• Nie Znaleziono Wyników

Using Control Charts to Detect Small Process Shifts

N/A
N/A
Protected

Academic year: 2021

Share "Using Control Charts to Detect Small Process Shifts"

Copied!
12
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

Jarosław M ichalak*

USING C O N T R O L CH ARTS TO DETECT SM A LL PR O C E SS SH IFTS

Abstract

T h e selection o f p ro p e r SP C ch arts is essential to effective statistical process co n tro l im p lem en tatio n and use. It is im p o rta n t to use best c h a rt fo r th e given situ atio n and need. U sing S h ew h art q u a lity co n tro l ch arts to d etectin g sm all process sh ill is n o t effective. This p a p er show s th a t th e cum ulative-sum co n tro l c h a rts (C U S U M ) an d E x p o n en tially W eighted M o v in g A v erag e co n tro l ch arts (E W M A ) are a p p ro p ria te to d e te c t these shifts.

Key words: quality, cum ulative-sum control charts, C U S U M , Exponentially W eighted M oving A verage co n tro l c h arts, E W M A .

L INTRODUCTION

T h e term „ q u a lity ” is defined as any factor th a t en hanced the value o f a p ro d u c t in the eyes o f the custom er. In ord er to p ro d u ce a p ro d u c t th at m eets custo m er requirem ents, it is o f utm ost im p o rtan ce to have a process op eratin g on targ et. Q uality control has becom e a key p a rt o f every m a n u fa ctu rin g environm ent.

T h e m o st im plem ented to achieve process control are often referred to as statistical process con tro l (SPC). By far the m ost im plem ented SPC control charts are th e S hew hart-type charts. H ow ever, S hew hart-type charts are incapable o f detecting sm all, increm ental process shifts. In S hew hart con tro l ch arts, all em phasis is placed on the last sam ple p o in t plotted. Small, but increasing shifts take a long time to show up on a chart. F o r example, if, due to m achine w ear, a process slowly “ slides” ou t o f co n tro l to produ ce results above targ et specifications, this plot w ould show a steadily increasing (or decreasing) cum ulative sum o f deviations from specification. W e can use runs tests to increase the sensitivity, bu t they create m ore false alarm s.

(2)

In the au to m ated m anu factu rin g environm ent the sm all shifts are m ore likely to occur. I f one is interested in a small, sustained shift in a proccss, o th er types o f co n tro l charts m ay be preferred, for exam ple th e cum ulative- sum (C U S U M ) co n tro l charts and an E xponentially W eighted M oving A verage (E W M A ).

In this article, we show both o f these con trol charts.

II. T H E C U S U M C O N T R O L C H A R T F O R M O N IT O R IN G T H E P R O C E S S M E A N

C U S U M ch a rt uses all historical up to the present sam ple point. T he charts display cum ulative sums o f the deviations o f m easurem ents, or subgroup m eans, from a targ e t value. If Цо is the target from the process m ean, Xj is the average o f the f k sam ple, then the cum ulative-sum co n tro l ch a rt is form ed by p lo ttin g the quantity:

Cl = Y ( X J- n 0).

(1)

]= i

So we are adding u p how far we were from the process m ean each time. If the m ean h as shifted up, we are likely to be above the m ean each time an d th a t will accum ulate to a signal. A n o th er m etho d is to keep track of each side o f the m ean separately.

L et Xj be the ith observ ation on the process. I f the process is in control then Xj ~ iV(//0, a). A ssum e a is know n o r can be estim ated. A ccum ulate d erivations from the target Ho above the targ et w ith one statistic is C + .

A ccum ulate d erivations from the target Цо below the targ et with an o th er statistic is C . C + and С are one-sided upper and lower cusum s, respectively.

T h e statistics are com puted as follows:

C t = m ax{0, x, — ( ß 0 + К ) + C ,t j}, (2)

C i = m ax{0, (p0 + K ) - x t + Cf_ j). (3)

S tartin g values are Co = Co = 0. К is th e reference value (or allow ance o r slack value). I f either statistic exceeds a decision interval H (often taken as a H = 5<j), the process is considered to be o u t o f control.

I f we are above the m ean for a few subgroups, th e plus side accum ulates. O nce we go below the m ean for a subgroup: the plus side goes to zero, the m inus side starts to accum ulate. N otice th a t we have now the m ean plus к stan d ard deviation. T h e value o f к fine tunes th e C U S U M chart.

(3)

К is often chosen halfw ay between the targ e t //0 and th e o u t-of-co ntrol value o f the m ean /i, th a t we are interesting in detecting quickly. W hen shift is expressed in stan d ard deviation units as ц у = fx0 + öa, then К is

K J J

il z h

A.

<4,

2 2

I f the adju stm en t has to be m ade to the process, m ay be helpful to estim ate the process m ean follow ing the shift. T h e estim ate can be com pu ted from:

C t > H

А И _ • (5)

CT > H

C U S U M ‘V -m asks’ are used to detect shifts in eith er d irectio n from the targ e t m ean and give a sim ple way o f applying decision rules to segm ents o f d a ta .

T h e dim ensions o f the V -m ask can by specified using tw o d istinct sets o f tw o param eters:

- 0, defined as h alf o f the angle form ed by the V -m ask arm s, and d, the distance betw een the origin and the vertex, as show n in F ig u re 1. This p aram eteriz atio n is used by M on tg o m ery (1991).

(4)

- h, the vertical distance between the origin and th e up per (o r lower) V-m ask arm , and k, the rise (drop) in the low er (upp er) arm corresponding to an interval o f one su b g ro u p unit on the h orizon tal axis. Y ou can specify the defin ition o f interval with the IN T E R V A L = o p tio n . T his p aram ete­ rization is used by Lucas (1976).

In this article, wc use the first p aram eterization .

T h e two p aram cterizations arc related by the equations:

0 = arctan(/c/a), (6)

d = h/к . (7)

w here the aspect ra tio a is the nu m b er o f units on the vertical axis corresp o n d in g to one unit on the h orizontal axis.

1 he V -m ask is specified in term s o f erro r probabilities: a (type 1 error) and ß (type II erro r). If we provide a. and ß, h and к can be com puted using the form ulas:

h= \s\-4om-ß)/m),

(

8

)

k = \ S \ / 2 . (9)

I f we provide a bu t n o t ß, h and к can be co m pu ted using the following form ulas:

Л = - |<5|-1log(a/2),

(

10

)

k = |i |/ 2 . (11)

In th a t case the e rro r probability a is divided by tw o because two-sided deviations from the targ et m ean are detected.

T h e origin o f the V-m ask is located at the m o st recently plotted point. A s a d d itio n a l d a ta are collected an d th e cu m u lativ e sum sequence is u p d ated , the origin is relocated at the newest point. A shift o r o u t-o f­ co n tro l signaled a t tim e t if one o r m ore o f the p o in t plotted up to tim e t cross an arm o f the V-m ask. A n upw ard shift is signaled by point(s) crossing the low er arm , a dow nw ard shift is signaled by point(s) crossing the upper arm . T h e tim e a t which the shift occurred corresp o n d s to the tim e at which a distinct change is observed in the slope o f the plotted points.

(5)

III. T H E E X P O N E N T IA L L Y W E IG H T E D M O V IN G A V E R A G E C O N T R O L C H A R T M O N IT O R IN G T H E P R O C E S S M E A N

T he E xp onentially W eighted M oving A verage (E W M A ) is defined as:

z, = Ах, + (1 - X ) z t- U (12)

where

0 <

A

< 1 is a con stan t, z0 = (som etim es z0 = x"). T he c o n tro l limits for the E W M A co ntrol c h a rt are:

UCL = fi0 + La J —^ j [ l - (1 - A)2'], (13)

CL = n o, (14)

LCL = ц0 - L b J q Z T) П - d - ^)2i]- (15>

w here L is the w idth o f the co n tro l limits.

As i gets larger, the term [1 — (1 —

A)2i]

appro ach es infinity. So the co ntrol limits settle dow n to

U C L = Ho + L a Jq - } . ) ’ (16)

CL = /z0, (17)

L C L - H c - L e J ^ y (18)

E W M A is som etim es called a geometric moving average, since th e weights o f p a st observ atio n s are declining as in a geom etric series. T h e choice of

A

determ ines the decline o f the weights. Small values provide m o re sm oothing and b etter ability to see sm all changes. I f

A

—> 0, th en th e m o st recent o b servation receives a sm all weight, w hereas the w eight attac h ed to previous observ atio n s only slightly declines with the age o f the observations. In general, 0.05 < A ^ 0.25 w orks well in practice. L = 3 w orks reasonably well, especially w ith the larger value o f

A.

L between 2.6 an d 2.8 is useful when

(6)

IV. AN E X A M P L E

C o n sider the follow ing sim ulated m an u fa ctu rin g proccss involving a drill press, w here we m ay reasonably estim ate the process to be centered arou nd 4 m m . C urren tly , this proccss is being m o nitored by o b tain in g rational sub g ro u p s o f size 4 at regular intervals, and th a t these selected p arts are m easured using an acceptable m easuring system.

T able 1. S im ulated d a ta

Sam ple V alue 1 Value2 Value3 Value4 Sam ple V aluel Value2 Value3 Value4 1 4.00440 3.99801 3.99614 4.00066 37 4.00007 4.00076 4.00134 4.00069 2 3.99894 4.00075 3.99824 4.00109 38 3.99920 4.00029 4.00371 4.00275 3 4.00014 4.00299 3.99798 3.99931 39 3.99953 4.00028 4.00018 3.99894 4 3.99657 4.00176 4.00005 4.00461 40 3.99828 3.99908 3.99661 4.00002 5 3.99852 3.99847 4.00168 3.99988 41 4.00042 3.99568 3.99687 4.00171 6 4.00213 4.00043 4.00134 4.00101 42 3.99976 4.00109 4.00091 3.99941 7 3.99720 4.00532 3.99746 3.99595 43 4.00029 3.99986 3.99526 4.00086 8 3.99721 3.99954 4.00084 3.99839 44 3.99740 4.00022 3.99849 4.00037 9 3.99947 3.99755 4.00027 4.00106 45 4.00079 4.00051 3.99953 4.00531 10 3.99916 3.99571 4.00055 3.99831 46 4.00157 3.99647 4.00118 3.99800 11 4.00045 3.99841 4.00040 3.99719 47 4.00019 4.00107 4.00221 4.00230 12 4.00150 4.00032 4.00066 4.00155 48 3.99800 4.00167 4.00010 3.99773 13 3.99677 4.00163 3.99666 3.99852 49 3.99986 3.99674 4.00033 4.00171 14 3.99961 4.00006 4.00076 4.00377 50 4.00034 3.99869 4.00231 3.99934 15 3.99886 4.00015 3.99980 3.99895 51 4.00216 4.00214 3.99786 4.00440 16 3.99522 3.99782 4.00149 3.99911 52 4.00146 3.99904 4.00030 3.99701 17 3.99961 3.99908 4.00005 3.99775 53 4.00047 4.00137 4.00339 3.99660 18 4.00203 4.00116 4.00418 4.00195 54 4.00284 3.99999 4.00474 3.99611 19 4.00266 3.99901 4.00429 3.99920 55 4.00198 3.99978 4.00038 3.99922 20 4.00015 3.99713 4.00015 4.00223 56 4.00252 4.00253 3.99780 4.00290 21 3.99982 3.99926 3.99884 4.00138 57 4.00424 3.99793 4.00121 4.00122 22 4.00157 4.00062 4.00534 4.00146 58 3.99836 4.00105 4.00101 3.99857 23 4.00106 3.99866 4.00163 3.99854 59 4.00095 3.99863 4.00103 3.99724 24 4.00114 3.99961 3.99846 4.00136 60 3.99795 3.99775 3.99911 3.99923 25 3.99861 3.99841 4.00060 3.99901 61 4.00138 4.00325 3.99998 4.00351 26 3.99582 4.00007 4.00174 4.00039 62 3.99671 4.00081 3.99812 4.00230 27 4.00262 4.00234 4.00189 4.00002 63 4.00030 4.00272 3.99917 3.99783 28 4.00006 4.00126 4.00471 4.00147 64 3.99704 3.99863 3.99956 3.99517 29 3.99892 4.00224 3.99536 3.99835 65 4.00126 4.00284 3.99719 3.99556 30 3.99832 4.00247 3.99971 3.99737 66 3.99827 4.00116 4.00102 3.99879 31 3.99678 3.99876 4.00250 4.00128 67 4.00189 3.99994 3.99770 3.99859 32 4.00112 3.99869 4.00125 4.00310 68 4.00058 4.00151 3.99917 3.99881 33 3.99825 4.00166 4.00335 3.99694 69 4.00293 4.00038 3.99866 3.99813 34 4.00310 4.00035 4.00250 4.00028 70 3.99931 4.00464 3.99726 4.00149 35 3.99865 4.00056 4.00089 4.00138 71 4.00228 4.00170 4.00132 4.00094 36 4.00412 4.00056 4.00120 3.99871 72 3.99964 4.00007 4.00201 4.00162

(7)

T able 1. (co n td .)

Sam ple V aluel Value2 Value3 Value4 Sam ple V aluel V alue2 Value3 Value4 73 4.00141 4.00047 4.00237 3.99665 87 3.99910 4.00250 3.99787 3.99876 74 3.99961 3.99919 3.99945 4.00276 88 3.99833 3.99824 4.00461 3.99630 75 3.99898 3.99851 3.99835 3.99754 89 3.99707 4.00073 4.00068 3.99857 76 3.99776 3.99870 3.99620 3.99931 90 3.99765 4.00019 3.99820 3.99750 77 4.00026 4.00032 4.00039 4.00024 91 4.00030 3.99951 3.99732 3.99858 78 3.99924 3.99978 4.00098 3.99914 92 4.00023 3.99970 3.99917 3.99556 79 3.99885 3.99547 3.99773 3.99881 93 4.00000 3.99858 4.00072 3.99937 80 4.00074 3.99931 3.99654 4.00031 94 3.99300 4.00000 3.99700 4.00100 81 3.99769 4.00055 3.99751 3.99700 95 3.99300 4.00000 3.99900 4.00200 82 3.99920 4.00047 4.00021 3.99805 96 3.98900 4.00000 3.99000 4.00138 83 3.99949 4.00257 3.99840 4.00176 97 3.99680 4.00000 4.00100 3.99800 84 4.00049 4.00250 4.00121 3.99733 98 4.00026 3.99900 4.00010 4.00030 85 4.00252 3.99733 4.00058 4.00018 99 3.99871 4.00000 3.99864 3.99914 86 3.99996 4.00057 3.99770 4.00294 100 3.99903 3.99969 3.99721 3.99659

F irstly, we consider C U S U M contro l charts.

F o r a = ß — 0.003 and detectedshift = ц 0 + \ x ст = 4 + 0.002071 (3.997929 ^ shift < 4.002071) should be detected), the C U S U M ch a rt is followed (Fig. 2).

K. CUSUM : A v e rag e 3,9998 (4,0000) Sigma proc.,00207 (.00207) n:4

Samples

Figure 2. T h e C U S U M c h a rt for /iQ± l x o = 0.002071

T h e C U S U M co n tro l ch a rt indicates the process is o u t o f con tro l in 96 sam ple.

F o r detectedshift = ц 0 ± 0.9 x a = 4 ± 0.001864 we have the follow ing results (Fig. 3).

(8)

К. CUSUM: A v e ra g e 3,9998 (4,0000) Sigm a proc.,00186 (.00186) n:4

S am p les

Figure 3. T h e C U S U M c h art fo r ц 0 ± 0.9 x a = 4 ± 0 .0 0 1 8 6 4

In this case, process is o u t o f con tro l in 96 sam ple, too.

But fo r detectedshift = ц 0 ± 0.4 x о = 4 ± 0.000828 the C U S U M ch art shows th a t process is o u t o f co n tro l earlier, in 94 sam ple, (sec Fig. 4).

K. CUSUM: A v e rag e 3,9998 (4,0000) Sigm a proc.,00082 (,00082) n:4

(9)

In T ab le 2 we d e m o n strate the perform ance o f fo u r C U S U M schemes, with different choices o f a, ß, detectedshift.

T able 2. E xam ple o f C U S U M co n tro l schem es

N o . o f case 1 2 3 4

a

ß detec ted sh ift

Sam ple o u t-o f co n tro l

0.003 0.003 4 ± 0 .0 0 0 6 2 1 3 95 0.003 0.003 4 ± 0.0004142 97 0.003 0.003 4 ± 0.0002071 process is in -co n tro l

0.05 0.05 4 ± 0.0002071

80

As you can notice, fo r different p aram eters we becom e so different results. T he choice o f these p aram eters is very im p o rta n t to have reliable results.

A cco rd ing to results, then we get, we m ay believe th a t process is out o f co n tro l in 94, 95, 96 an d 97 sam ple. W e should sto p this process, find the reason o f the shift and delete it. T h en we could sta rt new analysis o f this process.

W e m ay consider th a t there was false alarm in 80 sam ple; there was only ran d o m shift o f the process (the probabilities: a (type I erro r) and ß (type II erro r) are high).

L e t’s m ake an E W M A analysis for the d a ta from T ab le 1.

F o r X = 0.2 and L = 2.86 we have the follow ing E W M A c h a rt (Fig. 5).

Histogram of Means EWMA: A v erag e 3,9998 (4,0000) Sigma proc.,00207 (,00207) n:4

cm a: § П ĆŃT if & ш 0 20 40 Number of Observations S am p le s

(10)

A ccording to this ch a rt, the process is o u t-o f-co n tro l in 94 sam ple. F o r Я = 0.2 and L = 2.4 the situation has changed, as follows (Fig. 6).

Histogram of M eans EWMA: A v erag e 3,9998 (4,0000) Sigm a proc.,0 0207 (,00207) n:4 4,004 4,003 4,002 4,001 <4 4,000 II < 3,999 g 3,998 3,997 3,996 3,995 3 994 0 20 40 1 20 40 60 80 100

N um ber of O b servations S am p les

Figure 6. T h e E W M A c h a rt Гог A = 0.2 and L = 2.4

T h is c h a rt shows th a t process is out-of-co ntro l in 80 sam ple.

In T ab le 3 wc d em o n strate the perform ance o f fo ur E W M A schemes, with different choices o f A and L for /x0 = 4.

T abic 3. E xam ple o f E W M A co n tro l schemes

N o . o f case 1 2 3 4

A 0.2 0.25 0.15 0.02

L 2.5 2.8 3 3

Sam ple o u t-o f co n tro l 80; 94 94 94 96

As you can see, the a p p ro p riate selection o f Я and L is critical fo r effective

ap plication o f this chartin g technique. T hese co n tro l ch arts show , th a t we m ay believe th a t process is out-of-control in sample 94. 1 here was unim portant (for whole process) shift in 80 sam ple.

(11)

V. C O N C L U S IO N S

Finally, we have the sim ilar results using C U S U M and E W M A charts analysis. C U S U M charts consider all observed sam ples with th e sam e wage. Som etim es (w hen the q u an tity o f sam ples is to o m uch ) C U S U M c h a rt m ay detect shift with delay (the shift was in 94 sam ple - C U S U M c h a rt detected this ju st in 96, 97 sam ple).

C U S U M are less effective for large shifts th an E W M A . B ut E W M A is m ore com plicated and less to lera n t for bad param eters.

T h e analysis o f A R L for o u r C U S U M and E W M A c h a rts seems to be essential to co m p are these m ethods. A verage R u n L ength (A R L ) is the average tim e until a shift o f a specified size is detected (shift specified in term s o f stan d ard deviation o f the charted ch aracteristic to elim inate scale effects). A R L (0) is average time until false alarm occurs (no shift is occurred). A R L (1) is average tim e until a tru e shift is detected. T h e good chart analysis has a sm all ARL(O) and A R L (l).

A R L for E W M A is very sensitive to the selection o f w eighting factors. T herefore, it is very im p o rta n t to choose correct value o f a to get desired A R L . U n fo rtu n ately , the calculations o f A R L are very com plicated and c a n 't be d o n e w ithout special program .

E ach ch a rtin g technique has certain ad vantages and d isadvantages. T o detect sm all shifts in the process, b o th o f ch arts (C U S U M an d E W M A ) are effective. U sing these charts we should rem em ber th a t the choice of p aram eters is very im p o rta n t to m ake correct decision.

Using sim ultaneously S hew hart’s charts (good fo r large shifts) and C U S U M (or E W M A ) charts seems to be reasonable for im pro ving process m onitoring .

R E F E R E N C E S

B o w er, K .M ., U s in g E x p o n e n tia lly W eig h ted M o v in g A v e rag e (E W M A ) c h a rts, h ttp ://w w w .m in itab .co m /co m p an y /v irtu a lp ressro o m /A rticle s/U sin g E W M A c h arts.p d i H ryniew icz О . (1996), N ow oczesne m etody statystycznego sterow ania ja ko ścią , In sty tu t B adań

System ow ych P A N , W arszaw a.

Iw asiew icz A ., Paszek Z. (2000), S ta ty s ty k a z elem entam i sta tysty c zn yc h m eto d sterowania

jakością, W yd. A k ad em ii E konom icznej w K rak o w ie, K ra k ó w .

L ucas J. (1976), T h e design and use V -m ask co n tro l schem es, Journal o f Q uality Technology, 8, 1-12

M ontgom ery D . (1991), Introduction to Statistical Quality Control, Jo h n Wiley & Sons, N ew Y ork. T ho m p so n J.R ., K o ro n ack i J. (1994), Statystyczne sterowanie procesem. M etoda Deminga etapowej

optym alizacji ja ko ści, A k ad em ick a O ficyna W ydaw nicza P L J, W arszaw a.

StatSoft, Inc. (1997), Sta tistica fo r W indows, vol. 4: In d u strial S tatistics C o m p u te r p ro g ram m an u al, T u lsa.

(12)

J a r o s ła w M ic h a la k

ZASTOSOWANIE KART KONTROLNYCH DO WYKRYWANIA NIEWIELKICH ZAKŁÓCEŃ KONTROLOWANEGO PROCESU

Streszczenie

N iezw ykle w ażny d la efektyw ności zasto so w ań statystycznego ste ro w an ia procesem jest d o b ó r odpo w ied n ich k a r t k o n tro ln y ch . Użycie k a rt k o n tro ln y c h S h e w h a rta w celu w ykrycia niewielkich zakłóceń procesu jest nieefektywne. W niniejszym artykule przedstaw iono zastosow anie k a rty sum sk u m u lo w an y ch (C U S U M ) o raz k a rty w ykładniczo w ażonych ru ch o m y ch średnich (E W M A ) d o w czesnego w ykryw ania niew ielkich zakłóceń procesu p ro d u k cy jn eg o .

Cytaty

Powiązane dokumenty

i f' the cost of the deviations from the desirable state-trajector.. for the deviations of the state trajectory ~rom the given end-point. The sensitivity analysis

The optimal control belonging to each linear manifold can be synthesized from the basis-functions spanning that manifold, a� a linear function of the initial

In this study, an attribute np control chart for process monitoring using exponenti- ated half logistic distribution (EHLD) is provided as based on RGS and MDS.. Both of the

skie i że jakoby mają w sobie w czas trwogi i lęku siłę życiową, która jest z nimi związana, to jest cząstkę boskości, oraz że będą ze swoich

In this case data derived from the Economic Commission for Europe (ECE) 5 had been used. Individual data had been compared with the average results for Europe. Data downloaded

Proces uregulowany (proces stabilny) - proces, w którym każda z miar jakości (np. wartość średnia i rozrzut lub frakcja jednostek niezgodnych lub średnia liczba

This experiment showed that the CdTe/ZnSe core/shell QDs can be used as a promising nanomaterial to detect DNAs (directly from cell extracts), damages to the DNA, and

In simulations using GPS-X, the parameters that greatly influence was included the maximum sedimentation rate, the dependent nutrient microbial yield (anoxic), the