• Nie Znaleziono Wyników

Application of the cell: glass electrode (Na) |NaBr |AgBr, Ag for thermodynamic studies of NaBr solutions in water-isopropyl alcohol mixtures

N/A
N/A
Protected

Academic year: 2021

Share "Application of the cell: glass electrode (Na) |NaBr |AgBr, Ag for thermodynamic studies of NaBr solutions in water-isopropyl alcohol mixtures"

Copied!
11
0
0

Pełen tekst

(1)

A C T A U N I V E R S I Î A T I S L O D Z I E N S I S FOLIA CHIMICA 9, 1991

Adam B a ld *, Je rz y Gregorowicz*

APPLICATION OF THE CELL: GLASS ELECTRODE (N a)|N aB r|A g Br, Ag FOR THERMODYNAMIC STUDIES OF NaBr SOLUTIONS

IN WATER-ISOPROPYL ALCOHOL MIXTURES

Values of ele ctro m o tive fo rce (EMF) of the c e l l : glass e le ctro d e (N a)|N aB r|A g Br, Ag in water-isopropanol mixtures co ntain in g 0, 10, 30 and 50 wt \ alco h o l have been measured at 293.15, 303.15 and 313.15 K. Values of the standard EMF and thermodynamic fu n ctio ns of tra n s fe r of NaBr (AG?, ASP, AH°) have been determined. The mean a c t i v i t y c o e f f ic ie n t s were also c a lc u la te d .

This work is a co n tin u atio n of our e a r l i e r researches [l- 6 ] concerning the a p p lic a tio n s of the g lass e le c tro d e s r e v e r s ib le towards c a tio n s fo r thermodynamic in v e s tig a tio n s of e le c t r o ly t e s o lu tio n s in mixed s o lv e n ts . The review of the opinions of other authors was made in paper [ l ] . In our e a r l i e r papers [2-6] values of the fre e e n th a lp ie s , en th alp ie s and en tro p ies of tra n s fe r of e le c t r o ly t e s were c a lc u la te d from EMF data of the c e l l s with the io n s e le c tiv e e le c tro d e s . They were compared w ith the r e s u lts obtained from EMF measurements of the c e l l s with the amalgam e le c tro d e , vapour pressure measurements and c a lo r im e tr ic measure­ ments. In our opinion such procedure is the best way of v e r i f i c a ­ tio n of the obtained r e s u lt s . I t was also shown from our e a r l i e r research that the comparison of the values of the e n th a lp ie s of tra n s fe r of e le c t r o ly t e s c a lc u la te d from the temperature c o e f f i ­ c ie n ts o f EMF and c a lo r im e tric in v e s tig a tio n s Lead, us to the con­ c lu s io n that the glass io n - s e le c tiv e e le c tro d e s are c h a ra c te riz e d

«

(2)

by e x c e lle n t accuracy, r e p r o d u c ib ility and the s im p lic it y of the method of taking measurements. The aim of our présent paper is to compare the r e s u lts reported here w ith those obtained in stu d ies w ith the use the amalgam e le ctro d e [7 ],

EXPERIMENTAL

Reagents

NaBr P.O.Ch. - G liw ic e , p .a . was c r i s t a l l i z e d tw ice from r e d i­ s t i l l e d water and d ried under reduced pressure at about 335 K. Isop ro p yl alcohol P.O.Ch. - G liw ic e , p .a . was dried over m olecular sie ve s 4 A and d i s t i l l e d tw ice . Water was d i s t i l l e d tw ice from a b a sic KMn04 s o lu tio n .

Apparatus and procedure

Sodium g lass ele ctro d e s r e v e r s ib le towards sodium ions type ESL-31G-05 (made USSR) and s i l v e r - s i l v e r c h lo rid e ele ctro d e s produ­ ced by the th e r m a l- e le c tro ly tic method [8] were used. Only those s i l v e r - s i l v e r c h lo rid e e le ctro d es were used whose p o te n tia ls varied not more than by 0.05 mV.

The measuring c e l l was made of Pyrex g lass closed tig h t w ith a te flo n cover with a te flo n s t i r r e r . The c e l l was surrounded by a s te e l s h ie ld and placed in a therm ostat of our design. P a r a f f in o i l was used as a therm ostating liq u id . S t a b i l i t y of temperature was b e tte r than 0.01 K. E lectro m o tive fo rce s was measured by means of a p re c is e pH-meter type 0P-20B/1 (made by R a d e lk is ). connected w ith a p r in t e r . To provide a high accuracy the s o lu tio n s were prepared by the weight method by adding subsquent amount of stock s o lu tio n . D e ta ile d d e sc rip tio n of the measuring method is contained in paper

(3)

RESULTS AND DISCUSSION

Table 1 co ntain s values of EMF of the c e l l : g la ss e le c tro d e (N a)|N aBr|A g Br, Ag at 293.15, 303.15 and 313.15 K fo r vario u s e le ­ c t r o ly t e co ncen tratio n s in water-isopropanol m ixtures co n ta in in g : 0, 10, 30 and 50 wt \ of a lc o h o l.

T a b l e 1 EMF values of the in v e s tig a te d c e l ls

m E 293 E 303 E 313 ID E293 E 303 ' E 313 0 wt. 1 i-PrOH 10 wt. i-Pr0H 0.01560 -0.0568 -0.0510 -0.0457 0.01243 -0.0661 -0.0596 -0.0537 0.02437 -0.0779 -0.0730 -0.0607 0.01076 -0.0050 -0.0790 -0.0547 0.03603 -0.0976 -0.0931 -0.0095 0.02775 -0.1044 -0.0909 -0.0941 0.04339 -0.1052 -0.1010 -0.0977 0.03807 -0.1192 -0.1142 -0.1098 0.05100 -0.1137 -0.1096 -0.1067 0.04790 -0.1302 -0.1255 -0.1213 0.06606 -0.1256 -0.1220 -0.1194 0.05830 -0.1395 -0.1340 -0.1309 0.07223 -0.1293 -0.1257 -0.1232 0.06641 -0.1453 -0.1410 -0.1373 0.07221 -0.1494 -0.1450 -0.1414 30 wt. H i-Pr0H 50 wt. i-Pr0H 0.00916 -0.0867 -0.0000 -0.0755 0.01341 -0.1420 -0.1306 -0.1346 0.01603 -0.1151 -0.1100 -0.1054 0.01350 -0.1431 -0.1300 -0.1352 0.02634 -0.1357 -0.1310 -0.1271 0.01440 -0.1459 -0.1415 -0.1370 0.03579 -0.1500 -0.1459 -0.1424 0.02660 -0.1736 -0.1695 -0.1663 0.04295 -0.1581 -0.1542 -0.1507 0.03257 -0.1023 -0.1790 -0.1761 0.05005 -0.1650 -0.1610 -0.1579 0.03700 -0.1090 -0.1053 -0.1025 0.05068 -0.1722 -0.1607 -0.1658 0.03075 -0.1095 -0.1062 -0.1041 0 .Q4078 -0.1916 -0.1001 -0.1060 0.04463 -0.1961 -0.1927 -0.1901 0.04635 -0.1973 -0.1937 -0.1919 0.05333 -0.2033 -0.2010 -0.1983 0.06014 -0.2087 -0.2053 -0.2034 0.06662 -0.2131 -0.2099 -0.2083 0.06975 -0.2153 -0.2121 -0.2102 0.09073 -0.2264 -0.2237 -0.2222 0.11110 -0.2353 -0.2325 -0.2313

The values of standard EMF of the in v e s tig a te d c e l l were d e te r­ mined by lin e a r e x tra p o la tio n of fu n ctio n (1 ) up to co n cen tratio n m = 0

(4)

(

1

)

where:

A = ( ln 10)1.8246106/ (C T )1-5, B = 50.29/(eT)0 ,5 ,

Rg - gas constant [j-roole'^K*1] , T - temperature [k] ,

dQ - so lven t d e n sity [kg-dm-1] , £ - e l e c t r i c p e r m it tiv it y of s o lv e n t, R - d istan ce parameter of ions [ X ] , F - the Faraday constant [C*mol-1] , m - m o la lity [mole-kg’ 1] ,

M - so lven t molecular mass.

Function (1 ) is obtained by in s e rtin g H u c k e l ’ s equation [9] expressed in the molal scale

Ad°-5m0-5

I n / i * ---°. n d n c ♦ Cm - l n ( l + 0.002 mM) (2 )

to the fo llo w in g equation d e scrib in g the EMF of the c e l l studied

where: - mean a c t i v i t y c o e f f ic ie n t in molal s c a le .

Parameter R was assumed according to the often applied J u-1 + BR d“ ' m

(3 )

s t i c e p ro p osition [10, l l ] as equal to the B j e r r u m c r i t i c a l d istan ce q [12]:

where:

e - elementary charge,

l +< " ca tio n and anion charge number r e s p e c tiv e ly , k - Boltzmann’ s constant.

(5)

In order to be able to compare the obtained r e s u lts w ith ones given in lit e r a t u r e [7] c a lc u la tio n s were made also for R * A A. The d e sity (d y ) and e l e c t r i c p e r m it t iv it y (£ ) necessary fo r c a lc u ­ la tio n s were obtained by in te r p o la tio n of data presented in papers

[13, 14]. The obtained values of E ° fo r R * q and R * 4 A are c o l­ le c te d in Tab. 2. As can be seen from Tab. 2 values of F ° for

O

R = q and R * 4 A are not s ig n if ic a n t ly d if f e r e n t fo r m ixtures

T a b l e 2 Standard EMF values of c e l l : glass ele ctro d e (N a)|N aB r|A g B r, Ag

w t. \ i-PrOH O v 293.15 K 303.15 K 313.15 K R . q R = 4 A R = q R = 4 A R « q R = 4 A 0 -0.2731 -0.0001 q = 3.55 A -0.2730 -0.0001 0.2749 Î0.0001 q = 3.59 A -0.2749 Í0.0001 -0.2772 -0.0001 q = 3.64 A -0.2772 -0.0001 10 -0.2941 -0.0001 q = 3.90 A -0.2941 -0.0001 -0.2956 -0.0001 q = 3.95 Â -0.2956 Í0.0001 -0.2977 -0.0001 q = 4.02 A -0.2977 -0.0001 30 -0.3313 Î0.0001 q = 4.88 A -0.3314 -0.0001 -0.3339 -0.0002 q = 4.98 A -0.3340 Í0.0002 -0.3371 -0.0002 q = 5.06 A -0.3372 -0.0002 50 -0.3758 -0.0002 q = 7.85 A -0.3778 -0.0004 -0.3796 -0.0003 q = 8.02 A -0.3819 ±0.0004 -0.3842 -0.0003 q = 8.22 A -0.3867 -0.0003

---co n tain in g 0, 10 and 30 wt h isop ro p yl a lc o h o l. The d iffe re n c e s are w ith in the lim it s of standard e rro r of the values of standard EMF d ata. The more s ig n if ic a n t d iffe re n c e s ca. 2-2.5 mV are observed for the mixture co n tain in g 50 wt \ a lc o h o l. This is connected with the f a c t , th at the q parameter is ca. tw ice higher than 4 I . The lower standard e rro r of E ° in d ic a te s th at the assumption R = q appears to be c o rre c t fo r m ixtures w ith higher alco h o l conten t.

(6)

The values of fre e enthalpy of tra n s fe r of NaBr AG° were ca l cu lated on the b asis of the fo llo w in g re la tio n s h ip

where:

Eom - standard EMF of the c e l l in the mixed s o lv e n t, Eow - standard EMF of the c e l l in w ater.

The r e la t io n AG° - f ( T ) was approximated by the polynominal AG° * a ♦ bT. The entropy of tra n s fe r was c a lc u la te d applying the

The values of the thermodynamic fu n ctio ns c a lc u la te d as mantio- ned above are in m o la lity s c a le . M s k j a y 1 ( [7] presented the values of the thermodynamic fu n ctio ns in mole fr a c tio n s c a le w ith the assumption R = 4. That is the reason for g ivin g the thermodyna­ mic fu n ctio n s expressed on mole fr a c tio n s c a le ap art from ones on m o la lity s c a le w ith the assumption R = q. They are c o lle c te d in Tab. 3. The c a lc u la tio n were made using the fo llo w in g expressions

AG° . F (E om - Eow> (5 )

equation

The A S ° values c a lc u la te d on the b a sis of eq. (6 ) were used fo r c a lc u la tin g the enthalpy of tra n s fe r

AH° « A G j ♦ T A S ° (7 )

( 8a)

Me

♦ a R g ln ^ (8b)

where:

(7)

Mw - m olecular mass of w ater, x - index fo r'm o le fr a c tio n s c a le , m - index fo r m o la lity s c a le .

T a b l e 3 Values of thermodynamic fun ctio ns of tra n s fe r of NaBr

from water to the mixed so lv en t

wt. % i-PrOH scale R ag!¡/a.m ol"1’ A S ° * D-mol'1«-1 AH° J-mol'1 293.15 K 303.15 K 313.15 K 303.15 K 303.15 K 10 m q 2 027 1 997 1 970 2.5 2 750 X q 1 679 1 637 1 605 3.7 2 750 X * 4 A 1 BOO 1 020 1 660 7.2 4 000 30 m q 5 617 5 693 5 701 -0.2 3 200 X q 4 473 4 510 4 559 -4.3 3 200 X * 4 A 4 480 4 590 4 570 -4.3 3 290 50 m q 9 900 10 104 10 326 -21.3 3 650 X q 7 005 7 930 0 009 -14.2 3 650 X 4 A 0 010 0 160 0 330 -15.6 3 453 X * 4 A 0 200 0 390 0 540 -16.9 3 270

Values from paper [7 ].

For m ixtures co n tain in g 10 and 30 wt \ alco h o l the thermodyna­ mic fu n ctio ns A G °x, A S ° x and A H °X were obtained only on the b a sis of the assumption R = q. In these m ixtures the values of the

O

fu n ctio n s mentioned above fo r both R = q and R = U assumptions should be id e n t ic a l w ith in lim it s of experim ental e rro r because the standard EMF values are almost the same. For the m ixtures co n tain in g 50 wt \ isop ro p yl alcoh ol the values of AG? , AH° , and AS?

*•* A*

were c a lc u la te d using both assumption R = q, R * 4 A. Such a proce­ dure made i t p o ssib le to make a more d e ta ile d comparison of the r e s u lt s obtained from EMF of the c e l l with sodium g la ss e le ctro d e s w ith M e k j a v i d et a l, data [7] based on stu d ies using the amalgam e l e c t r s i i s . Some M e k j a v i 6 ’ s data are also in c lu d ­ ed in Tab. 3.

A n alysis of the r e s u lts c o lle c te d in Tab. 3 leads us to f o l l o ­ wing co n clu sio n s:

(8)

a) The maximum d iffe re n c e between our r e s u lts of AG °x and those reported by M e k j a v i <5 [7] are ca. 200 J , which c o r­ responds to a change of ca. 2 mV fo r ele ctro m o tive fo rce valu e s.

h) The temperatur changes of our AGtx val ues are more regu lar in comparison with M e k j a v i d ’ s r e s u lts . In the mixtures co ntain in g 10 wt \ alcohol our values of AG1^ s lig h t ly decrease w ith the increase in temperature. M e k j a v i d ’ s r e s u lts [7] show a s lig h t increase in the temperature range 293-303 K w hile a consid erab le decrease is observed in the temperature range 303-313 K. For mixtures with 30 wt H of isop ropyl alcohol our values of s lig h t ly increase together with the in crease of temperature w hile the dependence AG °x = f ( T ) found by M e k j a v i d shows extreme. Only for mixtures with 50 wt h alcoh ol our and M e k j a-

v i d *s dependences of AG1^ v s . temperature e x h ib it s im ila r

b ehaviou r.

c ) The d iffe re n c e s in the behaviour of the fu n ctio ns AG°x = f(T) a f fe c t the analogous dependences fo r A S ° x and A H °x ‘ Ttiey are most pronounced for the mixture co n tain in g 10 wt % alc o h o l.

In our opinion M e k j a v i d ’ s et a l. re s u lts of AH? and o

Stx at 293 and 313 K are not r e lia b le because the determ ination of the d e riv a tiv e s from the dependence A G °x = f (T ) based on ju s t three points cannot p o ssib ly be very accu rate. The M e k j a v i d’s et a l . values (Tab. 3) suggest th at the values of AS? and AHtx increase with temperature and even they change th e ir sign for the m ixtures .c in ta in in g 10 and 30 wt % a lc o h o l. Analysing our data 0.1 A G °x shown in Tab. 3 we can n o tice the decreasing of the enthalpy and entropy of tra n s fe r of e le c t r o ly t e w ith the increase in temperature. The same re s u lts were obtained from the measure­ ments of enthalpy of s o lu tio n of a l k a l i metal h alid e s [ l 5, 16]. The d iffe re n c e s between the r e s u lts found from more d ir e c t method of measurements of enthalpy of s o lu tio n of e le c t r o ly t e and obtained by M e k j a v i d ’ s et a l. [7] fo r amalgam ele ctro d e s may be con­ nected with th e ir in c o rre c t values of the temperature c o e f fic ie n ts of the standard EHF. Values of the temperature c o e f f ic ie n t s of the standard EMF depend on the values of standard EMF. I t is evid ent from equation (1 ) that an e rro r of the standard EMF values may be connected with an e rro r of C c o e f f ic ie n t . The value of the C

(9)

c o e f f ic ie n t s according to equation (2 ) a f fe c t s the values of the a c t i v i t y c o e f f ic ie n t of e le c t r o ly t e . T a b l e 4 A c t iv it y c o e f f ic ie n t s ' f ± of natrium bromide wt. % T 1 « R m/mol-k g

' 1

i-PrOH K 0.01 0.02 0.05 0 . 1 0 , 0.15 0.20 293 q 4 A* 0.8920.893 0.860 0.861 0.8100.812 0.771 0.774 0.7520.755 0.741 0.745 10 303 q 4 A* 0.8890.890 0.855 0.856 0.800 0.002 0.7550.760 0.730 0.736 0.713 0.722 313 q 4 A* 0.8860.888 0.850 0.054 0.791 0.801 0.7400.759 0.709 0.736 0.687 0.722 V 293 q 4 A* 0.856 0.858 0.812 0.010 0.744 0.750 0.6850.717 0.649 0.699 0.623 0.691 30 303 q 4 A* 0.851 0.853 0.006 0.011 0.732 0.746 0.6690.699 0.627 0.675 0.597 0.661 313 q 4 A* 0.848 0.849 0.8010.805 0.724 0.737 0.6560.685 0.6570.611 0.5770.639 293 q 4 A 4 A* 0.763 0.744 0.740 0.706 0.681 0.672 0.626 0.590 0.500 0.565 0.547 0.515 0.528 0.530 0.483 0.502 0.526 0.465 50 303 q 4 A 4 A* 0.757 0.737 0.735 0.690 0.671 0.669 0.614 0.503 0.578 0.545 0.526 0.517 0.502 0.503 0.490 0.470 0.494 0.476 313 q 4 A 4 A* 0.751 0.730 0.728 0.692 0.663 0.661 0.606 0.573 0.570 0.536 0.517 0.510 0.492 0.493 0.404 0.458 0.487 0.471

4

t

Values c a lc u la te d from EMF data contained in paper [7 ].

I t was a reason why we decided to compare our values of e le c t r o ­ ly t e a c t i v i t y c o e f f ic ie n t s with those obtained by M e k j a v i c e t a l . [7] (Tab. 4 ). For the mixture co n tain in g 50 wt % isop ro p yl

O

alco h o l our q value is d i s t i n c t l y d if f e r e n t from 4 A i . e . the value used fo r c a lc u la tio n by M e k j a v i i e t a l. Thus the a c t i v i t y c o e f f ic ie n t s , from our EMF data were also c a lc u la te d

(10)

fo r assumption R * 4 Â. The re s u lts were c o lle c te d In Tab. 4. Our mean a c t i v i t y c o e ff ic ie n t s decrease together w ith the increase of temperature fo r each m o la lity of the s o lu tio n .

Taking in to co n sid eratio n the equation

à In I 2

3T 2RT

(9 )

we may n o tic e th at the r e la t iv e p a r t ia l molar enthalpies of e le c t r o ­ l y t e , I 2, are p o s itiv e fo r a l l s a lt co ncen tratio n s and fo r a l l in v e s tig a te d tem peratures. The dependences = f ( T ) found by M e k j a v i é et a l . show extrema in s o lu tio n w ith higher m o la lity fo r 50 wt H isopropyl alcoh ol or the y+ values ir r e g u la r ly decrease with the in crease in temperature.

In conclusion i t may be noted that the values of the fre e enthalpy of tra n s fe r determined in th is study on the b asis of the EMF data of the c e l l s with glass e le ctro d e s and those ones using the amalgam e le ctro d es are not d i s t i n c t l y d if fe r e n t. The a p p lic a tio n the AG° values mentioned above and the enthalpy of tra n s fe r values obtained from measurements of enthalpy of s o lu tio n of e le c ­ t r o ly t e to c a lc u la tio n the entropy of tra n s fe r ( A S ° * (AH^ -AG°)/T) show th at the obtained A S ° values are not s ig n if ic a n t ly d iffe re n t. On the other hand i f the EMF data were used in order to determine

the entropy and enthalpy of tra n s fe r then in our opinion the a p p li­ ca tio n of the EMF data of the c e l l s w ith g lass e le c tro d e s lead to more r e lia b le r e s u lts .

REFERENCES

[1] Z. K o z ł o w s k i , A. B a l d , J . G r e g o r o w i c z, A. S z e j g i s, Acta Univ. Lodz., F o lia Chim ., 1 , 11 (1987). [2] Z. K o z ł o w s k i , A. B a l d , J . G r e g o r o w i c z,

A. S z e j g 1 s, Acta Univ. Lo d z ., F o lia Chim ., 1, 4 (1987). [3] Z. K o z ł o w s k i , A. B a l d , J . G r e g o r o w i c z,

(11)

[4] 2. K o z ł o w s k i , A. B a l d , J . G r e g o r o w i e z, A. S z e j g-i s, P o l. J . Chem., 64, 167 (1990). [5] Z . K o z ł o w s k i , A . B a l d , J . G r e g o r o w i c z , A. S z e j g i s, Thermochim. A cta, 170. 217 (1990). [ć ] J . G r e g o r o w i c z , D octoral th e s is , U n iv e r s ity of Lódi 1990. [7] 0. R a d o ś e v i ć, I . M e k j a v i Ć, Electrochim . Acta, 20, 1435 (1983).

[0] B. J . I v e s , G. J . J a n z, References E le c tro d e s , New York 1961.

[9] E. H u c k e T, Phys. Z ., 26, 93 (1925).

[10] J . C. J u s t i c e , J . Chi in. P h y s ., 65, 353 (1960). [11] J . C. J u s t i c e , Ele ctro ch im . A cta, ¿ 8 , 701 (1971).

[12] N. B j e r r u m, Kgl. Danske Videnskab 5elskab. M at.-Fys. Medd., 7, 230 (1926).

[13] G. A k e r 1 o f , J . Am. Chem. S o c ., 54, 4125 (1923).

[14] R. L. M o o r e , W. A. F e 1 a i n g, J . Am. Chem. S o c ., 69, 1076 (1947).

[15] H. P i e k a r s k i , A. P i e k a r s k a , S. T a n i e - w s k a-0 s i rt S k a, Can. J . Chem., j52, 856 (1984).

[16] A. I . P i r o g o v , D octoral Thesis, IChTI Ivanovo 1971.

Adam B ald , Je rz y Gregorowicz

ZASTOSOWANIE OGNIWA: SZKLANA ELEKTRODA (Na) |N aBr|A gBr, Ag 00 TERMODYNAMICZNYCH BADAN ROZTWORÓW NaBr

W MIESZANINACH W00A-ALK0H0L IZOPROPYLOWY

Zmierzono w arto ści s i ł elektrom otorycznych ogniwa: ele k trod a szklana (N a)|N aB r|A g B r, Ag w mieszaninach wody z izopropanolem o zaw artości 0, 10, 30 i 50 % wag. alkoholu w temperaturach 293,15, 303,15 i 313,15 K. Wyznaczono w artości 5EM standardowych ogniwa i termodynamicznych fu n k c ji p rz e n ie s ie n ia NaBr z wody do badanych m ieszanin (AG.0, A S ? , A H f). Ponadto wyznaczono w arto ści średnich współczynników aktywności e le k t r o lit u . Uzyskane w arto ści porównano z analogicznym i danymi otrzymanymi przez innych autorów metody po­ miaru s i ł elektrom otorycznych ogniw zaw ierajęcych e le k tro d ę amalga­ matową .

Cytaty

Powiązane dokumenty

De hoeveelheden zand, welke in onze verzameling monsters voorkomen, zijn bovendien in het algemeen niet een maat voor het zandgehalte van den bodem, omdat vaak naar verhouding te

W zakończaniu pracy umiesizcżone są tablice statystyczne wydobycia, eksportu i przetwórstwa węgla, sił roboczych i ich wydajności, wielkości kopalń, produkcji

Niezależnie jednak od typu zespołu Münchhausena, rozpoznanie choroby jest bardzo trud- ne i niejednokrotnie bardzo frustrujące dla lekarza diagnozującego, wymaga

The improvement of Poland’s situation compared to other European Union countries in terms of the standard of living of the population will require some changes in some

O m ówione obiekty, w świetle przeprowadzonych obserwacji, są także tekstami w ściśle terminologicznym znaczeniu, tj. Potem Abdul wszedł do gabinetu.. Koherencja

Wyniki badań wykazują na istnienie w Brąchnówku dość rozległej osady kultury pucharów lejkowatych fazy wióreckie j i być może grobów neolitycznych.. Osada jest

Język używany podczas opracowywania, badania lub dystrybucji leków, czy też szerzej, w różnych specjalistycznych kon- tekstach farmaceutycznych, bywa również klasyfikowany

W części północnej natomiast, w pobliżu kulminacji wyniesienia odsłonię­ to zarysy dwóch niewielkich jam zawierających materiały ceramiczne późnej fazy kultury ceramiki