• Nie Znaleziono Wyników

Corrosion in active state

N/A
N/A
Protected

Academic year: 2021

Share "Corrosion in active state"

Copied!
13
0
0

Pełen tekst

(1)

Corrosion in active state

Jacek Banaś

Jacek Banaś

J. Banaś, Corrosion Resistant Alloys. Fundamental Aspects of Material Selection, in Metallurgy on the Turn of the 20th Century, ed. Committee of Metallurgy of the Polish Academy of Science, Kraków 2002,pp. 89-112

(2)

Mechanism of corrosion in active state

Mechanism of electrochemical corrosion of divalent metal in electrolyte

containing solvating anion X

-x

(3)

Mechanism of corrosion in active state

SEM micrograph of (0001)Zn surface after anodic etching in

The influence of metal structure and solvent properties on the mechanism of anodic dissolution of metal.

SEM micrograph of (0001)Zn surface after anodic etching in CH3CN – 0,1 LiClO4(-0,142V).

SEM micrograph of (111)Al surface after anodic etching in DMF – 0,1 LiCl (1,5 V).

(4)

Dissolution of alloys

For the binary AB alloy the equilibrium potentials EA and EB of the components can be expressed as follow:

A A A A a a ln aF RT E E = 0 + a + B B B B a a ln bF RT E E = 0 + a + 0 B 0 E and A

E are the standard potentials of the components

Equilibrium between the alloy phase and the solution is reached when the potential of the components are equivalent: EA = EB

the components are equivalent: EA = EB

b / B a / A a / A b / B B A

a

a

a

a

)

E

E

(

RT

F

exp

a b 1 1 1 1 0 0

=

+ +

Composition of the alloy determines specific composition of the electrolyte during alloy dissolution. The composition of the solution depends on the difference of standard

potentials of the components

(5)

The increase of the anodic potential of the electrode surfaces with respect to the equilibrium potential stimulates selective dissolution of more active component (component with the lower standard potential). The selective corrosion of alloys containing the components with significant difference of standard potentials can be observed in the praxis. Copper-zinc brasses, copper aluminum bronzes undergo “dealloying” in many aggressive environments.

Dissolution of alloys

The dissolution rate “ ji” of the component “i” of multi-component alloy can be expressed by the equation:

expressed by the equation:

s i i i

i

n

F

k

y

j

=

where kiis the rate constant and yis is the surface fraction

of the component “i”.

The total dissolution current is the sum of the partial currents of dissolving components:

=

i i

j

j

5 0 0 , i s i i i

t

D

)

y

y

(

F

n

j

=

Π

The dissolution current limited by the diffusion in the solid state can be expressed by the equation:

(6)

Dissolution of alloys 5 10 15 20 25 30 35 40 45 50 55 60 65 0,80 V 0,75 V 0,70 V 0,6 V C u rr e n t d e n s it y , µµµµ A / c m 2 5 0 0 , i s i i i

t

D

)

y

y

(

F

n

j

=

Π

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 0 5 0,6 V 1 / t0,5, min0,5 t / 1

Partial dissolution rate of Ag as a function of for the Ag-15%Au alloy in 0,1M KNO3.

The diffusion of dissolving components in the solid state can be perturbed by the grain boundary diffusion. Schwitzgebel and all [17] proposed the equation considering the contribution of the grain boundary diffusion:

(

)

              ⋅ ⋅ +       ⋅ − = 4 1 5 0 5 0 0 / , gb gb , i s i i i t D D d const t D ) y y ( F n j

δ

Π

(7)

Dissolution of alloys. The effect of metaloids (C,S).

Schematic presentation of the effect of carbon and sulphur on the corrosion mechanism of iron

The Fe3C particles act as the local cathode and stimulate micro-galvanic corrosion of the alloy. Adsorbed H2S behaves as catalyst of hydrogen

evolution and stimulates cathodic partial

reaction of corrosion process.

H. Bala: : Metalurgia i Odlewnictwo 16, 1, 97 (1990)

S H H FeHS e 2 FeHS FeHS H FeHS S H Fe : process Anodic 2 ad ad 2 + + + → + ⇔ + + + + − + − H 2H S H H e S H S H H S H : proccess Cathodic 2 ad 2 ad 3 3 2 ↑ ⇔ + → + ⇔ + + + +

(8)

Corrosion inhibition can be observed in the presence of nitrogen and phosphorus in the metal matrix:

PH

H

e

PH

PH

H

PH

PH

Fe

)

Fe(PH

3H

P

Fe

3 ad 4 4 3 3 ad 3 ad

+

+

+

+

+

+ + +

Dissolution of alloys. The effect of metaloids (N,P).

At high concentration adsorbed PH3 acts as inhibitor of both cathodic and anodic electrode processes. Similar effect can be observed in the presence of nitrogen in the metal matrix. Adsorbed NH3 inhibits cathodic reaction because local alkalization of the metal surface and anodic reaction because blockes the active places (kinks, steps).

The effect of metalloid component on the corrosion of alloys is not only related to the direct inhibition or catalytic process on the metal electrolyte interface. The metalloids dissolved in the metal can change crystallographic structure of the matrix (carbon effect on martensitic transformation) and can stimulate the micro-segregation of the alloy components (C,P). These phenomena influence local composition of the alloy and defect concentration on the alloy surface and than metal corrosion.

(9)

Dissolution of heterogeneous alloys

The presence of the phases with the more noble potential than the matrix stimulate their dissolution because of the action of galvanic elements matrix-inclusion.

Scheme of galvanic corrosion of heterogenous alloy under stationary conditions (a) and polarization diagram of galvanic element (b) for two surface area of cathodic inclusion S1 and S2.

(10)

Dissolution of heterogeneous alloys

Scheme of corrosion of heterogeneous alloy under potentiostatic conditions at the presence of strong oxidant “O” (a) and polarization diagram (b). The presence of strong oxidant “O” leads to the

(11)

Corrosion resistant alloys in the active state

Schematic presentation of the factors improving corrosion resistance of active alloys

(12)

Component Optimal content % C 0.2 do 0.3 Solid state components Si Mn Ni Co Al 0.4 do 0.7 ≤ 1.2 0.5 do 1.0 ≤ 0.5 ≤ 0.25 Carbides formers Cr Mo Ti 1.0 do 1.5 0.4 do 0.5 0.05

Corrosion resistant alloys in the active state

Ti Nb V 0.05 0.02 do 0.06 0.1 Modifiers REM (Ce) AlN, VN, NbN 0.1 do 0.3 0.2 Impurities S P Sb Sn Cu ≤ 0.01 ≤ 0.015 ≤ 0.01 ≤ 0.01 ≤ 0.05

Optimal composition of carbon steel resistant to hydrogen embrittlement

(13)

2e Fe Fe(OH)2 Fe O3 4 1/2O +H O2 2 2OH -Fe O3 4 Fe + H O = Fe(OH) + 2H +2e 2 2 + 1/2O +H O + 2e = 2OH 2 2

-Effect of microstructure of carbon steel on the morphology of corrosion product in neutral aqueous environments

Cytaty

Powiązane dokumenty

przedstawiona analiza szeregów czasowych liczby urodzeń w 31 krajach pozwo- liła stwierdzić powszechne występowanie wahań cyklicznych liczby urodzeń. doko- nano

jest ono całkiem nowe, ale jak zawsze pewne zjawiska, nawet jeśli pojawiły się około 20 lat temu, nie jest to jednoznaczne z upowszechnieniem ich i w nauczaniu, i w per-

Определяя действительность абсолюта через развитие сущности («Истинное есть целое, – читаем в Феноменологии духа. – Но целое есть только сущность,

Jednym z najbardziej innowacyjnych i istotnych działań wprowadzonych przez legislatora Unii Europejskiej za pomocą rozporządzenia (UE) nr 178/2002 stanowiło

Ekspansywną politykę swego ojca kontynuował Salmanassar III (858-824 r. przed Chr.), który starł na proch potęgę państw Urartu, po czym sięgnął z sukcesem po

Chociaż literacka spuścizna autora jest imponująca, to jednak na szczególną uwagę zasługuje jedna pozycja książkowa, która jest owocem żmudnej pracy i sta- nowi niezwykle

Społeczna Odpowiedzialno za Wyniki (Corporate Social Performance) 3. Jest ona form korporacyjnej samoregulacji zintegrowanej z modelem biznesowym przedsi biorstwa. Jako

Badania objęły trzy stanowiska: pierwsze,znane wcześniej z badań niemieckich i polskich okresu powojennego, położone było w raiędzyrzeczu Warty i Powyi drugie, zlokalizowane