• Nie Znaleziono Wyników

Polymeric structure-forming agent for drilling muds


Academic year: 2021

Share "Polymeric structure-forming agent for drilling muds"


Pełen tekst


Polymeric structure-forming agent for drilling muds

Sławomir Wysocki1), Magdalena Gaczoł2), *), Rafał Wiśniowski1)

DOI: dx.doi.org/10.14314/polimery.2020.2.7

Abstract: Recently, studies contributing to development of complete mud system, which would enable

drilling the borehole of arbitrary length (including directional and horizontal boreholes) without ne-cessity of mud changing are conducted at the Faculty of Drilling, Oil and Gas AGH-UST Krakow. The article describes technological parameters of developed base mud (BFP) which constitutes ground of developed system. BFP mud will be applied as a structure-forming agent allowing suspension of other components in the drilling mud. BFP mud is characterized by low values of plastic viscosity in wide range of concentrations as well as enhanced strength parameters (Yield Point, Geles). Its parameters are easy to adjust to different geological conditions. The mud is resistant to mono- and divalent ions and to increased temperature. Due to those facts, abovementioned mud can find application in the drilling industry.

Keywords: drilling mud, water-based mud, polymers.

Polimerowy środek strukturotwórczy do sporządzania płuczki wiertniczej

Streszczenie: Opisano parametry technologiczne opracowanej na WWNiG AGH w Krakowie płuczki

bazowej (BFP), która stanowi podstawę kompletnego systemu płuczkowego umożliwiającego odwierce-nie otworu o dowolnej długości (w tym rówodwierce-nież otworów kierunkowych i horyzontalnych) bez koodwierce-niecz- koniecz-ności wymiany płuczki. Płuczka BFP jest przeznaczona do zastosowania jako środek strukturotwórczy, pozwalający na zawieszenie w nim pozostałych surowców płuczkowych. Płuczka BFP charakteryzuje się niewielkimi wartościami lepkości plastycznej, w dużym zakresie stężeń, i polepszonymi właściwo-ściami wytrzymałościowymi (Yield Point, Geles), a parametry te można łatwo regulować. Jest odporna na zasolenie jonami jedno- i dwuwartościowymi oraz na podwyższoną temperaturę. Może znaleźć za-stosowanie w przemyśle wiertniczym.

Słowa kluczowe: płuczka wiertnicza, płuczka wodnodyspersyjna, polimery.

Until recently, main structure-forming agent in dril-ling mud was bentonite. As elementary, bentonite muds are frequently used for horizontal directional drilling and shallow hydrogeological drilling (water well ling), mainly due to its low costs. While deep depth dril-ling, where raised temperature and probability of salts occurrence should be considered, bentonite mud is not necessarily most effective solution. Despite protective colloids application, appearance of salt ions (particularly multivalent ions) originated from drilled formations or inflowing brines, may effects in coagulation of bentonite suspension, decrease of rheological properties and

signi-ficant increase of filtration. Continuous advancements in polymers manufacturing as well as decrease of its cost make polymers a noteworthy alternative for bentonite as a structure-forming agent in drilling muds. Due to this, growing number of research centers are carrying out studies on the development of more effective poly-meric agents or whole mud systems based on polyme-ric base. Likewise, at the Drilling and Geoengineering Department of Drilling, Oil and Gas Faculty AGH-UST Krakow are conducted such studies. Essential assump-tion of the realized project is development of mud sys-tem that allows drilling whole depth of the borehole with only one mud without necessity of its change. First stage of the project consist of design of a base mud which per-mit its rheological properties adjustment to encountered geological conditions [1–6].

The article contains results of studies on new poly-meric structure-forming agent intended for water-based mud preparation. Its basic function is to guarantee pro-per rheological propro-perties and formation of mud struc-ture, in which other components of the mud would be suspended.

1) AGH University of Science and Technology in Krakow,

Fa-culty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Kra-ków, Poland.

2) PhD Student – AGH University of Science and Technology

in Krakow, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Kraków, Poland.

*) Author for correspondence;



BFP – polymeric structure-forming agent, supplier Mud Busters Projekt, Kraków; carbonate bridging agent Mikhart 40 μm, supplier BDC Poland; sodium chloride, calcium chloride, magnesium chloride, supplier Avantor Performance Materials Poland S.A.

Polymeric structure-forming agent BFP is a blend of na-tural and synthetic polymers. One of BFP agent’s basic com-ponent is a synthetic polymer – poly[(2-(acryloloksy)ethyl) trimethyl ammonium chloride-co-acrylamide-co-(3-acryla-midopropyl)trimethyl ammonium chloride] marked as po-ly[AETAC-co-AAm-co-APTAC] [Formula (I)]. Synthesis of the poly[AETAC-co-AAm-co-APTAC] polymer was based on radical polymerization in water solution.

Formula (I)

Terpolymer poly[AETAC-co-AAm-co-APTAC] is a ca-tionic polymer. Quaternary amine groups with relatively high steric hindrance and amide group originating from acrylamide meres constitute as the function groups in po-lymer structure. Ratio of [2-(acryloloksy)ethyl]trimethyl ammonium chloride : acrylamide : (3-acrylamidopropyl) trimethyl ammonium chloride meres is 1 : 3 : 1 molar.

Undertaken studies showed that water solutions of po-ly[AETAC-co-AAm-co-APTAC] polymer are characterized by high resistance to mono- and divalent ions. Thanks to the possibility of number of hydrogen bonds formation water solutions of poly[AETAC-co-AAm-co-APTAC] po-lymer exhibit increased strength parameters (Geles and Yield Point) of the mud, while plastic viscosity (PV) and apparent viscosity (AV) of the mud remain at low values.

Methods of testing

The surveys were performed according to current in-ternational standards: API Spec. 13B-1 [7].

Rheological properties were measured using visco-meter M3500 Grace Instruments controlled by compu-ter and fitted with thermal cup that allows carrying out the measurement in temperature range of 20–100 °C. Rheological models of the muds were prepared with computer application – Rheosolution – developed on the Faculty of Drilling, Oil and Gas AGH-UST Krakow [8].

Influence of BFP agent concentration on rheological properties of mud

The rheological properties of mud influenced by dif-ferent concentration of BFP polymeric structure-forming agent were studied.

Presented mud was applied in further studies. Moreover, Herschel-Bulkley rheological model was pre-pared for abovementioned mud.

Test of thermal resistance

Subsequently, influence of temperature on rheological properties of mud with addition of BFP polymeric structu-re-forming agent in 1.0 wt % concentration was investiga-ted. Tests were performed in temperature range of 20–90°C.

Test of resistance to salts – monovalent ions

Impact of monovalent salts on rheological properties of mud with addition of BFP polymeric structure-forming agent in 1.0 wt % concentration was tested. Sodium chlo-ride in concentrations of 5.0–30.0 wt % has been applied in the investigations.

Test of resistance to salts – divalent ions

It was also conducted test of divalent salts influence on rheological properties of mud with addition of BFP poly-meric structure-forming agent in 1.0 wt % concentration. Calcium chloride and magnesium chloride in concentra-tion of 0.5 wt % have been applied in the investigaconcentra-tions. Influence of bridging agent on technological parameters of mud

Rheological properties of studied mud were examined for influence of carbonate bridging agent. In the investi-gations as a bridging agent have been applied carbona-te bridging agent with average granulation of 40 μm in 7.0 wt % concentration.


Main functions of BFP polymeric agent are formation of structure and assurance of good rheological properties of base mud. Thus, in first stage of the project, influence of BFP polymeric agent concentration on rheological properties of the base mud was tested. Results are presented in Fig. 1.

Carbon/Węgiel Hydrogen/Wodór Oxygen/Tlen Nitrogen/Azot


0 10 20 30 40 50 60 70 0 1 2 AV , mPa · s BFP concentration, % rys. 1d) 0 5 10 15 20 25 30 0 1 2 PV , mPa · s BFP concentration, % 0 5 10 15 20 25 30 35 0 1 2 YP , Pa BFP concentration, % 0 1 2 3 4 5 6 0 1 2 Geles, Pa BFP concentration, %

Gel 10 s Gel 10 min

Fig. 1. Influence of BFP concentration on rheological properties of mud: a) apparent viscosity, b) plastic viscosity, c) yield point, d) Geles

a) b)

c) d)

Pearson correlation

coefficient R 0.9999 correlatedfully


coefficient F 52224.9 [–]

Sum of the squares U 0.11 [–]

Yield point τyHB 1.8864 [Pa]


coefficient kHB 0.7301 [Pa · s0.5056]

Shape factor nHB 0.5056 [–]

Fig. 2. Rheological model of mud with BFP addition of 1.0 wt % concentration 0 200 400 600 800 1000 Shear rate, s-1 2 4 6 8 10 12 14 16 18 20 22 24 26 Herschel-Bulkley model Shear stress, P a


Results indicate that water-based muds prepared on basis of BFP are characterized by relatively low values of plastic viscosity (PV) in wide range of BFP agent concen-trations. Other rheological properties of developed muds increase with BFP agent concentration growth. This is be-neficial because enables easy regulation of drilling mud parameters (as well as adjustment to geological

condi-tions) by changing only one agent without necessity to apply additional reagents. Studied BFP agent performs effectively even at low concentration of approximately 0.5–1.0 wt %. Mentioned facts cause BFP-based mud re-latively inexpensive even in comparison to other water--based muds.

Technological parameters of test mud with 1.0 wt % concentration of BFP agent are given in Table 1.

Prepared flow curves of base muds show that all of stu-died muds are best described by Herschel-Bulkley model (Fig. 2).

For the reason that base mud is intended for drilling whole depth of the borehole, it should be resistant to changing geological conditions. Undertaken research have shown that studied mud is resistant to elevated temperature (Fig. 3) as well as mono- and divalent ions contamination (Figs. 4, 5). Above presented results sho-wed that changes in rheological properties with raising temperature are relatively small and that to achieve

as-T a b l e 1. Formula and technological parameters of test mud

Mud formula Technological parameters

BFP 1.0 wt %

Density 1.02 g/cm3

Plastic viscosity 13.3 mPa · s

Apparent viscosity 25.5 mPa · s

Yield point 11.6 Pa Geles 2.3/2.1 Pa API filtration 150 cm3 0 5 10 15 20 25 30 0 20 40 60 80 100 AV , mP a · s Temperature, °C 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 PV , mP a · s Temperature, °C 0 2 4 6 8 10 12 14 0 20 40 60 80 100 YP , Pa Temperature, °C 0 1 2 0 20 40 60 80 100 Ge le s, Pa Temperature, °C

Gel 10 s Gel 10 min

Fig. 3. Thermal resistance of mud with BFP addition of 1.0 wt % concentration: a) apparent viscosity, b) plastic viscosity, c) yield point, d) Geles

a) b)


0 5 10 15 20 25 30 35 0 10 20 30 AV , mP a · s Salt concentration, % 0 5 10 15 20 25 0 10 20 30 PV , mP a · s Salt concentration, % 0 2 4 6 8 10 12 14 0 10 20 30 YP , Pa Salt concentration, % 0 1 2 3 0 10 20 30 Ge le s, Pa Salt concentration, %

Gel 10 s Gel 10 min

Fig. 4. Resistance of mud with BFP addition to contamination by monovalent ions: a) apparent viscosity, b) plastic viscosity, c) yield point, d) Geles

sumed parameters in raised temperature the only need is to increase BFP concentration during mud preparation. Additional tests conducted using Rollen-Oven oven sho-wed that BFP-based muds are resistant to 120–130 °C tem-perature.

Particularly positive outcome was noted while perfor-ming test of BFP mud contamination with salts. Results have shown that BFP mud is highly resistant to both: mono- and divalent ions contamination.

Moreover, increase of sodium chloride concentration in studied muds causes relatively small increase of plastic and apparent viscosity values and has almost no impact on strength parameters (YP, Geles). This is greatly desi-rable situation, as it enables saturation of mud and dril-ling salt intervals. Furthermore, preparation of the

deve-loped mud is possible in case of offshore drilling, where access to fresh water is difficult. Another advantage of the studied mud is possibility of preparation of mud for drill-in process with addition of salt instead of carbonate bridging agent.

Important benefit of studied BFP mud is its resistan-ce to divalent ions contamination. Tests outcome showed that addition of calcium and/or magnesium ions does not influence rheological properties of studied muds. It is related to resistance of muds to contamination by ions which can spread form drilled formations during brines inflow to the borehole, as well as possible cement slurry contamination.

What is more, undertaken studies showed that muds based on BFP agent are resistant to solid phase (Fig. 6).

a) b)


0 5 10 15 20 25 30 BFP Ca Mg Ca + Mg AV , mP a · s 0 2 4 6 8 10 12 14 16 BFP Ca Mg Ca + Mg PV , mP a · s 0 2 4 6 8 10 12 14 BFP Ca Mg Ca + Mg YP , Pa 0 1 2 3 BFP Ca Mg Ca + Mg Ge le s, Pa

Gel 10 s Gel 10 min

Fig. 5. Resistance of mud with BFP addition to contamination by calcium and magnesium ions: a) apparent viscosity, b) plastic vis­ cosity, c) yield point, d) Geles

Its technological parameters after addition of carbonate bridging agent to the formula of studied muds do not si-gnificantly changed. Additionally, filtrate value signifi-cantly decreased.


Based on the outcome of conducted studies, it can be stated that BFP agent as well as drilling muds prepared with its application are characterized by good rheologi-cal properties and simplicity of its adjustment to diffe-rent geological conditions. Furthermore, application of poly[AETAC-co-AAm-co-APTAC] terpolymer in formula

of polymeric structure-forming BFP agent allowed achie-ving enhanced strength parameters (Geles and YP) of the mud, while plastic viscosity (PV) of the mud remains at relatively low values. Drilling muds based on BFP agent are resistant to temperature, salts and solid phase. With addition of studied BFP agent can be prepared water-dis-persive muds basing on fresh water, sea water and satu-rated muds.

Thanks to abovementioned advantages BFP agent can find wide range of applications for drilling industry.

Paper prepared in the framework of Magdalena Gaczoł do-ctoral thesis.

a) b)


Fig. 6. Influence of solid phase on technological parameters of BFP mud: a) apparent viscosity, b) plastic viscosity, c) yield point, d) Geles, e) API filtration

0 5 10 15 20 25 30 35 0 7 AV , mP a · s

Bridging agent concentration, %

0 2 4 6 8 10 12 14 16 18 0 7 PV , mP a · s

Bridging agent concentration, %

0 2 4 6 8 10 12 14 0 7 YP , Pa

Bridging agent concentration, %

0 1 2 3 0 7 Ge le s, Pa

Bridging agent concentration, % Gel 10 s Gel 10 min

0 20 40 60 80 100 120 0 7 AP I fil tr at io n, cm 3

Bridging agent concentration, %

a) b)

c) d)



[1] Bielewicz D.: „Płyny wiertnicze”, Wydawnictwa AGH, Kraków 2009.

[2] Wysocki S., Wiśniowski R., Uliasz M. et al.: „Nowe wodnodyspersyjne płuczki wiertnicze do przewiercania skał ilastych”, Wydawnictwa AGH, Kraków 2017.

[3] Raczkowski J., Półchłopek T.: „Materiały i środki chemiczne do sporządzania płuczek wiertniczych”, Prace INiG, Kraków1998, p. 95.

[4] Chalah K., Benmounah A., Benyounes K.: “Effect of anionic polyelectrolytes on the flow of activated sodium bentonite drilling mud”, 2nd International

Congress on Materials & Structural Stability (CMSS-2017), Morocco 2017.

https://doi.org/10.1051/matecconf/201814901082 [5] Dong W., Pu X., Ren Y. et al.: Materials 2019, 12 (13),



[6] Yang L., Jiang G., Shi Y. et al.: Journal of Materials

Science 2017, 52, 6362.

https://doi.org/10.1007/s10853-017-0870-7 [7] API RP 13B-1, 3rd Edition, December 2003.

[8] Skrzypaszek K.: „Program rheo solution jako kom-puterowe narzędzie doboru modelu reologicz-nego cieczy wiertniczych”, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2004.

Received 19 VI 2019.

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

i Krajowy Klaster Kluczowy „Zielona Chemia” zapraszają do udziału w

14. Środkowo­Europejskiej Konferencji

Recykling i Odzysk

Innowacyjne Technologie Materiałów Polimerowych


Olsztyn/Kaliningrad (Rosja), 18–20 czerwca 2020 r.

Tematyka konferencji:

• zagadnienia prawno-organizacyjne, logistyczne recyklingu i odzysku materiałów, technologie utylizacji

• maszyny i urządzenia

• materiały oraz procesy ułatwiające odzysk i utylizację

• kształtowanie właściwości i nowe aplikacje • technologia przetwórstwa tworzyw i kompozytów


• biomasa, biomateriały, biokompozyty • oszczędność i odzysk energii

Program konferencji obejmuje: sesje konferencyjne w Olsztynie i w Kaliningradzie, zwiedzanie nowoczesnego

zakładu utylizacji odpadów oraz zwiedzanie z przewodnikiem zabytków Kaliningradu.

Przewodniczący konferencji: prof. dr hab. inż. Andrzej K. Błędzki

Przewodniczący komitetu organizacyjnego: dr hab. inż. Zenon Tartakowski, prof. nadzw. Terminy: zgłoszenie deklaracji udziału w konferencji – 31 stycznia 2020 r.

Opłata konferencyjna: 1600 zł + 23% VAT. Opłata obejmuje: wizę, ubezpieczenie, przejazdy autokarem na

terenie Olsztyn–Kaliningrad, zakwaterowanie, program fakultatywny, materiały konferencyjne.

Uwaga: wyjazd do Rosji na podstawie ważnego paszportu (3 miesiące do ukończeniu okresu ważności). Informacje: dr hab. inż. Zenon Tartakowski, prof. nadzw., tel.: 91 449 49 59, 609 322 410, recykling2020@wp.pl


Powiązane dokumenty

The main goal was to get a better understanding of the behaviour of highly concentrated suspensions of mud and mud-sand mixtures by, firstly, obtaining data, secondly, testing

The determination of yield stress is highly dependent on the selected rheological geometry and experimental method, as significantly different yield stress values can be obtained due

The elemental analysis using XRF showed that the Loss of Ignition (LOI), Al/Si ratio and moisture content of the local bentonite compared very well with standard

In case of the roof shape as e.g., of the airport terminal in Wroclaw (see Ill. 5a), the roof structure consists of a suitably profiled girders and purlins. The purlins are

The roof with a layer of thermal insulation should be protected against rain water, snow or condensation water that gathers on the inside surface of roofing and which can

Mendes & Toll UK Influence of initial water content on the water retention behaviour of a sandy clay soil WRC, filter paper, scanning curves Fredlund & Zhang Canada

The demand for trade credit and other forms of short-term financing is less flexible, and so may be less sensitive to changes in short-term interest rates and the monetary

Recently, our group attempted to develop the ternary blended (Portland cement, calcined clay and limestone) cementitious material for 3D concrete printing (3DCP).. Due to