• Nie Znaleziono Wyników

On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning

N/A
N/A
Protected

Academic year: 2021

Share "On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning"

Copied!
28
0
0

Pełen tekst

(1)

Delft University of Technology

On-the-fly construction of surrogate constitutive models for concurrent multiscale

mechanical analysis through probabilistic machine learning

Rocha, I. B.C.M.; Kerfriden, P.; van der Meer, F. P.

DOI

10.1016/j.jcpx.2020.100083

Publication date

2021

Document Version

Final published version

Published in

Journal of Computational Physics: X

Citation (APA)

Rocha, I. B. C. M., Kerfriden, P., & van der Meer, F. P. (2021). On-the-fly construction of surrogate

constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning.

Journal of Computational Physics: X, 9, [100083]. https://doi.org/10.1016/j.jcpx.2020.100083

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Contents lists available atScienceDirect

Journal

of

Computational

Physics:

X

www.elsevier.com/locate/jcpx

On-the-fly

construction

of

surrogate

constitutive

models

for

concurrent

multiscale

mechanical

analysis

through

probabilistic

machine

learning

I.B.C.M. Rocha

a

,

,

P. Kerfriden

b

,

c

,

F.P. van der Meer

a

aDelftUniversityofTechnology,FacultyofCivilEngineeringandGeosciences,P.O.Box5048,2600GADelft,theNetherlands bMinesParisTech(PSLUniversity),Centredesmatériaux,63-65RueHenri-AugusteDesbruèresBP87,F-91003Évry,France cCardiffUniversity,SchoolofEngineering,Queen’sBuildings,TheParade,Cardiff,CF243AA,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received10June2020

Receivedinrevisedform5October2020 Accepted21December2020

Availableonline28December2020

Keywords: Concurrentmultiscale Surrogatemodeling Probabilisticlearning GaussianProcesses(GP) Activelearning

Concurrent multiscale finite element analysis (FE2) is a powerful approach for

high-fidelity modeling of materials for which a suitable macroscopic constitutive model is not available. However, the extreme computational effort associated with computing a nested micromodel at every macroscopic integration point makes FE2 prohibitive for

mostpracticalapplications.Constructingsurrogatemodelsabletoefficientlycomputethe microscopicconstitutiveresponseisthereforeapromisingapproachinenablingconcurrent multiscalemodeling.Thisworkpresentsareductionframeworkforadaptivelyconstructing surrogatemodelsforFE2basedonstatisticallearning.Thenestedmicromodelsarereplaced

by a machine learning surrogate model based on Gaussian Processes (GP). The need for offline data collection is bypassed by training the GP models online based on data comingfromasmallsetoffully-solved

anchor micromodels

thatundergothesamestrain historyastheirassociatedmacroscopicintegrationpoints.TheBayesianformalisminherent to GPmodels provides anatural tool for online uncertainty estimation through which new observations or inclusion ofnew anchor micromodels are triggered. The surrogate constitutivemanifoldisconstructedwithasfewmicromechanicalevaluationsaspossible byenhancingtheGPmodelswithgradientinformationandthesolutionschemeismade robustthroughagreedydataselectionapproachembeddedwithintheconventionalfinite elementsolutionloopfornonlinearanalysis.Thesensitivitytomodelparametersisstudied with atapered barexample with plasticityand theframework is furtherdemonstrated withthe elastoplasticanalysis ofaplatewithmultiplecutoutsandwithacrackgrowth exampleformixed-modebending.Althoughnotabletohandlenon-monotonicstrainpaths in its current form, the framework is found to be a promising approach in reducing the computational cost ofFE2,with significant efficiency gains being obtainedwithout resortingto

offline training.

©2020TheAuthor(s).PublishedbyElsevierInc.Thisisanopenaccessarticleunderthe CCBYlicense(http://creativecommons.org/licenses/by/4.0/).

*

Correspondingauthor.

E-mailaddress:i.rocha@tudelft.nl(I.B.C.M. Rocha).

https://doi.org/10.1016/j.jcpx.2020.100083

2590-0552/©2020TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(3)

1. Introduction

Thereisagrowingdemandforhigh-fidelity numericaltechniquescapableofdescribingmaterialbehavioracrossspatial scales.Withrecentadvancesinadditivemanufacturingallowingforthedevelopmentofnovelmaterialswithhighly-tailored microstructures [1], multiscale modeling techniques will become increasingly relevant in the design of novel materials and structures. One popular approach for concurrent multiscale modeling is the so-calledFE2 approach [2,3], in which macroscopicmaterialresponseisdirectlyupscaledfromembeddedmicromodelswithoutintroducingadditionalconstitutive assumptions.FE2 isapowerfulandversatiletechnique usedinanumberofsolidmechanicsapplications,fromcontinuous [4] anddiscontinuous[5] mechanicalequilibriumtomultiphysicsproblemsinvolvingheatandmasstransfer[6] andmaterial degradationduetoaging[7,8].However,FE2 hasthemajordrawbackofbeingassociatedwithextremecomputationalcosts, hinderingitsapplicationinactualdesignscenarios.EnablingtheuseofFE2 inmanypracticalapplicationsthatwouldbenefit fromitsaccuracyandversatilityisthereforehighlycontingent onbeingabletoreduceits computationalcosttotractable levels.

A promisingapproachin accelerating FE2 models consistsinconstructing surrogatemodels that takethe placeofthe originalhigh-fidelitymicromodelsateachmacroscopicintegrationpoint.Whenbuildingsurrogates,thegoalistomaintain as much of the generality offered by the original micromodel while eliminating as much computational complexity as possible.One optionis toemploy unsupervised learning ona numberoffull-order solutionsnapshots inorderto define lower-dimensional solutionmanifoldsforbothdisplacements [9,10] andinternal forces[11,12] atthemicroscale [13–15]. Alternatively, a supervisedlearning approach canbe takenby using snapshotsofthe homogenizedmicromodelresponse to directlydefineadata-driven regressionmodelforthe macroscopicconstitutivebehavior[16–21]. Althoughresultingin modelsofdistinctnatures,bothapproachesrelyontheexistenceofanobservationdatabaseonthebehavioroftheoriginal micromodel that is usually obtainedoffline (before deployment on a multiscalesetting) and should coverevery possible scenariothesurrogateisexpectedtoapproximateonline.

However,buildingsuchadatabaseofmodelsnapshotscanbeachallengingtask(see[20,22] forinterestingapproaches based onDesign ofExperimentsand[14] for a data-driventraining framework basedonBayesian Optimization).For mi-cromodels employingpath-dependentmaterials,thisofflinetraining processentailssamplingahighly-complexconstitutive manifold that dependson anarbitrarily longstrain historyandcanthereforebe excessivelysensitive tosmallchanges in boundaryconditions(e.g.strain localizationandcrackpropagationproblems). Furthermore,training asurrogatewithsuch a complex datasetoften requiresadditional partitioningtechniquesin orderto avoidcomputationally inefficient reduced models [23,24]. An alternative to theconventional offline-online approach that hasbeen gainingpopularity isthe use of adaptive reduction frameworks that either preclude the need for offline training altogether [25,26] or combine different reductiontechniquesintoasingleframeworkwithonlylimitedoffline effortwhileemployingonline errorindicatorsto con-tinuouslyassessthequalityoftheapproximationandtriggerarefinementofthesurrogateswhennecessary.Nevertheless, obtaining consistent adaptivity criteriaforeitherhyper-reduced models[25] or machinelearning models basedon least-squaressolutions[19,27] isnotstraightforward.Attheotherendofthespectrum,worksdealing withconstitutivemodels basedonBayesianregressiontechniques,thatprovideanaturalwaytoestimateerror[28–30],donotoftentakeadvantage oftheirpotential forcreatingadaptiveframeworks(see[31,32] foraninterestingframework specificallytailoredtocrystal plasticity).Thereisaneed,therefore,forthedevelopmentoffully-onlineapproachesforgeneralFE2 modelswithreliable adaptivity strategies basedon sequential learning techniques andon error estimation methods with robust probabilistic foundations.

Thisworkpresentsanadaptiveprobabilisticframeworkforconstructingsurrogateconstitutivemodelsfornonlinear con-currentmultiscaleanalysis.Theapproachisbasedonsubstitutingtheoriginalmodelsassociatedtomacroscopicintegration pointswithamachinelearningsurrogate.Inordertobypasstheneedforanoffline trainingphase,asmallnumberof fully-solved models associated to representative macroscopicintegration points are used to generate constitutive data online.

Becausethesemodelsarenotdirectlyusedtomakepredictionsateverymacroscopiciterationbutonlyprovideanindirect couplingbetweenthescales,we denotethemasanchormodels (Fig.1).Stress andstiffness dataresultingfromsubjecting theanchor modelstothesamestrainhistoriesseenbytheirrespectiveanchoringpointsisusedtobuildasurrogatemodel basedontheGaussian Process(GP)regressiontechnique.The frameworkpreservesthegeneralityofFE2 by notassuming theexistenceofanyinternalvariablesatthemacroscaleandbuildssurrogatesthattakeonlystrainsasinput.However,this impliesaone-to-onemappingbetweenstressesandstrains,makingtheframeworkinitscurrentformunsuitablefor treat-ing non-monotonic loadpaths.Thiscan beaddressedinfutureextensions oftheframework byemploying autoregressive GPs[33,34].

The accuracy of thisreduced-order solution is controlled withuncertainty information that arises naturally fromthe Bayesian formalism of the GP models. The resultant material model is embedded within a conventional finite element solutioninawaythatensuresthemacroscopicsolutionisnumericallyrobustandlimitsthesamplingofnewdataasmuch aspossible inorderto maximize efficiency.The framework isdemonstratedwitha setof numericaltestsincludingboth bulkstrainlocalizationandcrackpropagationinordertoassessitsaccuracy,efficiencyandversatility.

(4)

Fig. 1. Schematic representationoftheonline adaptivereductionframeworkpresentedinthiswork.Asmallnumberofanchor models—inthiscasea matrixreinforcedwithcircularinclusions—areusedtotrainamachinelearningsurrogatethatevolvesasthemacroscopicstructureisloaded.Adaptive samplingguaranteesthatanchormodelsoperatingatnovelregionsinparameterspace—illustratedherebyplasticstrainbandsshowninorangeandred —willpopulatethedataset

D

moreoften.

2. Concurrentmultiscaleanalysis

2.1. Macroscopicproblem

We beginby briefly introducing theconcurrent multiscale equilibriumproblemthat we seekto accelerate. Let



de-fine themacroscopicdomainbeingmodeled. Wewish tofindthe displacementfield u resultingfromaset ofDirichlet and Neumannboundary conditions applied to thesurface



that bounds

.

Under the assumption ofsmall strains,the equilibriumsolutionisfoundbysatisfying:

div



σ





=

0

ε



=

1 2



u

+



u



T



(1) wherediv

(

·)

isthedivergenceoperator,

σ

and

ε

arerespectivelythestressandstraintensorsandbodyforceshavebeen neglected.Inordertosolveforu,aconstitutivemodel

M

thatrelates

σ

and

ε

mustbeintroduced:

σ



=

M



ε



,

ε

 h



(2) where

ε



h is a history termthat accounts forstrain path dependency. In the context ofmultiscale analysis, the model

M

can beseen asahomogenizationoperatorthat lumps allphysicalprocesseshappeningatscales lower than



intoa homogeneous medium with equivalent behavior. Depending on howcomplex the microscopic behavior is,

M

can range fromhavingarelativelysimpleform(e.g.linearelasticity)tobeingnexttoimpossibletoformulateexplicitly.

2.2. Microscopicproblem

Inaconcurrentmultiscaleapproach,wedonotformulate

M

directlyandinsteadoptforupscalingmicroscopicbehavior frommicromodelsembeddedateachmacroscopicmaterialpoint.Let

ω

be aRepresentativeVolumeElement(RVE)ofthe microscopic materialfeatures whosebehaviorwe wouldliketo upscale.Assuming theprincipleofseparation ofscalesis valid(

ω

 

),wecanlinkthetwoscalesbyenforcing:

uω

=

ε

xω

+

u (3)

wheretheresponseisdecomposedintoalineardisplacementfieldimposedbythepresenceofmacroscopicstrains(xω are themicroscopicspatialcoordinates)andafluctuationfield



u thataccountsformicroscopicinhomogeneities.

Inordertoobtain

σ

,wefirstfindanequilibriumsolutionforuω bysatisfying:

div



σ

ω



=

0

ε

ω

=

1 2



(5)

where we seethat once morethe needarises forthe definitionofa constitutive model,thistime relating

ε

ω with

σ

ω .

Underlyingthechoiceforamultiscaleapproachistheassumptionthatconstitutivebehaviorcanberepresentedbymodels of decreasingcomplexity asone descends to lower scales. Itis thereforecommonto employ regular constitutivemodels (e.g.(visco)elasticity,(visco)plasticity, damage)formaterialcomponentsatthemicroscale[4,6–8].However,theframework isflexibleinallowingformodelsonanevenlowerthirdscaletobeembeddedtomaterialpointsin

ω

(atthecostofeven highercomputationaleffort).

2.3. Bulkhomogenization

Withasolution foruω under theconstraintthatthefluctuation field



u must beperiodic,we canusetheHill-Mandel principle[35] toobtainhomogenizationexpressionsforthemacroscopicstresses

σ

andconsistenttangentstiffnessD:

σ



=

1

ω

ω

σ

ωd

ω

D

=

P



Kω



(5)

fromwhichweobtaintheintuitiveresultthatthemacroscopicstressesaresimplythevolumeaverageofthemicroscopic ones.Finally,themacroscopicconstitutivetangentstiffnessiscomputedthroughaprobingoperator

P

appliedontheglobal microscopictangentstiffnessmatrixKω [5].

2.4. Cohesivehomogenization

Although theprecedingformulation allows forgeneralmicroscopic constitutivebehavior to be upscaled, theresponse losesobjectivitywithrespecttotheRVEsizeaftertheonsetofglobalmicroscopicsoftening[36],i.e.whenthedeterminant oftheacoustictensoriszeroalongagivendirectionn:

det



nTDn



=

0 (6)

Thisnon-objectivity arisesbecausethevolume

ω

d ofthestrainlocalizationbandthat causesthesofteningdoesnotscale withtheRVEsize,anobservationthatmotivatestheuseofamodifiedversionoftheHill-Mandelprinciple[5,36]:

1 w

τ



δ



v





=

1 wh

ωd

σ

ω

δ

ε

ωd

ω

(7)

wherew andh aregeometricRVEparametersthatdependonthelocalizationbandorientation,

τ

isamacroscopictraction and



v



 isashifteddisplacementjumpthatallowsforaninitially-rigidcohesive response.Notethatthehomogenization isnowperformedtowardsacohesivetractionactingonamacroscopicsurfacethatdefinesadiscontinuityinu.

Thedevelopment ofa consistentstrategyforcontinuous-discontinuousscalelinkinginFE2 isanopenissuethatisleft out ofthescopeofthepresentdiscussion,withanumberofdifferentapproachesbeingfound,forinstance,in[5,36–39]. For the purposeof buildingsurrogate models for the RVEresponse, it suffices to acknowledge that two distinct models shouldbetrainedforbulkandcohesiveresponses,astheunderlyingconstitutivemanifoldshavedimensionswithdifferent physicalinterpretations(strain/stressversusjump/traction).

2.5. Accelerationstrategy

AssumingFEMisusedtosolvethemechanicalproblemsatbothscales,wecanapproximatethecomputationalcostofa singlemacroscopiciterationas:

Cost



Ndof



x

+

NipNiterω



Ndofω



x (8)

whereNdofrepresentsthenumberofdegreesoffreedomofthemodel,Nipisthenumberofmacroscopicintegrationpoints anditer isthenumberofiterationsnecessaryforconvergenceofthemicroscopicBVP.Weassumeforsimplicitythatthe bulk ofthe effort comesfrom solvingthe linearizedsystems ofequationsinvolving K andKω fornodaldisplacements, wherethecomplexityexponentx dependsonthesolverused.Itcanbeseenthatthesecondterm,associatedwithsolving themicroscopicequilibriumproblems,quicklyoutweighsthefirstandbecomesaperformancebottleneckasdofincreases, especially since thenumberof macroscopicintegrationpoints Nip increasestogether with Ndof. Constructing asurrogate thatreplacestheoriginalconstitutivemodel

M

ofEq. (2) isthereforeaneffectiveapproachtoacceleratingFE2.

However, constructingsuch asurrogateoffline isa challengingundertaking,otherwisetherewouldnothavebeenneed foramultiscaleapproachinthefirstplace.From Eq. (2) weseethat theconstitutivemanifoldtobereproduced canhave anarbitrarilyhighdimensionalityduetothedependencyon

ε



h.Thisisequivalenttostatingthattheshapeofthe

ε

-

σ

 manifold canchangeaftereach loadstep.Samplingthishigh-dimensional inputspaceoffline inordertohaveasurrogate

(6)

thatisaccurateforarbitrarystrainhistoriesseemstobeanintractableproblemthat,tothebestofourknowledge,hasstill notbeentackledinasatisfactoryway.

This issue can be avoided by exploiting thefact that

ε

 (andtherefore

ε



h) are often highly constrained by the ge-ometry and boundary conditions of the macroscopic structure being modeled [24]. We therefore opt forconstructing a highly-tailoredsurrogatemodel

S

online basedonadataset

D

ofobservationscomingfromasmallnumberoffully-solved micromodels:

σ



=

S



ε



,

D



(9)

whichcan thenbe usedtocompute theconstitutive responseforafractionofthecost.When trying tokeep

D

assmall aspossibleforthe caseathand,it iscrucialto haveameans forquantifyingthe uncertaintyinprobing

S

foranygiven

ε

.Inthiswork,aBayesianapproachisadoptedtoassessonline whether

D

islargeenoughtoprovidethedesiredlevelof confidencein

S

atagiven

ε

.

3. Bayesiansurrogatemodeling

InthissectionweintroducetheBayesianregressionapproachusedtoconstructsurrogateconstitutivemodels,beginning fromparametricversionsofthesurrogatemodel

S

i.e.by encapsulatingtheconstitutiveinformationin

D

intoasetof parametersw —andeventuallymovingtoanon-parametricmodelbasedonGaussianProcesses(GP)thatusesthedatain

D

directlyinordertomakepredictions.Ourgoalhereistoappealtothereaderwhomightbeunfamiliarwithprobabilistic regression models by starting fromclassical least-squares regressionand gradually moving towards a Bayesianapproach. Nevertheless,the discussioniskept asbriefandfocused aspossible.The interestedreadercanfindricherdiscussionson thesubjectin[40,41].

3.1. Least-squaresregression

Westartbybuildingaparametricmodely

(

w

,

x

)

thatapproximatesascalartargetresponset byfittingw withadataset

D

ofN observationsto atXo

=

[xo1

· · ·

xoN].Wethereforeassumethatthetargett canbewrittenas:

t

=

y

(

w

,

x

)

+



with y

(

w

,

x

)

=

M

j wj

φ

j

(

x

)

and p

(



)

=

N





|

0

,

σ

n2



(10)

wherethe noise



is givenbya zero-mean Gaussiandistribution withvariance

σ

2

n and y is linearwithrespectto its M weights,gatheredinthevectorw.Notethattheassumptionofalinearmodeldoesnotlimititsfittingcapabilitiessincethe basisfunctions

φ

define afeaturespacethatcanbenonlinearinx.Inthecontextofthiswork,t canbeasingle stressor tractioncomponent,butthediscussionisequallyapplicabletotheproblemofmodelingindividualmodelcomponents(e.g. yieldparameters).

Inorderto findvaluesforw,we computethelikelihoodfunction ofthemodel,i.e.how likelythemodelistoproduce thevaluestoin

D

givenw:

p



to

|

w

,

σ

n2



=

N

i

N



toi

|

wT

φ (

xoi

) ,

σ

n2



(11) whichisaproductoftheprobabilitiesofeach pointinisolation becauseweassume thateachsampletoi issampledfrom theconditionaldistributionp

(

t

|

y

)

independently.Wecanfindanoptimumdatafitforw bymaximizingthelikelihoodand assumingthattheshapesof

φ

arefixedapriori:

∇w

p



to

|

w

,

σ

n2



=

0

wML

=





T





−1



Ttoand

σ

n2

=

1 N N

i



toi

wTML

φ (

xoi

)



2 (12) where



∈ R

N×M is a matrix withbasis function values

φ

i,j

= φ

i



xo j



evaluated at each point in

D

. Note that this is equivalent tominimizingthesumofsquareddifferencesbetween y andt,sowML isthesameparametervectorobtained bytheclassicalleastsquaresapproachand

σ

2

n quantifiesthespreadoft aroundy.

Herewedonotoptforaleast-squaresapproachforthreereasons.Firstly,itcansufferfromsevereoverfittingwhenthe dataset

D

issmall—whichisthecaseinthepresentworksince wehavenooffline trainingandonlyasmallnumberof fully-solved micromodelsto sample from. Secondly,the uncertaintyassociated with

σ

2

n is constantthroughout theinput spacex anddoesnot provideanindication that themodelisbeingusedata locationfar fromdata points(which could thenbeusedtotriggerarefinementof

D).

Finally,performingmodelselectionintheleast-squaresframework,using cross-validation for instance, is rather tedious compared to performing model selection in the context ofBayesian regression methods[40].

(7)

3.2. Bayesianparametricregression

IntheBayesianapproachtoregression,wenotonlyassumeanuncertaintyoverthetargett butalsoovertheweightsw.

Weinitiallyassumeapriorprobabilityoverw thatrepresentsourinitialmodelassumptionsbeforeanydataisencountered:

p

(

w

)

=

N



w

|

0

,

σ

w2I



(13) where

σ

2

wisthevarianceparameterassociatedwiththeuncertaintyovervaluesofw. Informationfrom

D

isincorporated byusingBayes’theoremtoobtainaposteriorprobabilitydistributionforw:

p

(

w

|

to

)

=

p

(

to

|

w

)

p

(

w

)

p

(

to

)

with p

(

to

)

=

p

(

to

|

w

)

p

(

w

)

dw (14)

where p

(

to

|

w

)

isthelikelihoodfunctionofEq. (11) and p

(

to

)

isthemarginallikelihood ofthemodel(i.e.theprobabilityof producingthedataset

D

).Becausebothw andt

|

w areGaussianvariables,ananalyticalsolutionexistsforp

(

w

|

to

)

[40]:

p

(

w

|

to

)

=

N

(

w

|

wN

,

SN

)

with wN

=

1

σ

2 n SN



Ttoand SN

=



1

σ

2 w I

+

1

σ

2 n



T





1 (15) Notethattheexpectedvalueofw nowdependsonboththedatapointsin

D

andonourinitialbeliefsaboutw represented

bythepriordistribution.Giventhisposterior,thebestguessforw istheonewiththehighestp

(

w

|

to

).

Thisistheso-called Maximum A Posteriori (MAP) value and, for a Gaussian posterior, wMAP

=

wN. This estimation for w is equivalent to a least-squarespredictionwithaquadraticregularizationtermproportionalto

σ

2

w whichhelpsreducingthenegativeeffects ofoverfitting.

However,inafullyBayesiantreatment oflinearregression,wedonotchooseonespecificvalueforw butrathermake apredictionforanewtargetvaluet byaveragingoverallpossiblevaluesofw:

p



t

|

to

,

σ

n2

,

σ

w2



=

p



t

|

w

,

σ

2 n



p



w

|

to

,

σ

w2

,

σ

n2



dw (16)

InordertosetthestageforGaussianProcesses,itisalsointerestingtorepresenttheexpectationoft as:

E

[t

|

x]

=

N

i k

(

xoi

,

x

)

toi with k



xp

,

xq



=

1

σ

2 n

φ

T



xp



SN

φ



xq



(17) wherew hasnowvanishedandthenewpredictioniscastasalinearcombinationofvaluesfrom

D

,wherek



xp

,

xq



isa

kernel thatmeasuresthesimilaritybetweentwopointsininputspace.

TheBayesianapproachtothe(generalized)linearmodelcircumventstheproblemofoverfittingandprovidesconfidence intervals.However,thelinearmodelhasthedrawbackofhavingafixednumberofbasisfunctions

φ

whoseshapesneedto bechosenbefore

D

isobserved.Thiscanbecircumventedbyeitherallowing

φ

tochangeinshapeduringtraining(e.g.ina neuralnetwork,where

φ

areneuronvaluescomingfromthelast hiddenlayer)orbyexplicitlychoosingakernelk



xp

,

xq



andadoptingadistributionoverfunctionsinsteadofoverweights,asinGaussianProcessregressionmodels.

3.3. GaussianProcess(GP)regression

Sincethe regressionfunction y is afunctionofw, adoptingaprior distributionoverw (Eq. (13))implicitlyleads toa distributionoverfunctionvaluesy.ThisisthebasisofGaussianProcess(GP)models.Hereweassumethesefunctionvalues arejointlyGaussian:

p

(

y

)

=

N

(

y

|

0

,

K

(

X

,

X

))

(18)

whereazeromeanisassumedwithoutlossofgeneralityandK

(

X

,

X

)

istheso-calledGram matrixthatdefinesthe covari-ancebetweentheinputvaluesX associatedwithy throughakernelk



xp

,

xq



: Kpq

=

k



xp

,

xq



=

σ

f2exp



1 2

2

xp

xq

2



(19) whereinsteadoffirstdefininga prioroverweights andderiving anequivalent kernelasinEq. (17) wedirectlyassumea kernel—inthiscasethesquaredexponential kernel[41] definedbyavariance

σ

2

f andalengthscale

—whichdetermines the level ofcorrelation between points in input space. It can be shownthat adopting the squaredexponential kernel is equivalent toformulating a parametricmodelwithan infinitenumberofbasis functions

φ

oraBayesian neuralnetwork withonehiddenlayerwithaninfinitenumberofneurons[40,41].

Withthisdefinitionforthecovariancestructurebetweenfunctionvalues,wecanobtainthejointdistributionoftraining targetsto bymarginalizing(averaging)overallpossiblevaluesofyo:

(8)

Fig. 2. GP predictionsforthe functiont=sin(x)constructedwith twoobservations.Inclusionofderivativeobservationsimprovespredictionsaround trainingpointsandreducesuncertainty.

p

(

to

)

=

p

(

to

|

yo

)

p

(

yo

)

dy

=

N



to

|

0

,

K

(

Xo

,

Xo

)

+

σ

n2I



(20) whichallowsustoincorporateinformationfrom

D

bydefininga jointdistributionbetweentrainingvaluesandnew pre-dictionsforthefunctionvalue:

p



to y



=

N



to y

 





0

,

K

(

Xo

,

Xo

)

+

σ

n2I K

(

Xo

,

X

)

K

(

X

,

Xo

)

K

(

X

,

X

)



(21) andsubsequentlyfindtheconditionalprobability p

(

y

|

to

)

ofthenewfunctionvaluesgiventhatvaluescomingfrom

D

are known:

p

(

y

|

to

)

=

N

(

y

|

m

,

S

)

(22)

whichisagainaGaussiandistributionwithmeanandcovariancegivenby[40,41]: m

=

K

(

X

,

Xo

)



K

(

Xo

,

Xo

)

+

σ

n2I



1 to (23) S

=

K

(

X

,

X

)

K

(

X

,

Xo

)



K

(

Xo

,

Xo

)

+

σ

n2I



1 K

(

Xo

,

X

)

(24)

Definingk

=

K

(

Xo

,

x

)

∈ R

N×1 andKo

=

K

(

Xo

,

Xo

)

∈ R

N×N,we canarriveatshorterexpressionsfortheexpectation andvarianceofthefunctionvalueatasinglenewpointx:

E

[ y

|

x]

=

kT



Ko

+

σ

n2I



−1 to (25)

V

[ y

|

x]

=

k

(

x

,

x

)

kT



Ko

+

σ

n2I



−1 k (26)

Notethathereweoptfordirectlyusingthefunctionvalue yinsteadofitsnoisyversionttodefineoursurrogatemodels. Thiseffectivelymakestheadaptivecomponentsoftheaccelerationframework,whicharedrivenbyincreasesinthevariance givenbyEq. (26),lesssensitivetochangesin

σ

2

n.

InFig.2awedemonstrateaGPmodelbyplottingpredictionsbasedontwoobservationsofthenoiselesstargetfunction

t

=

sin(x

).

TheconditioningofEq. (22) guaranteesthat y coincideswiththeobservationsatthetrainingpointsXo.Away from the training space

D

the GP returns to its zero-mean prior with high variance. This behavior is desirable for our application, since thisuncertainty can be used asa trigger to eithermaking newobservations atthe existing full-order integrationpointsoraddingnewpointstothefull-ordersetwhennecessary.

3.4. Predictingderivativesandincludingderivativeobservations

Inbuildingconstitutivemodelsurrogates,inadditiontopredictingnewfunctionvalues(Eq. (25)),theirderivativeswith respecttotheinputx arealsoneeded.ThesecanbecomputedbydifferentiatingEq. (25):

x

E

[ y

|

x∗]

=

N

i ai

xk

(

x

,

xi

)

(27)

(9)

whereaiisthei-thcomponentofthevectora

=



K

+

σ

2 nI



−1

t andthederivativeofthekernelisgivenby:

k



xp

,

xq



xp k



xp

,

xq



= −

1

2



xp

xq



k



xp

,

xq



(28) However, sincewecan alsoobservethesederivatives(intheformofD fromEq. (5))attheanchormodels,it isalso interestingtoincludethisinformationintheGPinordertoimproveitspredictions.Thisisachievedbyrecognizingthatthe derivativeofaGPremainsGaussiananddefiningthecovariancebetweenfunctionvaluesandderivativesas[42]:

cov



yp

,

yq



=

xpk



xp

,

xq



cov



yp

,

yq



=

2

xq

xpk



xp

,

xq



+

σ

d2 (29) where

σ

2

d isanoiseparameterthatrepresentstheuncertaintyassociatedtoobservingthederivatives,thefirst-order deriva-tiveofthekernelisgiveninEq. (28) anditssecondderivativeisamatrixgivenby:

k



xp

,

xq



2

xqxpk



xp

,

xq



=

1

2



I

1

2



xp

xq

 

xp

xq



T



k



xp

,

xq



(30)

Withthesedefinitions,thejointpriordistributionoftrainingtargetsbecomes[43]:

p



to to



=

N



to to

 





0

,

Ko

+

σ

n2I Ktd KTtd Kdd



N



to to

 





0

,

Ko



(31) where Ko is thesamekernelmatrixappearing inEq. (25) and Ktd

∈ R

N×N D andKdd

∈ R

N D×N D are composed ofblocks of k



xp

,

xq



andk



xp

,

xq



,respectively, withKo beingthe resultant N

(

D

+

1)

×

N

(

D

+

1) covariancematrix (D is the dimensionalityofx).MakingpointpredictionsisdoneinasimilarwayasinEq. (25):

k

=



k k

(

x1

,

x

)

· · ·

k

(

xN

,

x

)



T

(32)

E

[ y

|

x]

=

kTKo−1to

V

[ y

|

x]

=

k

(

x

,

x

)

kTKo1k

+

σ

n2 (33) wherethetargetvectornowincludestheobservedderivatives:

to

=



to1

· · ·

toN to1

· · ·

toN



T

(34) and predictions for the tangent are done as in Eq. (27) but now by differentiating k instead of k. Fig. 2 shows GP predictionsfort

=

sin(x

)

withtwotrainingpointswithandwithoutincludingderivativeobservations.Nowtheconditioning notonlyconstrainsthepredictionstoagreewiththetargetvaluesin

D

butalsowiththeirderivatives.Thismakeseffective useofthelimitedamountofinformationcomingfromasmallnumberofonline observations, asmakingasinglegradient observationisequivalenttoaddingD extrafunctionobservationsaroundthetargetvalue.

3.5. Hyperparameteroptimization

Theprocess variance

σ

2

f andlength scale

thatcomposethekernelandthetarget noise

σ

n2 arehyperparametersthat shouldbelearnedfromthedataset

D

.SinceafullBayesiantreatmentfortheseparameters—introducingaprior,deriving aposteriorandmarginalizing—usually demandstheuseofexpensivenumericaltechniquessuchasMarkovChain Monte Carlo(MCMC),hereweoptforamaximumlikelihoodsolutioninordertominimizethecomputationaloverheadassociated withtheonline calibrationoftheGPmodels.Furthermore,duetothelimitedamountofdataavailableforestimation,here werefrainfromoptimizingforthederivativenoise

σ

2

d andinsteadassumederivativeobservationsarenoiseless.

Theaimhereistomaximize themarginallikelihood,obtainedby averagingtheprobability thatthemodelreproduces thetrainingtargetsoverallpossiblevaluesofyoassociatedwithto:

p



to

|

σ

f2

,

σ

n2

,



=

p



to

|

yo

,

σ

n2



p



yo

|

σ

2 f

,



dyo (35)

whichisafunctionthatdependsonlyonthehyperparameters.WeoptimizethismarginallikelihoodwithaBFGSalgorithm [44], which requiresthe computation ofthegradient of p



t



.Taking thenaturallogarithm ofboth sidesof Eq. (35) and differentiatingwithrespecttoKoyieldsanexpressionforthegradient:

ln p



to



= −

1 2tr



Ko1

Ko



+

1 2t T oK− 1 o

Koto (36)

and

Ko can be obtained in a straightforward manner by differentiating Eqs. (19), (28) and (30) with respect to each hyperparameterandreassemblingthematrixasinEq. (31).

(10)

4. Surrogatemodelingframework

Inthissection,weusethetechniquesofSection3.2tobuildanadaptivesurrogatemodelingframeworkforFE2. Follow-ingFig.1,weintroduceasurrogatemodel

S

trainedonasetofconstitutiveobservations

D

obtainedfromasmallnumber of fully-solved anchor models (gathered in the set

A

) subjected to the strain histories from their respective anchoring integrationpoints.Forbulkhomogenization,wedefine

S

as:

σ





ε



,

D



=

D e

ε



+ E





σ





ε



,

D



(37) whereD

e isaninitialstiffnessobtainedfromthefirstcomputedintegrationpointand



σ

isastresscorrectiongivenbythe meanGPresponse,withthevariancebeingusedexclusivelyforadaptivitypurposes.Theconsistenttangentstiffness isthe combinationofDe andthederivativesoftheexpectedstresscorrections(Eq. (27)).Thedataset

D

ispopulatedwithstress andstiffnessvaluescomingfrompointswiththehighestvaluesfortheuncertaintyoveranycomponentof



σ

.

Weoptformodelingeachcomponentof



σ

(threecomponentsforthe2Dexamplestreatedhere,withwhichwe implic-itlyenforcesymmetrytothestresstensor)independently,eachwithits ownzero-meanGPmodel.Thisstrategyimplicitly statesthatcomponentsofthestresstensorareaprioriuncorrelated,whichgreatlysimplifiesthestructureofthecovariance matrixof theGPmodels andreducesthenumberof hyperparameterstobe estimated. Furthermore,we assumefornow that



σ

dependsonlyonthecurrentstrainvalue

ε

,whichmeansthattheGPmodelloads,unloads andreloadsalongthe samepath.Thisisalimitationtobeaddressedinfutureversionsoftheframeworkthatcurrentlyhindersitsabilitytotreat generalnon-monotonic loadpaths.1 Itisworth mentioning,however,that pathdependencyisalreadypartiallyaccounted forsincedifferentstrainhistorieswillleadtotheconstructionofdifferentsurrogates.

Note that the generality of the

S

model givenby Eq. (37) is not compromised by the elastic-correction additive de-composition since



σ

cantake anyshape, butforinitially linear-elasticmaterialsthissplitimproves therobustness ofthe surrogateintwo ways.Firstly, ithelpstheGP inreproducingthe initialelasticbehavioratamomentwhenthesurrogate modelshaveverylittledatatowork with.Secondly,itaidsinpreventingtheoccurrenceofspurious strainlocalizationas theGPmovesbacktoitszeroprior:awayfromthetrainingpoints,themodelofEq. (37) returnsinsteadtoalinear-elastic response.

At this point, it is relevant to distinguish the present approach from other interesting active learning strategies for constitutivemodelingproposed inliterature[45].In[31,32],theauthorsconstructaconstitutivedatabasefromwhich ob-servations areadaptivelyselected andusedtobuild surrogateGP constitutivemodels bothforstressesandforanumber of assumedmacroscopicinternal variables, creatinga one-to-one mapping betweeninputsandoutputs. Here we opt for a moregeneralapproach anddonot assume theexistence ofmacroscopicinternal variables. Thischoice ismotivatedby thebasicFE2 premisethatmicroscopicbehavioristoocomplextoconformtoanapriori assumedmacroscopicconstitutive modelandleadstoanon-uniquemappinginvolvingexclusivelystressesandstrains.Thiseffectivelyamountstoareduction indimensionalityofthefeaturespaceofthesurrogates thatallowsustoemploythesameframework forcompletely dis-tinctconstitutivemodels(c.f.Eqs. (37) and (43)).Thisdimensionalityreductionimplicitlycreatestheneedfortheexistence ofanchormodelsandforsubjectingthemtothestrainpathsseenbytheirrespectiveanchoringpoints,allowingthe micro-scopic internalvariables—whicharenotobservedbythesurrogate—toinfluencethemacroscopicstress-strainresponse andcompensateforthelossofinformationincurredwhenavoidingmakingassumptionsonmacroscopicinternalvariables.2 In order to positionthe present active learning approach within a generalFEM implementation,it is useful to recall themainsteps involvedinfindingequilibriumsolutionsfornonlinearfiniteelement models.TheseareshowninFig.3.A solutionforu isobtainediterativelybyminimizingaglobalforceresidualr computedfromthematerialresponseatevery integrationpoint(

materialUpdate

).Uponconvergenceandbeforemovingtothenexttimestep,thecurrentsolutionis checked(

checkSolution

)andcanberejectedifthereisaneedtoadaptthemodel(e.g.nucleate/propagatecracks,refine themesh,changeconstitutivemodels).Oncethesolutionisconvergedandaccepted,materialhistoryisupdated(

commit

) andthemodelmovestothenexttimestep.

InanFE2 model,Fig.3canrepresentthemacroscopicsolutionloopandthemicromodelscanbeseenasamaterial-like entity,whichleadstoanothersimilarsolutionloopbeingembeddedwithinthe

materialUpdate

routine.Hereweexploit this modularity and discussthe implementation ofthe learning approach asa surrogate to an arbitrarymaterial model denotedas

fullModel

.We canthereforeimplementtheapproachasamaterialwrapperthatencapsulates

fullModel

and handleslearning andprediction tasks.Algorithms 1, 2,4 and5 show how the material routinesmarked in bold in Fig.3areimplementedforthiswrapper.Inthefollowing,weelaborateoneachofthesecomponentsandpresentthemain implementationalaspectsoftheframeworkindetail.

1 Thiscanbeaddressedbyaugmentingtheinputspace,themoststraightforwardwaybeingusingbothεand

εasinputstotheGPmodels[33,34]. 2 Thenoisehyperparameterσ2

f learnedduringtheanalysisimplicitlyaccountsforthedimensionalityreductionerrorincurredbyassumingtwoanchor modelsoperatingatthesamestrainlevelbutwithdifferentmicroscopicinternalstateshavethesamestressresponse.

(11)

Fig. 3. Schematic analysisflowforfiniteelementproblemsinvolvingnonlinearmaterialbehavior.Thesubscriptso andn refertoold(converged)andnew (current)values,respectively.Theproposedaccelerationframeworkfocusesonthestepsmarkedinbold.

4.1. Initialsampling

Sincethereisnooffline training,thesurrogatemodelstartswithnopriorinformationontheconstitutivebehaviorbeing approximated (D = ∅) andno anchor modelsinitially present (A

= ∅

). We thereforeintroduce an initializationstep by solvingthefirsttimeincrementundertheassumptionthatallintegrationpointsaredeformingelasticallyinordertoobtain an initial strain distribution which we use to initialize

A

and

D

. During thisstep, we usethe fully-solved modelonly once inorderto obtain theinitial stiffness De andwe assume allother points have thesame stiffness inorderto avoid furtherfull-ordercomputations(Algorithm1).Aswewillseeshortly,thisisnotalimitingassumptionsincethisfirstelastic approximationisrejectedandthefirsttimestepisrevisitedaftertheGPmodelsandinitialanchorsareinitialized.

Algorithm 1: The

materialUpdate

routine.

Input: strain εattheintegrationpointp

Output: stress σandstiffness

D at

theintegrationpoint 1 if initialization step :

2 if Deisnotinitialized(i.e.p isthefirstpointevercomputed) :

3 useoriginalconstitutivemodel:(σ,D)← fullModel :: materialUpdate (ε); 4 initializeelasticstiffness:

D

e←D;

5 else

6 assumep hasthesamestiffnessasthefirstcomputedpoint:σDeε;

D

De; 7 else

8 computeelasticstresses:σe←Deε;

9 useGPtopredictaconstitutivecorrection:Eσ, D, V[σ]← GP (ε); 10 approximatetheresponse:σσe+ E[σ], D De+ ED; 11 computetheuncertaintyindicatorγasinEq. (38);

12 ifγ>γcancel:

13 cancel time step (Algorithm5); 14 if softening isdetected(Dii<0) :

15 penalizepointuncertainty:γγDii; 16 if last stephasbeencancelled :

17 switchtoamodifiedNewton-Raphsonstrategy:

D

De; 18 storevaluesforthispoint:εn

pε;γpn←γ; 19 returnσ, D

After thisfirstapproximationforthesolutionisobtained,the

checkSolution

routineofAlgorithm2iscalled.Since thestrainsateveryintegrationpointarestored,aninformedinitialchoicefor

A

canbemadebyclusteringtheintegration pointsusingak-meansclusteringalgorithm[46].Foreachcluster,thepointclosesttotheclustercentroidischosen,added to

A

andimmediatelysampled.TheGPmodels(oneforeachstresscomponent)arethenpreparedtomakepredictionsby computingandstoringfactorizedversionsoftheircovariancematrices.

Initialvaluesforthehyperparameters

σ

2

f,

σ

n2 and

caneitherbeprovidedby theuserbasedonpriorknowledge (e.g. from using the same material on other models)3 or be estimated online with an initial training procedure. We do this herebycreatingafictitiousanchormodelforeach clusterandloadingitmonotonicallyinthestraindirectionseenbythe

3 Hyperparametersreflectintrinsicpatternsintheconstitutivemanifoldbeinginferredandshouldthereforebefairlyinsensitivetothemacroscopic modelbeingsolved.

(12)

Algorithm 2: The

checkSolution

routine. 1 if first timestep :

2 initializedatasetandanchorpointset:

D

← ∅,

A

← ∅;

3 dividetheintegrationpointsintok clustersinstrainspace:C,εn← KMCεn,k; 4 for every clusterCi∈ C:

5 findrepresentativepointp=arg min

jCi εn jε n i ; 6 anchorafully-solvedmodelatpointp:

A

← Ap;

7 solvethenewly-createdfullmodelonce:

(

σ,D)← fullModel :: materialUpdateεn

p

 ; 8 computecorrectionsandadddata:σσDeεnp;DD De;

D

← D ∪

 εn p,   σ D; 9 updateGPandstoremarginallikelihood:updateGP(D);Lln p(y|x);

10 reject solution (revisit the first time step); 11 else

12 update

D

basedonthetoleranceγtolusingAlgorithm3:

D

← D ∪ addData (γtol); 13 ifThasnotchanged :

14 accept solution as is (Algorithm4); 15 else

16 refactorcovariancematrix:updateGP(D); 17 if L/ln pt >Lretrain:

18 recomputeGPhyperparameters:retrainGP(D);Lln pt; 19 reject solution (continue on the same time step);

point closest to the cluster centroid.In order to avoid redundancy (e.g. adding linear-elasticdata coming frommultiple models),wefirstinitializetheGPwiththestandardhyperparametervalues

σ

2

f

=

1.0 MPa 2,

=

1.0

×

10−2,

σ

2

n

=

0.0 MPa2 anduse avariance threshold asadosing mechanism toensure theadded datais uniformlyspaced.After optimizing for thehyperparameters,we discardthedataobtainedfromthefictitiousanchors sincethereisnoguaranteeanyofthereal integrationpointswillfollowthesamestrain history.Once

D

and

A

areinitialized,thefirsttime stepisthenrevisitedby rejecting theinitial elastic approximationdone inAlgorithm1. Notethat thishappensonlyonceatthe beginningofthe analysis.

4.2. Activelearning

After theinitializationstep,theGPsurrogates areusedtocompute



σ

andthe responseisapproximatedasinEq. (37) (referto Fig. 3forthe analysisflow ofa single load increment).Since an independentGP model isused foreach stress component,weadoptasingleuncertaintyindicator

γ

givenby:

γ

=

max i



V

[



σ

i]



(38) with nσ being the number of stress components, and use it to drive the adaptive components of the framework. The indicator

γ

isthereforean absolutemeasure ofuncertainty(expressedinunitsofstress).Weempiricallyfindthischoice of indicator to offer the best performance in the examples treated in this work. Nevertheless, other alternatives might performbetterdepending ontheproblembeingsolved —e.g. normalizing

V

[



σ

i] withtheprocessvariance,whichforthe presentexampleswe findtoadverselyaffecttheperformance oftheframeworkwhen

σ

2

f isperiodicallyre-estimated.The literatureonactivelearningandgreedyGPapproximationscanalsoprovidetheinterestedreaderwithfurtheralternatives fordefining

γ

(referforinstancetoSection8.3.3of[41] andreferenceswithin).

Valuesof

γ

forallintegrationpointsareupdatedateveryglobalNewton-Raphsoniteration(Algorithm1)andtheirfinal values

γ

n (uponglobalconvergence) are used to drivea greedy refinementof theGP models (Algorithm 2) and ensure the surrogatemodel remains accurate.Thisis enforced bythe toleranceparameter

γ

tol throughthe

addData

routine of Algorithm3.Herewedefineanadditionalset

T

oftrackedanchorsthatcontainsthemodelsforwhichdatahasbeenadded during thepresenttime step.Theset

T

isusedboth toavoidrepeatedly addingdatafroma single anchormodelatany giventime step andto makesurethe single addeddatapoint isupdated toreflect thelatestequilibrium solution(since fromFig.3,multiple

materialUpdate

→ checkSolution → continue

cyclescanoccurbeforehistoryiscommitted). Theuncertaintylevel

γ

ischeckedateveryintegrationpointandtheanchormodelassociatedwiththepointhavingthe highestvalueischosen forsampling.Inordertokeepthenumberofmodelsin

A

toaminimum,

addData

givespriority to models already in

A

and only considers other potential anchoring points if every model in

A

with an uncertainty higherthan

γ

tol hasalreadybeensampledonthecurrenttimestep.Sincethemacroscopicproblembeingsolvedimposesa degreeofsimilaritybetweenintegrationpoints,theideaisthataddingdatafrompointsin

A

shouldalsohelpreduce the uncertaintyofnearbyintegrationpoints. Thiscanthereforebe seenasagreedy data selectionapproach[41] thataimsat keepingboth

A

and

D

assmallaspossible.Ifallmodelsin

A

havealreadybeensampledandanewanchoringpointmust be chosen,we firstrecoverthematerialhistoryofthenewly-createdmodelby makingitrevisit thecompletecumulative strainhistory

ε

phofitsanchoringpoint p.Alsonotethatweavoidaddingdatafrommodelsin

A

undergoingunloadingor

(13)

reloading.Thisisaconsequenceofassumingauniquerelationshipbetweenstrainsandstresses:datacomingfromanchor modelsunloadingthroughadifferentpathwouldbeerroneouslyinterpretedbytheGPmodelsasnoise.

Algorithm 3: The

addData

routine.

Input: A toleranceγtol

Output: A singledatapointtobeincludedin

D

1 updatedatasampledfrom

T

toreflectthenewequilibriumstrainsεn

pT; 2 updateGPmodelsanduncertaintyindicators:updateGP(D);γnγεn

; 3 trytofindanuntrackedanchorpointtosample:p=arg max

pA,p/

n

p|γpntol; 4 if p cannot befound :

5 trytofindanewanchoringpoint:p=arg max

p/A,p/Tγ

n

p|γpntol; 6 updatelistoftrackedpoints:

T

← T ∪p;

7 updatelistofanchorpoints:

A

← Ap if p∈ A/ ;

8 callfullModel:: materialUpdate(εhp)tograduallybringtheanchoratp tothecurrenttimestep; 9 computemodelresponseatεn

p:

(

σ,D)← fullModel :: materialUpdate  εn p  ; 10 computecorrections:σn pσDeεnp;DnpD De; 11 returnεt p,   σt p D t p 

witht beingthelateststeponwhichp isnotunloading/reloading;

Upon making changes to

D

, the covariancematrices ofall GP models are updated and refactored.The addition ofa new observation alsoleads to a change in marginal likelihood (Eq. (35)). We therefore allow for a re-estimation of the hyperparameterstotakeplaceoncethelikelihoodreachesavalueLretraintimeslowerthantheonecomputedafterthelatest estimation.If

T

hasnotchangedduringthelatestcallto

addData

,thecurrentsolutionisacceptedasitis.Otherwisewe continuewiththesametimestepbyrejectingthecurrentsolution,whichwillcausetheglobalNewton-Raphsonsolverto keepsearchingforanequilibriumsolution(refertoFig.3)butnowwithupdatedGPmodels.

Twoadditionaladaptivitysafeguardsareputinplaceinthe

materialUpdate

routineofAlgorithm1.Firstly,thetime stepcanbecancelediftheuncertaintyishigherthanathreshold

γ

cancel inordertoavoidconsideringequilibriumsolutions thatareexcessivelyfarfromtheconstitutivebehaviorbeingapproximated.AswewilldiscussinSection 4.3,cancelingthe currentloadstepdoesnot meangivingup ontheanalysis, withnewsolutionattemptsbeingmadeafterincludingextra anchor models in

A

and retraining the GPmodels. Secondly,the diagonal ofthe tangent stiffness matrix ischecked for possiblenegative values,providingan indicationofsoftening.Thiswouldindicateaswitchfromstressestotractions isin order,butthedecisionforsuchaconstitutivemodelswitchshouldalwaysbebasedonaccurateinformationobtainedfrom modelsin

A

.Therefore,weflagthepointforsamplingbypenalizingitsuncertainty.4

Apart fromthe very first update computed inorder to obtain De,the expensive full-order modelis never computed during

materialUpdate

(Algorithm1).Analternativetothisapproachwouldbetoactuallycallthemodelsin

A

every time stressesat the anchoring points are computed. We do not opt forthis alternative fortwo reasons. Firstly, using a single constitutive model(the surrogate

S

)for thewhole meshavoids potential non-uniquenessissuesthat wouldarise, for instance,if points in

A

are switching betweendifferent constitutive regimes(loading/unloading/softening). Secondly, refraining from constantly updating the models in

A

resultsin significant gains interms of accelerationby making the reducedmodelinsensitive tothenumberofglobalNewton-Raphsoniterationsneededforconvergence andallowing full-order models in

A

to become dormant andessentially be removedfrom the analysis foras long as the uncertainty at the associated anchoring point doesnot increase. However, it is worth mentioning in passing that the more expensive alternative hasthe meritofallowing foran extranoveltydetection safeguardtobe employedthrough whichthedeviation betweenpredictionsfor

σ

comingfromthefull-orderandsurrogatemodelscanbekeptincheck.

4.3. Solutionrobustness

Algorithms 2and3ensurethat onlya singledata pointisaddedto

D

atatime. Thisisdone inordertoavoidlarge perturbationstothecurrentequilibriumsolutioncausedbychangesintheconstitutiveresponse.5Onceanewobservationis added,thecurrent(nowunconverged)solutioniskeptbutthealgorithmcontinuesonthesametimestepuntilequilibrium isreestablished,atwhichpoint

checkSolution

isonceagaincalled(refertoFig.3fortheorderinwhichtheseroutines are calledwithin a single analysis step). This process is repeated until

γ

n is lower than

γ

tol everywhere. The resulting cycleofcarefullyaddingdatawithoutsignificantlydriftingawayfromequilibriumhelpskeepingtheglobalsolutionscheme robust.

4 Intheexamplesofthispaperwedonottreatmodelsforwhichsuchaswitchfrombulktocohesivebehaviorwouldbenecessary.Thesafeguardis thereforeonlytriggeredinrareoccasionswhentheGPistryingtoapproximateaperfectly-plasticresponse.

5 AddingdatatotheGPaffectstheresponseofallpointswithinahypersphereinstrainspacewitharadiusthatdependson

.Theresultingchangein globalresponsemaycausethesolvertodiverge.

(14)

Algorithm 4: The

commit

routine. 1 clearlistoftrackedmodels:

T

← ∅; 2 storeconvergedvalues:γoγn;

3 updatepersistentstrainhistory:εhεh εn; 4 go to next time step;

Whenthesolutionconvergesand

γ

n

<

γ

tolforallintegrationpoints,the

commit

routineiscalled(Algorithm4).Before moving to the next step, converged values for

γ

are updated. If the global solver failsto convergeor if the additional uncertainty threshold

γ

cancel of Algorithm1 isviolated, the solutionfor thecurrenttime step is canceled(Algorithm 5). Beforemakinganewsolutionattempt, convergedvaluesarerecoveredandAlgorithm3isusedtosample themodelwith highest uncertainty even if its value for

γ

is lower than

γ

tol. Furthermore, we switch to a secant solution strategy by fixingthestiffnessmatrixtoDe(Algorithm1).Weempiricallynoticethat,forcertaincombinationsofhyperparameters,the surrogate modelcausestheglobalNewton-Raphsonsolver toloserobustness duetorapidchanges instiffness. Switching toa secantstrategyafteracanceled stepassuresasolutionisfound underthisscenario,albeitwithalower convergence rate.

Algorithm 5: The

cancel

routine.

1 recoverconvergedvalues:γnγo;

2 adddatafromthepointwiththehighestvariance(Algorithm3):

D

← D ∪ addData (0); 3 refactorcovariancematrix:updateGP(D);

4 if L/ln pt >Lretrain:

5 recomputeGPhyperparameters:retrainGP(D);Lln pt; 6 go back to the beginning of the time step;

5. Numericalexamples

In this section, we put the proposed framework to the test on a number ofnumerical examples. The algorithms of Section4havebeenimplementedinanin-houseFiniteElementcodeusingtheopen-sourceJem/JiveC++numericalanalysis library[47].WebeginbydemonstratingtheapplicabilityoftheframeworkforFE2 analysisandmoveontoperformingan in-depthinvestigationofitsperformancewithfastsingle-scalehomogeneousexamplesthatallowforextensiveparametric studiestobeperformed.Itisemphasizedthat,althoughitisourvisiontousethesurrogatemodelinamultiscalecontext, itdoesnot matterforthepurposeoftestingtheactivelearning frameworkwhetherthematerialupdateofthefullmodel involvessolvingamicromechanicalBVPorjustevaluatinganonlinearconstitutiverelation.

5.1. FE2demonstration

The firstexampleconcerns afiber-reinforced compositetaperedspecimenloaded intransversetension.The geometry, meshandboundaryconditionsareshowninFig.4.A4-fiberRVEmodelisembeddedateachmacroscopicintegrationpoint. ThegeometryandmeshofthemicromodelarealsoshowninFig.4.Thefibersaremodeledaslinearelasticwithproperties

E

=

74000 MPa and

ν

=

0.2.Forthematrixweemploy thepressure-dependentelastoplasticmodelproposed byMelroet al. [48],withE

=

3130 MPa,

ν

=

0.37,

ν

p

=

0.32 (plasticPoisson’sratio)andyieldstressesgivenby:

σ

t

=

64

.

80

33

.

6e−ε p eq/0.003407

10

.

21eεeqp/0.06493 (39)

σ

c

=

81

.

00

42

.

0e−ε p eq/0.003407

12

.

77eεeqp/0.06493 (40) where

ε

eqp istheequivalent plasticstrain. The modelissolved for100loadsteps,atwhichpoint theglobalmacroscopic responseisalmostperfectlyplasticandthestrainlocalizesaroundthecenterofthespecimen.

We run thereducedmodelwithk

=

1,

γ

tol

=

0.3 MPa,

γ

cancel

=

20 MPa and withhyperparameters estimatedusinga single micromodelloadedinthedirectionofthesinglek-meansclusteringcentroid(inthiscasetheaveragestrain inthe specimen).The analysisstarts with

A

= ∅

and

D = ∅

andendswithatotalof14anchormodels in

A

(outofa totalof 134points)and

|

D|

=

73 datapoints.

Weplottheresultantload-displacementresponseforbothfull- andreduced-ordermodelsinFig.5.Theactivelearning approach is able to capturethe correctglobal model response with negligible loss of accuracy while running 22 times faster than thefull-order model.Ofthe 35 s execution time of thereduced model,a total of15 s isspent on updating the GP models and usingthem for newpredictions. For larger micromodelswith denser meshes, the execution time of thereducedmodelwillbedominatedbycomputingthefewmicromodelsincludedin

A

andtheoverheadassociatedwith theGPmodelswillbecome negligible.Forthefull-ordermodel,99% oftheexecutiontimeisspent solvingtheembedded micromodels, confirming the bottleneckassumption ofEq. (8). InFig. 6 we plotthe horizontal stress distribution along

Cytaty

Powiązane dokumenty

Wzorcowy skład osobowy

Niezwykła wartość wideo w content marketingu, a także skuteczność komunikacji za pośrednictwem mediów społecznościowych przyczyniły się do powstania nowego nurtu

CIarKOWSKI, Dariusz.: Jeśli podwyżki, to nieznaczne…: o systemie odbioru i gospodarowania odpadami komu- nalnymi z zastępcą prezydenta Płocka Dariuszem Ciarkow- skim

The influence of propeller geometry on the propeller-hull inter- action is given by results from six propeller models beeing tes- ted behind a ship model in the cavitation tunnel..

W najbli¿szej przysz³oœci planowane jest dostosowywanie programu do zmian zachodz¹- cych w strukturze danych geometrycznych i opisowych znajduj¹cych siê w nadleœnictwach, tak

Przedsiębiorstwo nie podejmie działań, które nie mają dla niego ekonomicznego sensu (re- prezentowanego w niniejszej analizie przez NPV), dlatego istotne jest analizowanie takich

Nie jest to zgodne z zasadą niezależności danych, ponieważ o ile określenie encji, relacji i atrybutów wynika z poziomu konceptualnego i zewnętrznego, tam gdzie odnosi- my się

Jako najistotniejsze wymienił zaangażowanie się młodych w życie Kościoła, świadectwo życia kapłańskiego, konieczność spotkań z rodzicami i wypracowanie wspólnego