• Nie Znaleziono Wyników

Some Remarks on the Choice of the Kernel Function in Density Estimation

N/A
N/A
Protected

Academic year: 2021

Share "Some Remarks on the Choice of the Kernel Function in Density Estimation"

Copied!
7
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

A l e k s a n d r a B a s z c z y ń s k a *

SO M E REM ARKS O N T H E CHO ICE OF T H E K ERNEL FU N C TIO N IN DENSITY ESTIM A TIO N

Abstract

T h e basic c h aracteristic describ in g the b eh av io u r o f the ra n d o m v ariab le is its d ensity fu nction. K ern el den sity e stim atio n is one o f the m o st w idely used n o n p a ram etric d ensity estim atio n s. In th e p ro cess o f co n stru ctin g the e stim ato r we have to choose tw o p a ra m e te rs o f the m eth o d : the kernel fu n ctio n K (u ) and sm o o th in g p a ram ete r h (b an d w id th ). In the p ap er, kernel m eth o d is discussed in detail, w ith p a rtic u la r e m phasis o n influence o f th e choice o f the kernel fu n ctio n K (u ) on the q u a n tity o f sm o o o th in g . M o n te C arlo stu d y is presented, w here seven kernel fu n ctio n s (G a u ssia n , U n ifo rm , T rian g le, E p an ech n ik o v , Q u a rtic , T riw eight, C osinus) a re used in den sity estim ation.

Key words: d en sity estim atio n , kernel fu n ctio n , sm o o th in g p a ram ete r.

I. IN T R O D U C T IO N

D ensity function is the basic characteristic describing th e b eh avio ur o f the ra n d o m variable. It is used in investigation o f p rop erties o f a given set o f d a ta and provides a way o f show ing its structure.

T he oldest density estim ator for univariate case is the histogram . Popularity o f the histogram is connected with its sim plicity, b u t this estim ato r has som e draw b ack s (for exam ple: influence o f the placem ent o f the bin edges on the estim ato r, estim ating all densities by a step function). O ne o f the m o st k n o w n and widely used m ethods o f estim atio n o f density function is the kernel m eth o d . T he m o tiv atio n for kernel density estim ation is the average shifted histogram , which averages several histo gram s based o n shifts o f the bin edges. K ernel estim ato r does n o t have d isadv antages o f the histo g ram and provides sim ple and effective m eth o d o f show ing stru ctu re in a d a ta set a t the beginning o f analysis.

(2)

K ernel estim ato r o f a density function f ( x ) is defined by:

+ 00

w here K(u) is kernel function satisfying J K(u)du = 1. - 00

T h e idea o f kernel estim ato r was introduced by Fix and H odges in 1951 as nonparam etric version o f discrim inant analysis. R osenblatt (1956) considered kernel estim ato r with one special kernel fu nction , and P arzen in 1962 introduced a general form o f kernel estim ator.

In practice, the kernel function K(u) is a density fu nction (for exam ple n orm al function) and then estim ator (1) is also density function. Some o f the best know n kernel functions are presented in D om ańsk i, P ru sk a, W agner (1998).

P a ra m e te r h (h > 0) is a sm oothing p aram eter, also called w indow width o r bandw idth .

E xpressions for E (f (x)) and D 2( f (x )) are the following:

(

2

)

L et the kernel function be a sym m etric fu nction satisfying: + 00 J K(u)du = 1 j uK{u)du — 0 — 00 + oo J u2K(u)du = k 2 Ф 0, for h(n) > 0

lim h(n) = 0 and lim nh(ri) = oo,

(3)

T he bias and asym ptotic m ean integrated squared erro r o f kernel estim ator (1) is the following: E (Д х )) - f ( x ) = 7 ~ K - / ( x ) . (4) A M 1 S E = ' / i 4 /c2 f / ' ( x ) 2dx + A f K ( u ) 2du. (5) 4 nn II. M O N T E C A R L O ST U D Y

M o n te C arlo study was conducted to indicate the influence o f the choice o f the kernel function on the q u an tity o f sm o o th in g in kernel density function. Analysis o f properties o f estim ator was done in three basic variants, depending o n d istrib u tio n , from which the d a ta were chosen. T h ese variants are as follows:

- v a ria n t I: no rm al d istrib u tio n N(0,0.2),

- v aria n t II: m ixture o f norm al distributions: f ( x ) = 0 .2 5 /x(x) + 0.7 5/2(x), w here / x(x) is density function N(0, 0.2), / 2(x) is density fu nction N(3, 0.5). V a rian t II presents tw o-m odal d istributions,

- v a r ia n t III: m ix tu re o f n o rm a l d is trib u tio n s : f ( x ) = 0 . 5 f i ( x ) + + 0 .2 5 /2(x) + 0 .2 5 /3(x), where f t (x) is density functio n N (0, 0.2), / 2(x) is density fu n ctio n N(3, 0.5), / 3(x) is density function N (7, 0.5). V arian t III presents three-m odal distributions.

In the experim ent we used som e m easures: - m ean squared erro r

B S K = - £ [ / ( х , ) - / ( х , ) ] 2 (6) n i=1

- m axim um value

M R = m ax I f ( x t) - / ( x ; ) | (7)

i

- P is a n u m b er o f cases, w here the value o f estim ato r is greater than value o f density function in this p oint (over sm oothing)

- L is a n u m b er o f cases, where the value o f estim ato r is less th an value o f density fu nction in this p oint (under sm oothing).

In the experim ent, tru e density functions (described as v arian t I, II and III) were com p ared , using m easures m entioned above, w ith the estim ators

(4)

o f density function. K ernel estim ation was do n e, based on 128 random o bserv ations chosen from po pulatio n s (described as v arian t I, II and III), using one o f the seven kernel function s (G au ssian , U n iform , Triangle, H pancchnikov, Q uartic, I riw eight, C osinus) and using sm o o th in g p aram eter, which m inim izes m ean squared e rro r B S K (6). M inim alization o f BS K causes th a t kernel density estim ator can be treated as op tim al fo r this value ol p a ra m e tr h. I he analysis of values of sm oothing p aram eter, m inim izing B S K , for p artic u la r kernel function allow us to co m p are the properties of kernel function used in the estim ation. T h e results o f this p a rt o f study are presented in tables 1, 2, 3.

T abic 1. V alues o f sm o o th in g p a ra m ete r h m inim izing B SK for v a ria n t I

K ernel fu n ctio n V alue o f p a ra m e tr h B S K M R P N

E p an ech n ik o v 0.0800 0.028609 0.326695 40 88 G a u ssia n 0.0800 0.030831 0.418698 43 85 Q u a rtic 0.2100 0.028370 0.355300 42 86 T rian g le 0.2000 0.028185 0.359394 41 87 U niform 0.1300 0.031556 0.453241 52 l b T riw eight 0.2400 0.028592 0.368761 42 86 C osinus 0.1800 0.028325 0.343490 41 87

T able 2. V alues o f sm o o th in g p a ram ete r h m inim izing B S K for /a ria n t II

K ernel fu n ctio n V alue o f p a ra m e tr h B S K M R P N

E p an ech n ik o v 0.1600 0.004511 0.172078 45 83 G a u ssia n 0.1800 0.004702 0.161273 42 86 Q u a rtic 0.4200 0.004522 0.168167 52 76 T rian g le 0.4000 0.004471 0.163618 56 72 U niform 0.3000 0.004993 0.169591 44 84 T riw eight 0.4800 0.004542 0.168551 53 75 C osinus 0.36(H) 0.004509 0.174501 49 79

I able 3. V alues o f sm o o th in g p a ram ete r h m inim izing B S K fo r v a ria n t 111

K ernel fun ctio n V alue o f p a ra m e tr h B S K M R P N

E p an e ch n ik o v 0.0900 0.003292 0.116821 82 46 G au ssian 0.1100 0.003353 0.108255 74 54 Q u artic 0.2600 0.003134 0.114355 79 49 T riangle 0.2500 0.003139 0.109422 78 50 U niform 0.1400 0.004459 0.145988 84 44 T riw eight 0.3000 0.003137 0.112873 77 51 C osinus 0.2200 0.003192 0.117113 82 46

(5)

T h e study was also expanded by calculating sm o o th in g p aram eter h in the estim ation the follow ing the density functions: n o rm al w ith p aram eters H = 0 and о — 1.3, no rm al with param eters ц = 5 an d о — 0,2, un ifo rm on interval < — 1, 1 > , uniform on interval < —3, 4 > , triang le on interval < 1 , 5 > , gam m a with p aram eters A = 2 and a = 0.5 ( j 2 w ith 2 degrees o f freedom ), gam m a with param eters X = 0.5 and a = 1, gam m a with param eters A = 0.5 and a = 5, gam m a with param eters A = 2 and a = 5 ( j 2 with 10 degrees o f freedom ). T h e results concerning values o f sm o o th in g p aram eter h m inim izing B S K and B S K (in brackets) arc presented in T ab le 4.

O n the basis o f the results in presented T ables 1-4 wc can divide regarded kernel functions into tw o groups. G au ssian , E p an ech niko v and U niform kernel functio ns arc kernels th a t need sm aller values o f sm oothing p aram eter and th e second group: Q uartic, T riangle, T riw eight and C osinus kernels need greater values o f sm oothing p aram eter in estim atio n. T h e first group o f kernels is characterised by higher degree o f sm oothing. T his division occurs n o t only for v ariant I, bu t also for tw o-m o dal and tree-m odal d istrib u tio n s (varian t II and variant III).

It allows to estim ate value o f sm oothing param eter for paricular estim ator with p artic u la r kernel function.

M oreo ver, values o f m ean squared e rro r (B SK ) in the presented study d o n o t differ significantly.

T h e results in T ab le 1 and 4 indicate that:

1. C h an g e o f location p aram eter in norm al d istrib u tio n does n o t cause change o f sm o o th in g p aram eter h, which m inim ises B S K .

2. C hang e o f scale param eter in norm al d istrib u tio n and in unim odal gam m a d istrib u tio n s ( a > 1) causes constru ctin g estim ato r w ith hig her value o f sm o o th in g p aram eter.

3. C h an g e o f shape p aram eter for x 2 d istrib u tio n causes m o re value o f sm o o th in g p aram eter.

4. E x p o n en tial d istrib u tio n (a = 1) needs sm all value o f sm oothing p aram eter in com p ariso n with distrib u tio n s with the sam e scale param etr.

On the basis o f the above analysis we can fo rm u late a statem en t th at values o f sm oo th in g param eters, which m inim ise B S K are different for different kernel functions. It can be explained by different sm oothing properties o f kernels in the estim ation o f density function.

(6)

T able 4. V alues o f sm o o th in g p a ra m e te r h m inim izing B S K (expanded study) K ernel fu n c tio n D is trib u tio n s n o rm al N (0, 1.3) n o rm al N (5, 0.2) u n ifo rm И , 1] u n ifo rm [-3 , 4] tria n g le [1, 5] gam m a /. = 0.5, st = 5 g a m m a ; . = 2 , 1=5 g am m a /1 = 2 , 2 = 0.5 g am m a A = 0 .5 , a = l E p an e ch n ik o v 0.50 0.08 0.12 0.40 1.19 0.46 1.23 0.011 0.029 (0.000670) (0.028609) (0.011055) (0.000901) (0.009582) (0.001128) (0.000018) (1.697906) (0.061773) G a u ssia n 0.55 0.08 0.16 0.56 1.30 0.51 1.31 0.014 0.032 (0.000718) (0.030831) (0.010688) (0.000873) (0.010023) (0.001201) (0.000018) (1.703034) (0.05989) Q u a rtic 1.37 0.21 0.38 1.34 3.21 0.27 3.28 0.031 0.083 (0.000672) (0.028370) (0.010978) (0.000896) (0.009737) (0.001122) (0.000017) (1.707840) (0.060569) T rian g le 1.30 0.20 0.40 1.39 3.00 1.19 3.05 0.033 0.079 (0.000667) (0.028185) (0.010814) (0.000883) (0.009868) (0.001105) (0.000016) (1.709881) (0.058834) U n ifo rm 0.84 0.13 0.21 0.78 1.99 0.74 2.03 0.019 0.053 (0.000725) (0.031556) (0.011178) (0.000888) (0.009188) (0.001273) (0.000027) (1.6551001) (0.06167) T ri w eight 1.57 0.24 0.44 1.54 3.70 1.45 3.77 0.038 0.094 (0.000677) (0.028592) (0.010893) (0.000889) (0.009814) (0.001131) (0.000017) (1.706436) (0.060112) C osin u s 1.16 0.18 0.27 0.93 2.74 1.07 2.81 0.025 0.067 (0.000670) (0.028325) (0.011057) (0.000903) (0.009632) (0.001123) (0.000017) (1.701697) (0.061466) A le k sa n d ra B a sz c z y ń sk a

(7)

III. C O N C L U S IO N S

T h e m ain conclusions resulting from the conducted experim ents are the following:

1. G au ssian and E panechnikov kernels used in kernel estim atio n need sm oothing p aram eters o f the sam e values. T hese kernels are characterized by great p ro perties o f sm oothing.

2. C hanging o f location, scale or shape p aram eter in som e types o f distribution causes changing values o f sm oothing p aram eter m inim izing m ean squared e rro r in estim ation o f density function.

REFERENCES

D o m a ń sk i C z., P ru s k a K ., W agner W. (1998), W nioskow anie sta ty sty c zn e p rz y nieklasycznych założeniach, W yd. U L , Ł ódź.

H ard le W . (1991), Sm oothing Techniques. W ith Im plem entation in S , Springer Verlag, N ew Y ork. Priestley M ., C h a o M . (1972), N o n p a ram e tric fu n ctio n fitting, J. R. S ta tist. Soc., Ser. В, 34,

385-392.

R o se n b latt M . (1956), R em a rk s on som e n o n p a ram etric estim atio n o f a den sity fu n ctio n , Ann. M a th . S ta tist., 27, 832-837.

S ilverm an B. W. (1996), D ensity E stim ation f o r S ta tistics and D ata A nalysis, C h a p m a n and H all, L o n d o n .

W and M ., Jo n es M . (1995), Kernel Sm oothing, C h a p m a n and H all, L o n d o n .

Aleksandra Baszczyńska

U W A G I O W Y B O R Z E F U N K C JI JĄ D R A W E S T Y M A C JI F U N K C J I G Ę S T O Ś C I Streszczenie

F u n k c ja gęstości jest je d n ą z p o d staw ow ych c h ara k te ry sty k opisujących zachow anie się zm iennej losowej. N ajczęściej w ykorzystyw aną m eto d ą n ieparam etrycznej estym acji je s t estym acja ją d ro w a . W procesie k o n stru k cji e sty m a to ra konieczne są dw ie decyzje, d o ty czące p a ra m e tró w m eto d y : w y b ó r funkcji ją d r a K (u) o ra z w ybór p a ram etru w y g ład zan ia h. W p racy nacisk p o ło żo n o n a w pływ w yboru funkcji ją d r a n a w ielkość p a ra m e tru w ygładzania. E ksperym ent M o n te C arlo dotyczy siedmiu funkcji ją d ra (gausowskiej, rów nom iernej, trójkątnej, epanechnikow a, d w u k w ad ra to w ej, tró jk w ad rato w ej i kosinusow ej) w estym acji jąd ro w ej funkcji gęstości.

Cytaty

Powiązane dokumenty

The individual results of the differences between kidney function (KF) calculated in the subjects according to the Cockcroft-Gault formula and sMDRD formula (short version): group A

Our investigation of the general case taking into account for the rst time the eects of longer-ranged density-density inter- action (repulsive and attractive) as well as

To regard statements as paradoxical tensions, we used the following criteria (Smith, 2014): (1) the tensions should be related to the innovation projects under study; (2) the

You are not required to find the coordinates of the

Below, in the next three subsections, we give very condensed recipes for calculating the optimal bandwidth using the PLUGIN and two LSCV approaches: the simplified one for

We remark that the fact that this approach can be used to build dense sum-free sets has been independently observed by Ruzsa (private communication).. Let α be an irrational number

The carried out analysis of this synanthropization process was based on the example of stations of 31 anthropophytes of Poaceae family located in railway grounds

The obtained results indicate that the products of particle size classification of chalcedonite in the classifier are characterized by a different chemical and