• Nie Znaleziono Wyników

Moments of probability distributions semiattracted to semi-stable m easures on Hilbert spaces

N/A
N/A
Protected

Academic year: 2021

Share "Moments of probability distributions semiattracted to semi-stable m easures on Hilbert spaces"

Copied!
7
0
0

Pełen tekst

(1)

A (' T A U N I V F R S I T A T I S L 0 D Z I E N S I S FOLIA M AT HE M AT ICA 9, 1997 M aria Kłosowska M O M E N T S O F P R O B A B I L I T Y D I S T R I B U T I O N S S E M I - A T T R A C T E D T O S E M I - S T A B L E M E A S U R E S O N H IL B E R T S P A C E S 1

Let. H be a real s e p ar a b le Hilbert, s p a c e , </ a lio n - d e g e n e r a t e s e m i-s t a b le d ii-s t r ib u t io n on H an d « £ ( 0 , 2 ] an e x p o n e n t for q.

It. i.s pr ov ed t h a t t h e p r o ba b il it y d is t r ib u t io n s s e m i- a t t r a c t e d t o t he m e a s u r e r/ h a v e a b s o l u t e m o m e n t s o f order / i for ß £ ( 0 , o ) an d h av e no s uc h m o m e n t s for /i > n and о ф ‘2.

Let II be a. real separable Hilbert space with the norm | * |. Consider

where .V, are independent //- v a lu e d random variables with a com m on distribution />. a n > I), x n 6 II and { kj } is an increasing sequence of p o sitiv e integers such that

(2) lim kn + 1 k u 1 = r < -boo.

T he distributions o f sum s ( I) m ay be written in the form

(2)

where the power / / is taken in the sense o f convo lutio n, Sr denotes the distribution concentra ted at a point x G / / , and the m easure T ap is defined by the form ula

for all Borel sub sets В of / / .

A probability m easure ou II is said to be se m i-sta b le il it is a weak lim it o f sequence (3). VV.M. Kruglov g av e in [4] a characterization of se m i-sta b le m easures. Nam ely, a m easure on II is sem i-sta ble il and only if it is a G aussian m easure or an infinitely divisible purely Poisso- nian m easure represented by a L évy-K hint.ehine spectral m easure M such that

for som e n G (0, 2) and A G (0, + o o ) \ {1}.

T he class o f sem i -stable m easures is a subclass o f infinitely divisible m easures and is a natural ex tensio n o f the class of sta ble m easures. For this reason, in the sequel, the num ber о in (4) will be called an expo nen t for a purely P oisso nian sem i-sta b le m easure (the expo nent for a G aussian m easures is equal to 2). S em i-sta b le m easures have their dom ains of se m i-a ttr a ctio n . Nam ely, by a d o m a in o f s e m i- a t tra c tio n o f a se m i-sta b le m easure q we m ean a class of distributions p such that sequence (3) converges weakly to q for som e a n > 0, x n G I I and { A‘n} sa tisfy ing (2). We shall also say tha t p is se m i- a t tra c te d to q if p belongs to this class.

T he theorem s on m om ents of m easures a ttra cted to sta ble laws can be found in [1] and [Г>]. We shall prove an analogous theorem for

distributions sem i-a ttra c ted to sem i-sta b le m easures on I I . Our proof is elem enta ry in the case r > I and. in ih e case /• = 1 (th e stable case), we can apply th e sam e m ethod. Consequently, if we reduce the problem to m easures attra cted to stable laws on a straight line, then we obtain a proof sim pler than the classical one.

T h e o r e m . Let q h e a n o n - d e g e n e r a te s e m i - s t a b le m ea su re on H, a n d n G (0.2] an e x p o n e n t for q. I f a d istrib u tio n p on II is s e m i - a ttr a c te d to th e m e a su re q, th en

Tup ( B ) = p { x G II : a x G В },

(3)

a n d

/ |.r|',,/)(r/;r) = -l-oo, for ft > O', О Ф 2.

« II

Proof. W e shall consider several cases.

C A SE I. Let n G ( 0 , 2 ) . Thus the m easure q is represented b y a

L évy -K h in tchin e m easure M ф (J. From the assum ption we can find sequences {« „ }, {•*'„}, { k n } such that

Using Corollary in [2] and Lemm a 7.1 in [6], we obtain th e following: for any £ > 0, th e sequence of m easures {h nT n- i p } restricted to the set

G II : M > £}

is weakly convergent to the m easure M restricted to the sam e set. In particular, we have, for som e t. > I),

(6) litu /.•„/'{•'■ G II '■ И > /« Л = Л /{.r G II : |.г| > /} > 0. Ca s e I A . Let T hen and (s e e [4]). Of c o u r se , lim A: „ +1 k 1 = r > 1. »I —'X) li m

iVl

= a G (0 , I) na r = lim a n = -boo

and, since a < I, we ran assum e t hat {«„} is an increasing sequence. By (()), pu tting bn = t a H, we have

,• /»{•'■ G I I : И > I>„+1} -1

( hin — :— — —— r—,--- j—j - = Inn А;,Д-1)+1 = r . ,,- x , /){.!• g / / : |.»i > />„} '

(4)

Let us now consider a series o f the form

È

e

11 : I'I > M -uni

By (7) and d A lem b ert’s Criterion, we obtain the convergence of the series il и V-1 < 1, i.e, j( ß £ (0, о ) , and the divergence if fj > o . It now suffices to m ake use o f the inequalities

(8) j M V r f * ) = E J \*\fii № ) ,/M>*»! n=l Л„<|а?|<6и+| < 6 II : 1*1 > M «=1 Un and (0) / /»(d*) > ż * ü k * e w : 1*1 > - r i r 6 //. ; ' T ' , > V : >) . «=1 v 1>{-r e II : |.r| > /)„} / Ca s e IB . Let Jim /.„+ i/ .- 1 = г = I, Then lim = « = I

and q is a sta ble m easure (see [ I] ). Consequently, the m easure M has the property

7 \ Л / = А " Л / ,

for each A > 0.

T hus, for all t > 0, the set

{ r € / / : | z | > / }

is a continu ity set of M and condition (6) is satisfied for each t. > 0. T his im plies that

(5)

— Л

for each t > 0, and, since a = 1, we obtain p { x e I I : \.r\ > t u ) (1 0) hm — 7--- —— Г--- г = t

«• 7>{;r G II : |.x| > (/) for each / > 0.

By putting t = 2 and « = 2n in (1 0), we have £ / / : H > 2"+' )

e II : | r| > 2"1 ' T hus, the series of the form

Ê ( 2“ ) M * € / / : M > 2“ } n=i

is convergent for ß E (0, <v) and is divergent for ß > a . It now suffices to use inequalities (8) and (9) for bn — 2” .

Ca s e II. Let о = 2. Ill this case we can assum e that

I |ar|2;j (rfa-) = + 0 0.

•J //

Now, <i is a G aussian m easure on II represented by a non—neg ative, self-a d jo int operator .S' with a positiv e finite trace. Let {a ,,} , {;cn}, { k n } be sequences such tha t the condition o f form (5) is satisfied. In the sam e way as in the proof of Theorem 3.2 in [3], condition (5) im plies now

(1 1) lim kna~2 f \.r\2/>((!,r) = t v S > 0 n _ v

for each I > 0.

CASE IIA . Let r > I. Then a G (0, 1) and u.2r = 1 (see [4]). We have

lim «„ = -boo 71 — OO

and, since a < 1, we can assum e that { a n } is an increasing sequence. For ß € ( 0 ,2 ), we have th e following inequality:

(1 2) I M 'M A r ) < £ I |.r|V (< b). By using (11) for t — 1, we obtain

(6)

lim Iin, K < 1

4 i<„,. M W* 0 — » " +1

= a ~0r ~ l < a ~2r ~ x = 1. T hus the series in (12) is convergent and

f n M 2P{<1*) < + 0 0

for ß G ( 0 ,2 ) .

C a s e H B . Lei / • = 1. Condition ( II) im plies that

lim = 1

'l~ 4 / M<„„ M W * ) lor each / > 0 and, since <7 = 1, we further have

( i3) [im jk<«» m v w = t

/w<„

\ * M d x )

for each / > 0.

P uttin g 1 = 2 and и = 2" in (1 3 ), we o btain, for ß G ( 0 ,2 ),

lim — - ]1''1<2;,+1 |-r|2/,(f/'r) = 2fi~2 < 1 / |г |< 3 » M W * )

T he ab ov e inequality m eans that th e series

Е (2' Г - 2 / . M W - ' -) „ = 1 J\r\<i”

I

is convergent,. It now suffices to m ake use of inequality ( 12) by puttin g a — ‘>n

u1l — —

Our theorem im plies the following

Corollary.

E v e r y s e m i —sta b le m e a su re on II has e x a c t ly o n e ex -ponent.

(7)

R e f e h e n o e s

[1]. В. V . G n e d e n k o , A .N . K o lm o g o r o v , L i m i t D i s t r i b u t i o n s f o r S u m s o f I n d e p e n

-d e n t R a n -d o m Var iables , C a m b r i-d g e , 1954.

[2]. H .J a j t e , O u c o n v e r g e n c e o f i nf i ni te l y div isi ble d i s tr i b u t i o n s in a Hi lbe r t s p ar e, C o llo q . M a t h . 1 9 ( 19 68 ), 3 2 7 - 3 3 2 .

[3]. M . K ło s ow s ka , T h e d o m a i n o f a t t r a c t io n o f a n o r m a l d i s t r i b u t i o n in a Hilb er t

s pac e, S t u d i a M a t h , 4 3 ( 1 9 7 2 ) , 1 9 5 - 2 0 8 .

[4]. V . M . K r ug lo v , On a cl as s o f l i m i t lams in a Hilb er t s pa ce , Lit.. Mat. S b 1 2 ( 1 9 7 2 ) , 8 5 - 8 8 .

[5]. II .G .T uc ke r, On m o m e n t s o f di s tr ib u t i on f u n c t i o n s a t t r a c t e d to s t ab le laws . H o u s to n .). Mat Ii. 1 ( 1 9 7 5 ) , 1 4 9 - 1 5 2 .

[6]. S .K . S .V a r a d li a n , L im i t t he o r e m s f o r s u m s oj i nd e p e n d e n t r a n d o m v a r i ab le s

uiilli v a l a i s in a ll il hc r l s pace , Indian J. S l a t . 2 4 ( 1 9 0 2 ) , 2 1 3 - 2 3 8 .

A / a r i a K ln. se ,w s k n

M O M E N T Y R O Z K Ł A D Ó W P Ó L P R Z Y C I Ą G A N Y C H P R Z E Z M I A R Y P Ó L S T A B I L N E

W P R Z E S T R Z E N I H IL B E R T A

Niech II będzie rzeczyw istą, ośrodkową przestrzenią H il berta, q - niezdegenerowanym pólstabilnym rozkładem pra wdopodobieństw a na / / , a <v (E (0,2] - wykładnikiem rozkładu q . W pracy udowodniono, że rozkład pra wdo podobieństw a na / / półprzyciągany przez q m a m

o-m enty absolutne rzędu ß dla fi e (O .n) i nie m a takich m om entów dla

ß > n i n ф 2.

lnst.it.ute o f M a t h e m a t i c s U n iv e r s it y o f Łód ź ul. B a n a c h a 22 . 90 - 23 8 Łód ź , Po la n d

Cytaty

Powiązane dokumenty

By Sharpe decomposition theorem (***) it suffices to establish the representation of the characteristic function for operator- stable measures without a Gaussian

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNF

equals the average (or total) result over the replicas tends to have a normal distribution as the number of replicas becomes large..

Properties of order statistics (o.s.) for fixed sample size n were widely investigated, while a literature on this subject in the case when n is a value of random variable V is not

We consider properties of three classes of discrete probability distributions, namely the so-called Inflated Factorial Series Distributions (IFSD), Inflated Modified Factorial

[1] Abkar, A., Jafarzadeh, B., Weighted sub-Bergman Hilbert spaces in the unit disk, Czechoslovak Math..

In this paper, by using the topological degree theory for multivalued maps and the method of guiding functions in Hilbert spaces we deal with the existence of periodic oscillations

The above defined Hilbert transforms H a and H (a p ) have the same properties as those mentioned in Theorem 2.3 and their proof are analogous. Though in [11] only the