw o - fo ld d i f f e r o n t i o b l e in 0 .

a 2) the f u n c t io n £ lo g f y C y . ^ “ u n if o r m ly c o n tin u o u s in y

the q u a n t i t y ^ ( 8 ( n ) - 6 ) has a s y m p t o t ic a l ly norma ^ d i s t r i b u t i o n w it h the p a ra m e te rs ( 0 , I 1 whore 1 ( 6 ) “ 8 [ f ^ 30 ] d o n o to ° an in fo r m a tio n q u a n t i t y g iv e n by a eample about 0 . and E d e n o te s an e x p e c t a t io n o p e r a t o r .

b ) i f { T ( n ) J d e n o te s a sequenco o f a s y m p t o t ic a l ly norm al e-a t lm e-a t e s , then

lira ( T (n ) - e » 2 > i " 1^ ) . e « R1, n-wo

where R1 i s th e s a t o f r e a l num bers.

* D r . f L e c t u r e r a t the I n s t i t u t e o f E c o n o m e tric s and S ta -' “ -' A V i . X r -' S i i ï . S " « * -' “ 4; - . I n s t i t u t e o f E c . n o . . « r l = . and S t . - t i s t i c a , U n i v e r s i t y o f Ł ó d ź .

(2)

I f ( a ) and ( b ) b o ld , then the MLC 0/ >\n) sh o u ld bo c o n s id e ru d os tho b e st a s y m p t o t ic a lly norm al (B A N ) e s t im a t o r s in tho c la s s o f a l l a s y m p t o t ic a lly norm al e s t im a t o r s .

U n f o r t u n a t e ly , th e ro a re no e s t im a t o r s w it h th e m in im al v a ­ r ia n c e . I t r o s u lt o from tho f o llo w in g f a c t s . L o t | T ( n ) } b® any scquenco of e s t im a t o r s and th e v a r i a b l e V n ( T ^ - 9 ) be aeym- p t o t l c o l l y norm al w it h tho p a ra m e te rs ( 0 , <S" (0 )). L e t ci2( 0 o ) * * 0 bo f o r tho f ix e d v a lu o o f 0Q. F o r

(1)

f (n)

T( n ) l f l T (n> - 8 o l > " 4 • 1 s „ t f l T ( n ) - 8 « l ‘ ^ ■

one can chock th a t the sequonce o f V n i f ^ - 0 ) i s o e y m p to tic - a l l y norm al w it h the p a ra m e te rs ( 0 , 3 2 ( 0 ) ) , where

3 2 ( 0 ) - d2( 0 ) i f 0 4 0O,

o>2( 0 ) - 0 < d2 (0 ) i f 0 - 0 ,

o o

U sin g th e above way o f e s t im a t o r Im provem ent f o r th e ML e s ­ t im a t o r s in th e r e g u l a r i t y c a s e , one can c o n s t r u c t a sequence | l ( n ) | a s y m p t o t i c a ll y norm al e s t im a t o r s such th a t

( 2 ) . lim fe0 (VnXT( n ) - 0 ) ) 2 < I ~ * ( 0 ) , n-K»

and, f o r 8ono 9 t oven

( 2 a ) lim t e (V n (T ( n ) - 0 ) ) 2 < r a ( 0 ) . r.+oo

The e s t im a t o r s j T ^ j t h a t f u l f i l ( 2 ) an d /o r ( 2 a ) f o r 0 e 0 a re c a l l e d s u p e r e f f i c i e n t f o r convex lo s s f u n c t io n s and th e s e 0 f o r w h ich (2 o ) h o ld s a re c o l l e d s u p e r e f f l c i e n c y p o i n t s .

The f i r s t known to us improvomont o f the typ e ( l ) was p re s e n ­ ted by 3. H o d g e s ( c f . [ 7 ] ) and i t was con cern ed w it h the ca&a when Y^ , . . . , Yn , . . . , w ere i . i . d . norm al v a r i a b l e s w it h v a r (y ^ ) = 1 , Q s R , and

(3)

^ ( n )

e ,7 ( n ) l f ,V\ n ) l < r," 1 / 4 ' | 0 ,1 < 1 '

Y (n> t f l 7 ( n ) l > n‘ 1 / 4 * 9 ( n ) 10 th0 ML" 0f e'

«h ere ^ ( n ) i s a u p c r e f f l c l e n t a t

6

*

0

.

Theso now f a c t o have s tlm u lc tn d nonds f o r m o d if ic a t io n s o f F i s h e r ' s d e f i n i t i o n o f e f f i c i e n c y . We r e c a l l the f o llo w in g m o d if ic a t i o n s : m l) an o o tim a to r T (n ) i s s o ld to bo a s y m p t o t ic a lly e f f i c i e n t f o r a p a r a m e tr ic f u n c t io n g (0 ) i f f : Urn i ( T (n )) -

9

(

8

) . lim | v a r ( T ( n ) ) - ° ' n-»oo n+oo u n le s s * < T ( n )* v a r ( T ( n p do n ot ®x i 9 t l m

2

) a f a m ily of e s t im a t o r s

0

£ lo s o ld to be w£ - a s y m p to ti­ c a l l y e f f i c i e n t w i t h in the sub

3

p ace K c

0

e R1 ( a s y m p t o t ic a l ly e f f i c i e n t w it h r e s p e c t to ( w ( J ) I f f ° r “ och n on-void op>in i.ot K c K tho f o llo w in g r e l a t i o n

o

( 3 ) lim [ i n f sup B(eC) wt (T £- 0 ) - sup i lQ£) w£ ( § £ - 8 ) ] - 0 .

£+0 "t£ 0«Ko 9«Kq

h o ld s , where T£ i s any e s t im a t o r , ond E i s e q u a l f o r exam ple m3) a c o n s is t e n t e s t im a t o r o f 0 i s s a id to bo f i r s t o r ­ d e r e f f i c i e n t ( f . o . e . ) i f f

( 4 ) lim V«? | T , v - 9 - a ( 6 ) * n I ■ 0» П-+00

In p r o b a b i l i t y , where a does n ot depend on o b s e r v a t io n s and

* •

’ -

...

?

>

. . . .

L alog f y ( y j 0>

z n “ n --- W ‘

A l l p r e s e n te d d e f i n i t i o n s o f e f f i c i e n c y e re q u a l i t a t i v e in n a tu r e and d e a l w it h th e a s y m p to tic b e h a v io u r o f e s tim a to r® . They can be g e n e r a liz e d in t o the c a s e o f 0 с R , R b e in g th e

(4)

Eu-tfiatdyatitw M ilo. 2ttl(?iiow Wasilovoki

c li d s a n ppaco w ith th e d im e n sio n k , by in c lu d in g o i l the r o e t r i - c t io n o im p lie d by the n u lt i- d im o n e io n a llt y o f the c o n s id e re d p ro ­ blem s. Though the w hole a s y m p to tic s o f e f f i c i e n c y i s ln d is p e n s -

b io (botl> in K1 nnd R*1,) «a e brckgroun d knowlodgo f o r s m a ll sam­ p le a n a ly s i s o f e f f i c i e n c y , in p r a c t i c e we nood some m easures o f e f f i c i e n c y f o r s m a ll »a m p le » , and tho knowledge how th e y behave in dependence on changes o f assu m p tio n s w h ich u n d e r li e tho mo-d,>J. g e n e r a tin g the o b s e r v a t io n s Y.

Tho p urpose o f t h i s p a p e r i s to p r e s e n t one o f p o s s ib le w ays 6f m easuring the e f f i c i e n c y and to o n a ly z a sqme p r o p e r t ­

ie s o f the p re s e n te d ¡¿» te rm in a n ta l e f f i c i e n c y m easure.

In S 2 we p ro s o n t on a n a l y s i s o f th e p r o p e r t ie s o f weight»- ed e s t im a t o r s in the c«*»e o f a g e n e r a l l i n e a r m odel.

I n § 3 wa p r e s e n t a d e t e r m in a n t a l e f f i c i e n c y measure and p ro v e t h a t i t s range b e lo n g s to < 0 ,1 > c r | ,

I n S 4 wo d e r iv e lo w e r bounds o f th e d e t e r m in a n t a l e f f i c i e ­ n c y m easure.

2. Some P r o p e r t ie s o f W eig h ted E s t im a t o r s in the Case o f a G e n e r a l L in e a r Model

By a g e n e r a l l i n e a r model we u n d e rs ta n d the f o llo w in g m odelt

« ( * " , k , S , Y - X(J + S , k0 - k ,n 0 - n, 9 y - Jfy ( X(3, a ) ) , w h e ra t • r 1Xi- - the s e t o f nxk r e a l m a t r ic e s , S - a p r o b a b i l i t y s p a c e , & - ( t l , * F , 9 ) , U - a s e t o f e le m e n ta r y e v e n t s , '¡F - tho t f - e o r e l f i e l d o f It s u b s e ts , 9 - a com p lete p r o b a b i l i t y m easure,

X/J - 8 ( Y ) ,

0

« A ( Y ) . fc(Y - tt(Y )) ( Y - f c ( y ) ) # - *> ( s ) , X e Rn xk, ft 6 f t * ,

" 9., - Ji*r ( Xf3, n ) “ = “ the p r o b a b i l i t y d i s t r i b u t i o n o f Y i s n- ••dirsanoional norm al d i s t r i b u t i o n w it h ? ( Y ) • X|3, & ( Y ) ■ n • d 20*. One of the p o s s ib le e s t im a t io n q u a l i t y f u n c t i o n a ls f o r the

(5)

( 5 ) (p - | i i ‘ 1 / 2 ( Y - X ( 3 ) J 2 . w here | • || d e n o te s E u c lid e a n norm in R1’.

About n vre assume f u r t h e r

A l ) n i e n o n s in g u la r p o s i t i v e d e f i n i t e r e n l m a t r ix , i . e .

a « Rn xn. d e t n * 0.

By c o n v e x it y o f <p and ( A l ) I t i s e a s y to f in d tb o ts

( 6 ) erg mln | i l ' 1/2 (Y - x p ) | 2 - D - ( x 'f l “ 1X ) ’ 1 x ' a " XY (3

and by the d e f i n i t i o n o f Y and assu m p tio n s o f we 9e t

(7)

A ( i ) - (x 'rf’ x)'1 x'a"1j&( Y)n~1x(x'a"lx)'’ - ( x ' a ’ x)*1

D e n o tin g L - ( x ' n “ 1x ) " 1x ' n " 1 < L% - L ♦ C . C « Rkxn we have ( 8 ) B - LY , f o r th a n - w e ig h te d le a s t - s q u a r e s (a - V IL S ) e s t im a t o r , and ( B a ) ^ - L1Y , f o r a n y o t h e r w e ig h te d le a 3 t s q u a re s e s t im a to r . To be u n b ia sed th e e s t im a t o r must f u l f i l £ (8 ^ )» L^X(3 ■ ■ (3, I . e . L^X ■ l ( j ( )* The l a s t r e l a t i o n h o ld s i f f CX ■ 0 . B y th e l a s t o o n d it lo n th e e s t im a t o r B^ can be w r i t t e n as ( 8 b ) B4 - (1 ♦ L j S . B y (8 b ) end the p r o p e r t i e s o f th e d is p e r s io n o p e r a to r Si we heve £

(&:l) m

U j f t ^ - L A I . ' ♦ L A C ' ♦ C f t L ' * C f l C ' . S in c e L A C * - ( X ' i T ^ r V ( X ' o " 1X ) “ 1X ' C ' # then by CX -■ 0 we o b t a in

(6)

L ft C « 0, m d by the same orgum onts C f t L ' » 0. Thus

( 9 ) ¿ ( S j ) » I f l L * ♦ C i l C ' . By (7 ) and ( 9 ) we o b ta in

U o > A ( 6 ^ - J B ( 6 ) - C A C '.

By. ( A l ) and p r o p e r t ie s o f Grom m a t r ic e s , the m a trix C n C ' I s a ls o p o s i t i v e d e f i n i t e i f f rank C » ran k X ■ k .

o We have p roved t h e r e f o r e

T h e o r e m 1. Under the model JCtll l n , th e l i n e a r e s t i ­ m ator i s o f f i c i o n t in the aenso t h a t a n y o t h e r l i n e a r e e t lm a to r Ba ■ (L ♦ C )Y has the d is p e r s io n m a tr ix S K & j) d e fin e d by ( 9 ) and such th a t A (B ^ )> A (D ), i . e . 4 (6 ^ ) — A ( B ) i s a p o s i t i v e d e f i n i t e m a t r ix . ♦

The e s t im a t o r B i s th e fl-VVLS e s t im a t o r w it h the w e ig h t ma­ t r i x f t . I t can be used o n ly i f t h i s m a tr ix i s e x a c t l y known in p r a c t i c e . In most p r a c t i c a l s i t u a t i o n s we do n ot know th e m a tr ix but i t 3 a p p ro x im a tio n , i . e . th e m a trix a ^ g • where £ rung the in d ic e s o f e s t im a t o r s o f a u t o c o r r e l a t io n c o e f f i c i e n t s o f g , and 5 runs th e in d ic e s o f a u t o c o r r e la t io n schem es. The c o n c r e te form o fft^ g depends on th e assumed a u t o c o r r e la t i o n sch e ­ mes about the components o f th e v e c t o r 2 as w e ll as e s t im a t io n methods f o r ’ the a u t o c o r r e l a t io n c o e f f i c i e n t £ in a s p e c i f ie d a u t o c o r r e la t i o n schema. The most o f t e n used schemes in p r a c t i ­ c a l e c o n o m e tric end s t a t i s t i c a l a p p li c a t i o n s a re as f o llo w s :

- f i r s t o r d e r a u t o r e g r e s s iv e schem es, - second o r d e r a u t o r e g r e s s iv e schem es,

- f o u r t h o r d e r a u t o r e g r e s s iv e schemes ( f o r a q u a r t e r l y d a ta ), - f i r s t o r d e r m ovin g-average scheme,

- com bining a u t o r e g r e s s iv e m ovin g -averag e scheme.

The above m entioned ty p e s o f schem es, as w e l l as o t h e r sche- m'js, form the f i r s t c r i t o r l o n o f the d i f f e r e n t i a t i o n o f fta . The s e co rd c r i t e r i o n i s formed by d i f f e r e n t ty p e s o f e s t im a t io n me­ tho d s f o r th e a u t o c o r r e la t io n c o e f f i c i e n t £ , i . e . f o r exam ple, the f o llo w in g e s t im a t o r s !

(7)

a ) th e sample f i r s t o r d e r a u t o c o r r e la t i o n c o e f f i c i e n t (o r the cam ple c o r r e l a t i o n between the s u c c e s s iv e r e s i d u a l s )

X ! E t E t - l

A

.

---1 A ?

5 2 E 2 t-1

where 3 (u n o b s e r v a b le ) w ere ro p la c e d by tho LS r e e ld u a la E^ ■ • Yt - X* p , x ; - ( X t l ... X t k ) . B - ( X ' X ) " V y , t -

1

,...,

n - l T ' n'j b ) T h e l l ' s m o d if lc o t io n o f £j,j n (n-k) E E E A * t* 2 1 P I “ n ' (n - 1 )

Ë

e 2 t - l r c ) th e e s t im a t o r n n ? ! ■ 1 - Ï - d ■ Z ( E . - S J - / Z t« 2 t - l d ) T h e ll^ s - N a g a r 's m o d if ic a t io n o f i . e . - * .

f

k* f l " n2 - k2

e) Dent's adjustment of Thell-Negar estimator

ex

u) *

u „ .

s — ~ 2

Г

k2 — ~ (m -

U1

• * "

(ł *

(8)

m - t r [ ( X ' H X X X ' X ) " 1 ] ,

H i s tho m a trix from an a p p ro x im a tio n o f th e in v a rs © of d2F «

■ A , i . e . H t F " 1 ■ (1 H.

Gxcopt f o r v o r y r e s t r i c t i v e c o se s t h e r e i s no s u f f i c i e n t knowledge about b e h a v io u r o f tho b ia a - r o b u s t n e s s , mean sq u are o r r o r (M S E l- r o b u s tn e s s , e f f i c i e n c y r o b u s tn e s s o f A a g-WLS e s t i ­ m ato rs on the chan g es o f assu m p tio n s d of ln in g f o r each known ( c x , 5 ) . T h ie c a l l s f o r e x t e n s iv e s t u d ie s on n u m o ric a l s im u la t io n ro b u s tn e s s . I n t h i e p a p e r, h o w e v e r, we w i l l n o t q n a ly z e the

*

p rob lem s o f s tu d y in g r o b u s tn e s s . In s t e a d o f t h i s we w i l l s tu d y oome p r o p e r t ie s o f ft^ g-W LS e s t im a t o r w it h r e s p e c t to ft-WLS- - o e t im a t o r . One o f such p r o p e r t i e s c o n c e rn s tho c o n d it io n s o f e- q u a l l t y o f d is p e r s io n m a tr ic e s o f A ^ - W L S E and A - W L S E , i . e . f o r d is p e r s io n o f Y , B ■ 6 (a ) » • ( X ' n “ 1X ) “ 1X ' F o r th e b r e v i t y o f n o t a t io n v*e d en o te a * - (-yv 5 ) , A ^ - Qq, . B y ( 7 ) and th e p r o p e r t i e s o f th e o p e r a to r it we have ■6(8^) • ( X ' û ' ^ ^ X ' û ^ û û ^ X ' n ^ X ) ' JîiO q ,; • i * A 11 a u “ a * VA i 1” 1 “ ' “ 1 and U r l * ( B ) - (X * a_ 1x) We s h a l l f i x th e c o n d it io n s o f e q u a l i t y J6 ( Bq, ) » A ( B ). Such con­ d i t i o n s a re g iv e n in T h e o r e m 2. I f . a ) i l i l q j — ^ot ^ i b) V I s th e m a tr ix o f th e a ig e n v e c t o r s o f û a and A , I . e . V 'V * W ' - I ; c ) V « RnXK i s o f th e form V ■ ( v - ♦ V . » . , v . ♦ O , O • JL # fl • Iv

♦ v . « ) whpre v . ( i - 1 , n ) l e th e i - t h column o f V and v ; v o ■ « e u - w i • « i n ) 1 d ) th e m a tr ix X s a t i s f i e s , ‘ a l t e r n a t i v e l y , one o f th e f o l ­ lo w in g c o n d it io n s ] d l ) X - Vo , L y L d 3 ) X - VQG, G 'G - GG' - I ( k ) , G « R * X K î ® L v|/ d 2 ) X » V G, d e t G * O, G « R

(9)

than

(1 1 ) A ( B W ) - A ( B ) . ♦

To p ro v e t h i s theorem one needs to use c o n d it io n s ( a ) - ( d ) , the p r o p e r t ie s o f sym m etry, p o s i t i v e d e f in it e n e s s o f fta , ft, th e ­ orem o f S t o l l ond W o n g [ 6 , p . 2 2 7 ] ond the r e s u l t ­ in g f e c t e t h a t f t V • VA, f t '^ V ■ V A V i l 1 » A , f l a v * • V F , f t a * v " V F” 1 « v # f t a * “ F ” l v * »»her# A , F a ro th e d ia g o ­ n a l m a tr ic e s o f e ig e n v a lu e s o f U and f t « , and A , F a re th e e ig e n v a lu e s m a trlc o o f o r f t ” ' and f t ^ . A d e t a ile d p ro o f i s g iv e n in th e work [ 5 ] . A n o th e r t r i v i a l a l t u e t i o n when JB (6 a ) - JJ(6 ) h o ld s , l a d e t e r ­ mined by th e c o n d it io n f t a * f t , i . e . then ( X ' f t 1X ) X ft ftft x ( x ' f t “ 1x ) " 1 - ( x ' f t “ 1x ) “ 1 . 3. A P e t e c y l n a n t a l E f f i c i e n c y Measure We r e c a l l t h a t th e most e f f i c i e n t e s t im a t o r In th e co3e o f <JTcUA l a the e s t im a t o r 3 • B < ft)o n d an y o t h e r e s t im a to r In c lu d in g B tt i s le s s e f f i c i e n t . In o r d e r to a r r i v e a t t h l e c o n c lu s io n we r e p r e s e n t th e m a tr ix n a as f t a - ft ♦ A, I t 1» e a s y to f i n d t h a t ( f t * A )’ 1 - f t " 1 - f t ” 1 ( f t “ 1 ♦ A " 1 ) “ 1«,” 1 - ft“ 1 - G, w here G • f t " 1 ( f t " 1 ♦ A- 1 ) " 1 f t “ 1 . By d e f i n i t i o n o f B we now have B a - ( x # ( f t -1 - G ) x ) “ 1x '( f t “ 1 - G )Y , end s in c e ( x ' i f t “ 1 - O x ) “ 1 - ( x ' ft-1x - X 'G X )“ 1 - ( x ' a “ 1x ) " 1 - - ( X # f t ” 1X ) " 1 [ ( X ' f t ^ x ) “ 1 - ( X ' G X ) " 1 ] “ 1 ( X ' f t ^ X ) “ 1 , x '( f t -1 - G )Y - X ' f t ' V - X 'G Y ,

(10)

t h e r e f o r e

(

1 2

)

Da ■ ( L ♦ C ) Y

( 1 3 ) L - ( X # A * ł X ) “ V f t " 1

(1 3 a ) C ( x ' n " 1X ) “ 1X ' G ( X ' f t " 1X ) " 1 [ ( X ' f t ’ 1 X ) " 1

-- ( X ' C X ) “ 1 ] “ 1 ( X ' f t ' 1X ) “ 1 ( X ' f t " 1 -- X ' G ) .

By (1 2 ) and Thoorem 1 we o b t a in t h a t * ( B a ) > & ( § ) , i . e . 6 i e le o a e f f i c i e n t than B . F o r f ix e d f i n i t e «am ple s iz e s ( e s p e c i a l l y s m a ll sam ple s i z e s ) I t I s v e r y Im p o rta n t to havo a m easure o f e. f l c l e n c y o f th e g iv e n e s t im a t o r . Such a moaeuro I s de­ f ir , ad in

D e f i n i t i o n 1. The d e te r m ln a n t a l e f f i c i e n c y measu­ re o f the e s t im a t o r 6 ^ f o r (3 in <M<Mn I s th e q u o t ie n t o f the d e te rm in a n t o f the m a tr ix A ( B ) to the d e te rm in a n t o f the m a trix £ (8 ^ ), i . e . /.here ^ Bq, " ( X , i y i a ) d e n o te s th e d e te r m ln a n t a l e f f i c i e n c y m easure o f B a ae the f u n c t io n o f X , A , A a . ♦ L e t us assume t h a t t A 2 ) f t * I s n o n s in g u la r p o s i t i v e d e f i n i t e r e a l m a tr ix (r a n k A a -- nQ s n ) , A 3 ) f t f t a - A a a . By ( a i ) , ( A 2 ) , (A 3 ) th e f a c t s t h a t th e in v e r s e o f p o s i t i v e d e f i n i t e m a tr ix I s a ls o a p o s i t i v e d e f i n i t e m a tr ix and the p r o ­ d u c t o f p o s i t i v e d e f i n i t e m a tr ic e s i s a l s o a p o s i t i v e d e f i n i t e m a tr ix - ( f o r p r o o f s o f t h i s s ta te m e n ts see [ l ] , c h a p t e r s 4 , 6 ) wo o b t a in t h a t ( 1 5 ) A , A a a re p o s i t i v e d e f i n i t e ( p . d . ) r e a l m a t r ic e s . (1 4 ) Ч • • ” в а ( Х ’ Л , Л “ )

__________ da t ^ U ' f l ^ X )

___

__

dot ( Х ' л ~ 1Х ) det ( X ' ^ f l f t j x ) '

(11)

(1 6 ) A f l " 1 i s p . d . m a tr ix , and by th e p r o p e r t ie s o f Gram m o trlc e s (1 7 ) X 'a “ * X . X* A ^ X , X ' A ” 1 f l A ^ X o re p . d . m a tric e s . B y th e p r o p e r t ie s o f Gram d e te rm in a n ts wo g e t * (1 8 ) d e t ( x 'A " a x ) > 0 , d o t ( x ' n ^ x ) > o , Ix'a^ a a ^ x |> 0 .

From (1 8 ) ond (1 4 ) we have t h e r e f o r e

( 1 9 ) > 0

B ot and

( 2 0 ) V- . 0 i f d e t ( X 'A -1 X ) A 0 , d o t ( X 'A " ^ A A * ^ X ) 4 0,

d e t ( X ' A ^ X ) - 0.

F o r k < k , V i ■ — eo the meoeuro makes no sense and

o

0

th e r e a r i3 o s a need f o r m o d if ic a t io n s - one o f eoch m o d if ic a ­ t io n s can bo based on ta k in g

V 6 a ■ V r i l n ^ • Now we e s t a b l i s h t h a t Vg < 1 .

Becau se f o r p o s i t i v e d e f i n i t e m a tr ix th e d e te rm in a n t i s o q u a l to th e p ro d u c t o f i t e p o s i t i v e e ig e n v a lu e s , t h e r e f o r e by the f a c t t h a t JBXBqi)

5

& ( B ) we coma to th e c o n c lu s io n

(2 1 ) detteK & Q j)) > d o t(X > (B )).

Hence e f f * “ V* < l .

ot ot

We h ave p ro ve d the f o llo w in g theorem .

T h e o r e m 3. Under the assu m p tio n s o f dfcttrt, ( A l ) , (A2) th e range o f th e d e te r m ln a n t a l e f f i c i e n c y m easure V g i s the i n ­ t e r v a l < 0 ,1>.

N o t e : I t i s e a s y to ch eck t h a t f o r A a - A , V g * 1.

I n p r a c t i c e i t i s w o rth knowing th e v a lu e s o f lo w e r bounds o f Va d e te rm in e d f o r some t y p i c a l a » ( y , 6 ) c o m b in a tio n s o f

(12)

c o r r e l a t i o n sch e n cc and o s t im o t o r s o f /p. We d e r iv e th e s e bounds In this nu;<t s e c t io n .

4 . Lower Bounda o f V *

— --- --- ---£ a

Cno o f the p o s o lb le ways o f d e r i v i n g lo w e r bounds o f V*

0 ®0f

in the C 8 6 o o f X ■ V , i . e . X X » cen k ° doc* on *he

method o f Lagrange m u l t i p l i e r s . L e t % )ml m 2 ‘• " V o ' ~ ( k ) ( 2 2 ) g - In ( V * ) -1 - 2 t r L ( v ' v rt - 2 1 ,- 0 , w h o re i I n ( Ya ) _1 In d e t ( V ' a 1V ) ♦ In d o t ( V ' f t * 1 A f l * 1V ) -O O o or

01

o - 2 In d e t ( V ' A “ XV ) o a o

und L i s the upper t r i a n g u l a r m a tr ix o f k ( k + l) / 2 o f L a g ra n g e 'e m u l t i p l i e r » . From ( A l ) - ( A 3 ) I t f o llo w s (2 2 a ) n a l n “ 1 " a_1 . ^ A - ft a ” 1 - H*1 , n ” l a a " * H» H " H#* ( 22b ) ( n “ 1 A ( T * ) A " 1 - A^1 ( A “ 1 A A ; 1 ) , ( 22C ) ' ( A “ 1 A A ' J ) A " 1 - Sl~ J ( A ^ 1 A A “ 1 ), ( ¿2d ) ( A ” a A A " a ) H - H (A "a* A A " 1 ), ( A “ 1 A A fl1) « 2 - H2 ( A * 1 A a 1^1 ) , ( 22 e) ( A ^ 1 A A ^ J H ' 1 - H“ 1 ( A ^ 1 a A ^ ) .

VSte can fo rm u la te now ■

T h e o r e m 4 . I f V^VQ ■* 2 1 ^ and ( 2 2 a )- (2 2 e ) h o ld and the f u n c t io n g i s c o n tin u o u s tw o fo ld d i f f a r e n t l a b l e , then

k

(2 3 ) i n f « „ » > ¡ 1 » X . i . 1 (l> J • i - l

(13)

(2 4 ) . Vo , v ; v 0 - 2 I ( k )

w here 2H# ■ V 'H V te th e m a trix o f the form H - d ia g I h j ,

*

0 0

h j ) . ♦

P r o o f . D i f f e r e n t i a t i n g

g

w it h r e s p e c t to X ond L ( c f . [ 4 ] . p . 6 1 6 ) and p o t t in g 9g/dX - 0 and g / L - 0. where 0 deno­ t e s z e ro m a t r ix , wo have

(2 4 a ) fta l f t A e v e ( v ; * ; 1 A r f * v e r 1

-- a"'«4(vi ûe 4 r i -- 2Vo(L + L#)‘ °*

(2 4 b ) v ; V o - 21 ( k ) - ° . P r e m u l t ip ly in g (2 4 a ) by v ' and u s in g (2 4 b ) we have ( 2 4 c ) L ♦ L ' « 0 and hence

<2*d)

0

' \

( v ;

. л^‘ л п '* » 0 ( v ;

-•

2na4(v;na4r‘-P r a m u lt ip l y i n g (2 4 d ) by Л а and u s in g the d e f i n i t i o n o f H wo ob­ t a i n

( 2 « ) » » д Л , ) - 1 ♦ H-‘ ye ( v ; n ; 1 nn-M

1v0 r ‘ • » .< » ; < » e r ‘ .

P r o m u lt ip ly in g (2 4 e ) by H and u s in g the r u l e s o f the a d d it io n of th e m a t r ic e s wo o b t a in

( 2 4 0 H ^ C V ^ A - ^ ) * 1 - 2HV0 ( V ; Л * \ ) _1 ♦ Vfl( v ; Л ^ П ^ Г ^ О .

From Theorem 2 and c o r o l l a r y 1 (From [ 7 ] , § 6 . 6 , p . 22 8) i t f o llo w s t h a t m a tr ic e s H2 , H, a re s im u lt a n e o u s ly d ia g o n a liz o d by th e m a tr ix VQ o f th e s e m i- o rth o g o n a l tra n s fo r m a ­ t io n V * . H ence,

о

(14)

+ v!i(v^

n ;lAft-« v!ir l - o. i - 1...k

and by v i r t u e o f the theorem , t h a t tho d e te rm in a n t o f the d ia g o ­ n a l m a tr ix i s e q u a l to the p ro d u c t o f i t s main d ia g o n a l e le m e n ts wo g e t k < vft % ‘ v : , ) 2 ^ ; n - 1 v » t ) - ‘ ( v f a i n o i S j r » . X - l P re m u H rlp ly in g (2 4 g ) by v ^ C v ^ n “ I v ° 1 ) wo o b t a in * • (2 5 a ) >

2

h " ( v ^ n - V ^ o ' ^ y ^ - 1 f * ( v ° ; o - y ^ v j ; - o i . i ... k.

V/hen A o f t h is s q u a ro d - e q u a tio n in r e s p e c t to h * l a g r e a t e r than 0 , i . e .

4 ( v ° ; n v p 2 ^ ; n - ^ y . r 2 - e ^ ; n - y ^ ; * ? a < c y t r * x >

e q u a tio n (2 5 a ) has two r o o t s , d i f f e r e n t from z e r o , tho sum o f then bning o f the form

( 23 b ) „ * . h j 2 . < v»; o - y t ) t v » ; .

and t h e i r p ro d u c t has. tho form

< 2 5 0 . J ( v » ; n ’ V , ) < v °; n ^ n r i - ^ v - ) “ .

F ro n (2 5 b ) and (2 5 c ) i t f o llo w s d i r e c t l y

< 2 M ) c v ° ; . ^ v ^ ) 2 , ( v ° ; a - y p 2 ^ ♦ h * r 2

(2 5 e ) ( v f OTj- - 2 ( y ° ' h ^ h * .

U sin g ( 25d) and (2 5 e ) we can r e w r it e (2 5 ) in th e form k

(15)

I n o rd e r to f in d I n f o f A (V wo must choose two d la jo im -OL

subgroups { h ^ ... h j j . { h j 2 ... h *2 } from th e a c t { h * . . . . . h£ } ln 8uch 8 w®y th n t tho r e l a t i o n d e f in in g e i

3

& a ’a o) in (2 6 ) re a c h e s i t s minimum. I n a cco rd a n ce w it h the c o m b ln a to ri- c e l d i s c u s s i o n ( s i m i l a r to th o t o f B l o o m ? i e l d-v< a t-

a o n [2 ]) we have t h a t the e x p r e s s io n e fg re a c h e s i t s minimum f o r h * x - h * . h *2 - h * _ 1+1. i . e .

k o

i n f • f 6a( Vo ln 1n a ) * H

2

h > * _ u l (h * ♦ h * _ t+ 1 )- ‘ . i- 1

w hich co m p le tes the p r o o f.

R e l a t i o n (2 3 ) may be used f o r exam ining the runs o f rnngo of tho lo w e r bound o f the d o le r m in o n tn l e f f i c i e n c y measure o f tho e s t im a t o r B a .

I t i a i n t e r e s t i n g to d e te rm in e o th o r lo w e r bounds r a t h e r than th e se from Theorem 4 f o r X » VQ. To f i x thorn on the b a s is

s t a t l o n a r l t y c o n d it io n s f o r Vg one has to f in d s o lu t io n s ot the f o llo w in g e q u a t io n s : dVA (2 7 ) - ^ - " ( 2 d e t ( x #a “ 1x ) d o t 2 ( x ' ^ 1x ) ) A ; 1x ( x 'n ’ 1x r 1 - ( d c t ( x ' A ' 1x3i), ft“ 1X ( X #0 - 1X )- 1 -< d a t< X 'a - 1X ) ) o ; 1 ^ X ) “ 1 - 0, 3Vn (2 8 ) r r r - 2 . ( d e t 2 ( x ' n ; 1x )) i l ^ X U ' n , « 1X ) ’ 1X 'ft” 1 - n t t f x , ( X ' n ; l A n ; 1X ) " 1X ' - 0, av*

(29)

_ !S !

. n - i x (x * n ^ x r V

n " 1 ♦

^ x i x ' ^ A ^ x r ^ ' f t ; 1

- o.

oi* W h eth er th e re a re g e n e r a l s o lu t io n s o f ( 2 7 ) - ( 2 9 ) ? I> th e y e- x l s t , t h e y in v o lv e a d d i t i o n a l a ssu m p tio n s about tho e x te n s io n s o f d ot f u n c t io n s w it h r e s p e c t to a o r f i ^ o r X o r tho r e s t r i c t i v e form o f X. Duo to space l i m i t a t i o n s we w i l l n ot c o n tin u e the d i ­ s c u s s io n o f t h i s problem and le B v e the problem open.

(16)

5. F i n a l Remarks ■ i r f » w ; m - i i i i w i i i tw — m Tho r e s u l t s o b ta in e d in t h i s p a p e r w i l l be uaod in ou r s t u ­ d io s on ro b u s tn e s s o f v/LS e s t im a t o r s os w o ll os f o r the c o n s tr u ­ c t i o n o f o f f i c i o n c y t o b ie s f o r d i f f o r e n t c o m b in a tio n s o f p a i r s ( ? » 6 ) •

Tho a n a l y s i s p r e s e n te d in the p a p e r does n ot in c lu d e the co­ se when k < k end n < n in the model tV’tW.rt.

o o A DIBLIOGRAPHY T l ] B e l l m a n R . ( i 9 6 0 ) . In t r o d u c t io n to M a t r ix A n a l y s i s , N . Y . , M c G ra w - H ill. [ 2 ] B l o o m f i o l d P . , W a t s o n G. (1 9 7 5 ), The I n ­ e f f i c i e n c y o f L e a s t S q u a r e s , “ B io m e t r ik o " , V o l. 62, p . 121- -128. [ 3 ] C r o m e r H. (1 9 4 6 ), M a th e m a tic a l Methods o f S t a t i s t i c s , P r in c e t o n N. 0 . , P r in c e t o n U n i v e r s i t y P r e s s . [

4

] D w y e r P ; (1 9 6 7 ), Some A p p li c a t io n s o f M a t r ix D e r iv a ­ t i v e s in M u l t i v a r i a t e A n a l y s i s , 0. Am er, S t a t i s t . A s s o c . , V o l. •62, p . 607-625. [ 5 ] M i 1 o W ., W a s i l e w s k i Z . (1 9 7 9 ), E fe k ty w n o ś ć e stym ato ró w param etrów o g ó ln y c h m o d e li lin io w y c h . Cz. i . Work under c o n t r a c t R . I I I . 9 . 5 . 7 . [ 6 ] S t o l l R , , W o n g E . (1 9 6 9 ), L in e a r A lg e b r a , N. Y , , A cadem ic P r e s s . 17 ] Z a c k 6 S , (1 9 7 1 ), The T h e o ry o f S t a t i s t i c a l I n f s r a n c e , N. Y . , W i l e y . / /

(17)

W ła d y s ła w M i lo , Z b ig n ie w W s s ile w s k l

O EFEKTYWNOŚCI WAŻONYCH ESTYMATORÓW

N AJM NIEJSZYCH KWADRATÓW

W PRZYPADKU OGÓLNEGO MODELU LINIOWEGO

Głównym calem p ro c y J e s t z a p re z e n to w a n ie jed n eg o z m ożliw ych sposobów m ie rz e n ia e fe k t y w n o ś c i w m ołych p rób ach i z a n a liz o w a n ie n ie k t ó r y c h w ła s n o ś c i ważonych e stym ato ró w n o Jw n le jo z y c h kwadratów 1 p r z e d s ta w io n e j w yzn aczn iko w ej m ia ry e f e k t y w n o ś c i. W sz cz e g ó ln o - ś c i p rz e d s ta w io n o :

a) a n a l i z ? w ła s n o ś c i e stym ato ró w ważonych w p rzyp ad ku o g ó lno -

go modelu lin io w e g o , , .

b ) dowód, że m iaro e fe k t y w n o ś c i z n a jd u je s i ę w p r z e d z ia le

< 0 . * > . X . i

Cytaty

Powiązane dokumenty

Individual speakers vary in how strict they are with this scale in making verbal passives.” Consequently, Landau (2010, p. 51), relying on Tenny’s (1998) analyses, makes

Po skończeniu U n iw ersy tetu M iklaszew ski zostaje starszym asy sten­ tem przy K atedrze Chem ii Rolnej u prof.. M iklaszew skiego św iad­ czy depesza przesłan a

Mając na uwadze powyższe, czynności wykonywane przez adwokatów nie ko- rzystają z wyłączenia z zakresu ustawy o podatku od towarów i usług, gdyż niespeł- niony jest jeden

Dzięki temu struktura pasji, w której dały się zauważyć cechy formy przekomponowanej, oratoryjnej i akompaniowanej, sukcesywnie ule- gała poszerzeniu, a teksty ewangeliczne

In combination with a weakly imposed boundary condition, LS performs worse at low polynomial degrees than with a strong boundary condition. However, at high polynomial degrees,

Do znanego już rozwiązania pierwszej k w estii doszły dwa na­ stępne, które ujmują spokój publiczny jako pojęcie w ęższe, zaw arte w określeniu porządku p

Following the literature review that identified the above DfBC approaches, an online survey was completed to gain a broad understanding of industries position within

Wojciechowski łączy ich z linią nieznanego z imienia drugiego syna Jana Konopnickiego i uważa, że byli synami Woj­ ciecha, zm.. Wojciechowski łączy ich z linią Andrzeja,