• Nie Znaleziono Wyników

The Estimation of CES Production Function Parameters by the Axial Double Iteration Method

N/A
N/A
Protected

Academic year: 2021

Share "The Estimation of CES Production Function Parameters by the Axial Double Iteration Method"

Copied!
12
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L 0 D Z I E N S I 6 F O L IA OECOf.OMICA 48, 1985

C ze sław a J a c k i e w i c z * , H ol ln u K lo p a c z * ^ , E l ż b i e t a Ż ó łto w s k a '*

THE ESTIMATION OF C ES PRODUCTION FUNCTION PARAMETERS BY THE A X IA L DOUBLE ITERA TIO N METHOD

1 . In t r o d u c t io n

The e a r l i e r i n v e s t i g a t i o n s [ l ] , [

2

] , [

7

] on the e s t im a t io n methods f o r CES p r o d u c tio n f u n c t io n in tho form

( 1 ) Y - a [S K * ^ + ( l - 5 ) L~^ ] ^ + E, w h e r e t Y - p r o d u c tio n o u t p u t , K - f ix e d a s s e t s , L - em ploym ent, « - p r o d u c tio n s c a le p a ra m e te r , S - d i s t r i b u t i o n p a ra m e te r, v - f u n c t io n hom ogeneity p a ra m e te r, g - s u b s t i t u t i o n p a ra m o te r, E - random term , p ro ve d t h a t the e s t im a t io n o f a fo u r- p a ra m e te r f u n c t io n can be l im it e d to tho e s t im a t io n o f a tw o-p aram eter f u n c t io n , a f t e r h a v in g e s tim a te d tho p a ra m e te r v by K m e n t a method (¡.3 J ) and d e te rm in e d tho e s t im a t e s o f p a ra m e te r a d i r e c t l y from the f i r e t e q u a tio n o f the system o f norm al e q u a t io n s . H ence, tho

* D r . , L e c t u r e r a t th e I n s t i t u t e o f E c o n o m e t r i c s a n d o t a -t i s -t l e s , U n i v e r s i -t y o f Ł ó d ź . _ .

* * S e n io r A s s i s t a n t a t th e I n s t i t u t e of E c o n o m e tric s and S t a t i s t i c s , U n i v e r s i t y o f Ł ó d ź .

(2)

la w i J a c k lo t f ic z . (l.-iin a K lupaoz. S i a b i e t a fco lto vak *

above problem hoo b-.-ron c o n iin e d to tho d e te r m in a tio n o f such v a ­ lu e s c f A , b , r f o r w hich the f u n c t io n

n ( 2 ) Q (A , b, r ) x Y ] Yi

i-1

would a t t a i n i t s minimum o t on a p r i o r i g iv e n v a lu e o f c and c t th e v a lu e s o f A d e te rm in e d a c c o r d in g to

¿ Yi [ bKi r ♦

A “ ^ r r r --- T T ^ " '

(Tho form o f ( 3 ) was g e n e ra te d in [

2

] from th e system o f norm al e q u a tio n s b u i l t f o r th e f u n c t io n ( 2 ) ) .

To d e te rm in e the v a lu e s o f b and r a so c o l le d d o u b le i t e r a t i o n wethod was su g g ested in [

2

] . The method c o n s is t s in a o te p - b y - s te p s e a r c h in g f o r extrem e v a lu e s o f b and r . Then, s i m i l a r c a l c u l a t i o n s a re made f o r tho o th o r p a ra m e te r. The who­ l e i t e r a t i o n p r o c e s s , c o n s t r u c t in g two i n t e r r e l a t o d b lo c k s , i s c a r r i e d ou t so lo ng t h a t th e two norm al e q u a tio n s f o r th e fu n c ­ t io n (

2

) a re s o lv e d w it h a p re d e te rm in e d a c c u r a c y .

. The M o nte-C orlo e x p e rim e n ts co n firm e d t*>e n u m e r ic a l e f f i c i e ­ n cy o f the d ou b le i t e r a t i o n method, i . e . r e g a r d le s s th e c h o i­ ce o f a s t a r t i n g p o in t the p re d e te rm in e d p a ra m e te rs w ere a lw a y s o b ta in e d . H ow ever, th e i t e r a t i v e p ro c e s s - a lth o u g h c o n v e rg ­ in g w it h the p re d e te rm in e d v a lu e 3 o f p a ra m e te rs - was too alo w ar.d c o s t l y . T h e r e fo r e i n v e s t i g a t i o n s a re c a r r i e d o u t to make i t more n u m e r ic a lly e f f i c i e n t s in c e the s h o rte n in g o f tim e need­ ed f o r c a l c u l a t i o n s i s n e c e s s a r y a ls o in the ca s e when tho p ro ­ p e r t i e s o f e s t im a t o r s o f model p a ra m e te rs a re s tu d ie d by means o f n u m e r ic a l e x p e rim e n ts .

The p op er p r e s e n t s a m o d if ic a t io n o f th e d o u b le i t e r a t i o n m ethod, f u r t h e r c a l l e d th e a x i a l d o u b le i t e r a t i o n method.

(3)

2. The A x ia l Oouble I t e r a t i o n Method

I t f o llo w s from the i n v e s t i g a t i o n s [

5

] th a t th e c r i t e r i o n f u n c t io n Q ( A (b , r ) , b . r ) in the form ( 2 ) d e f in e s the p a ra b o lo ­ id - sh ap ed a r e a , and l t e l e v e l l l n e e a re the c u rv e s c lo s e to e l ­ l i p s e s w it h common axes (fro m the e a r l i e r s tu d y [

4

] i t fo llo w e d t h a t the " a x i s " o f l e v e l l i n e s symmetry was a p p ro x im a te ly a s t r a i g h t l i n e ) . The p o in t o f i n t e r s e c t i o n o f th e se axes d e t e r ­ m ined, w it h some n u m e ric a l a c c u r a c y , the p o in t in w hich fu n c ­ t io n Q ( A ( b , r ) , b , r ) a t t a in e d i t s minimum. T h is was the ba­ s i s f o r m o d ify in g the way o f d e te r m in a tio n o f the extrem e v a lu e s o f b and r , i . e . f o r assum ing a n o th e r way o f s o lu t io n o f the system o f e q u a t io n s :

( 4 )

F 2( A ( b , r ) , b , r ) - — Q ( A ( b , r ) . b , r ) ■ 0 ,

F 3( A ( b , r ) , b . r ) - Q ( A ( b , r ) . b , r ) - 0 .

T h is way was d i f f e r e n t from the d o u b le i t e r a t i o n method p ro ­ posed and d is c u s s e d in [

2

] . N am ely, a t g iv e n r Q p o in t bQ i s lo o k e d f o r in such a way t h a t the f u n c t io n F 2 d i f f e r s from z e ro l e s s than by a g iv e n a c c u r a c y VVW, and s i m i l a r l y - f o r th e g i v ­ en v a lu e o f r a c o rre s p o n d in g v a lu e o f b^ i * s e a rc h e d f o r .

The o b ta in e d p o in t s (b Q, r Q) and (b ^ , r^ ) a re the b a s is f o r d e te rm in in g the s t r a i g h t l i n e c o rre s p o n d in g to th e " a x l e ” o f sym­ m etry f o r l e v e l l i n e s . T h is a x ie I s d e te rm in e d as a s t r a i g h t l i ­ ne by th e e q u a t io n ! ( 5 ) b - D1 r ♦ 02 , w here s b. - b ° 1 ' r r - " F I ' ° 2 " bo - V o ’

Assum ing t h a t the e t r a l g h t l i n e ( 5 ) d e te rm in e s the a x is o f e l ­ l i p s e s , on t h i s l i n e we s e a rc h th e p o in t ( b ( r ) , r ) in w h ich the f u n c t io n Q h as a c o n d i t i o n a l minimum. T h is c o rre s p o n d s to the d e te r m in a tio n o f a z e ro p la c e o f a r e s p e c t iv e d e r i v a t i v e o f

(4)

_ C' I ■ ~ k i bw i c a , • H»i lin » i\!u uz, 2l».bleta Ż o l t o w a ^ .

¡u n ctx o n . ( A ( b ( r ) , r ) , b ( r ) , r ) , I . e . to tho u o .lt.iio n of titO e q u a tio n

( t-) Nr ^ * F j ( A , b , r ) + D1F 2( A , b , r ) • O ,

w heror

A • A ( b , r ) , b •• D^r D g .

P o r a n u m e ric a l r e a l i z a t i o n o f the a x i a l d o u b le I t e r a t i o n ftiwthod the program # CE3 7 has Loon d e v e lo p e d (< h ls program

i i a v a i l a b l e a t the L i b r a r y o f Pro g ram s, I n s t i t u t e of Econome­ t r i c s end S t a t i s t i c s , U n i v e r s i t y o f Ł ó d ź ). The r e n u lt a o f Mon- t * - C a r lo e x p e rim e n ts o b ta in e d u sin g the progiem # C ES 7 a llo w uo to e v a lu a t e p r o p e r t ie s o f the p re s e n te d method, and e s p e c i a l ­ l y to answ er tho f o llo w in g q u e s t io n s :

1. Does tho d e te rm in e d s t r a i g h t l i n e ( 5 ) depend on the as- tu^ed v a lu o s o f s t a r t i n g p o i n t s ? i f s o . In whot w ay?

2. .What I s the In f lu e n c e o f the c o r r e l a t i o n l e v e l o f v a r i a b ­ le s K and L on tho v a lu e s ta k e n by and 0^7

3. What l a the r e l a t i o n s h i p between the d i r e c t i o n s o f tho s t r a i g h t l i n a ( 5 ) and tho v a lu a 3 o f p a ra m e te r £ d e te rm in in g the s u b s t i t u t i o n e l a s t i c i t y d » in th e f u n c t io n ?

4. What i s the b e h a v io u r o f the e s t im a te s o f f u n c t io n p a ra ­ m eters ( 1 ) in r a l o t i o n to th e number o f o b s e r v a t io n s (n ) and ra n ­ dów term E ?

3, A N u m e ric a l Model

To ans.vor th e above q u e s tio n s the f o llo w in g n u m e r ic a l model o f e x p e rim e n ts has been c o n s tr u c te d «

u) tho sequence o f n v a lu e s L^, l_2 , . . . , L^, , has biien d e f in e d ,

b ) as3u nin g s d i f f e r e n t l e v e l s o f c o r r e l a t i o n between v a r i a b ­ le s K and i~ (m easured by th e v a lu e s o f c o r r e l a t i o n c o e f f i c i e n t s ¿-(K, L ) t h t o Lequencoo of the v a lu e s on v a r i a b l e K, 1 .e. ^ s “ *' K 4. , . 4- ¿i K w ere d e te rm in e d ,p

Cj f o r the a c t of p a l r o j i L ^ *<l 8 ) , 1 - 1 , n

(5)

the £i03umod v a lu e s o f p a ra m e te rs a , 5 » £ the v a lu e s o f Y T ^e " - a [ S K & * ( l - © l J ] - 1/« w ere c a l c u l a t e d .

P a ra m e te rs a and 5 , as shown in [ 5 j » can bo d e te rm in e d o t an a r b i t r a r y l e v e l by assum ing measuring u n i t s f o r K, L and V. In the e x p e rim e n ts v a r i o u s l e v e l s w ere assuatod f o r tb a parom etsr £ •

In t h i e way the s s e t s o f p o in t s Dfi 1_^, Ki s ' YTi s ) - 1 • *• . . . . n j on r e s p e c t iv e f u n c t i o n a l s u r f a c e s w ere o b ta in e d .

I n tho e x p e rim e n ts tho f o llo w in g lo v o la o f p a ra m e te r« wore assum ed: cur 2, S t 0 . 4 , Q : - 0 .3 , 0 . 2 , 1. (o (K , L ) i 0 .3 2 4 , 0 .7 2 3 , 0 .9 3 0 , and s t a r t i n g v a l u e s : r Q t 0 . 3 , 0 . 5 , T j j - 0 .5 , - 0 .4 , - 0 .3 , - 0 .2 , - O . i , 0 . 1 , 0 .1 5 , 0 .1 9 , 0 .2 0 0.21, 0 .2 5 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 , 0 , 0 . 9 , 1 .0 , 1 . 2 , 1 .5 . The r e s p o c t lv e p o in t s fcQ * b C r^ ) and b^ ■ b ( r ^ ) w ere d e te rm in e d

in such a way th a t

( 7 ) g ( A ( b , r ) , b, r ) | < 1 0 ” f>.

The s e t a 0 Q viero t r e a t e d no sam p le s. Thoy s e rv o d f o r ch ock­ in g th a n u m e ric a l e f f i c i e n c y o f tho a x i a l d o u b le i t e r a t i o n mothou ( AOXM) a t v a r io u s c h o ic e o f s t a r t i n g p o in t s r Q and r j . They w ere a ls o a b a s is f o r tho a n a l y s i s o f the a c c u r a c y o f AOIM o- e tim a t e s o f f u n c t io n p a ra m e te rs ( l ) i n th e c a s e o f randon t e r n

o c c u r r in g in the v a r i a b l e Y. m I P

F o r each s e t 0 „ 8 the I P new s e t s o f D l# * " * ° s * 8 ° e w ere d e te rm in a d so th a t

° a m m { ( L i * K i ' Y l a m )* 1 - 1 ... n } *

where Y , „ m i e a r e a l i z a t i o n o f a random v a r i a b l e d e fin e d as

10

( 8 ) Yt 3 m - YTifl ♦ C j® , m - 1 ... IP ,

(6)

w it h the d l o t r l b u t i o n N (0 , d j.)(c was g e n e ra te d u sin g the p ro c e d u re NQRGEfJ w it h a lp h a ) . The v a r i a n c e was chosen so os to be O .liv and l. O ij o f v a r i a b i l i t y o f Y . F o r each s o t Da a sequence o f s e t s i ° c ra« m ■ 1, . . . , I p J was o b t a in e d .

4. L o c a t i on o f the L e v e l A x is

On th e l o v e l a x is th e ro a re p o in t s w ith c o o r d in a t e s ( r , b ( r o) ) . ' They were d e te rm in e d assuming r Q and d e f in in g b ( r ) In such a way t h a t r e l a t i o n ( 7 ) h o ld s . T a b le 1 p r e s e n t s c o o rd in a ­ te© o f th e p o in t s on the l e v e l axes d e te rm in e d f o r t h r e e v a r io u s f u n c t io n a l a re a s d i f f e r e n t i a t e d by the c o r r e l a t i o n d eg ree o f K and L . The T a b le a ls o p r e s e n t s the v a lu e s o f r e s id u a l s o ( r )Q o b ta in e d as a d i f f e r e n c e between th e v a lu o s o f b ( r ) and bCr ) .

* 0 0

The v a lu e s o f b ( r Q) were c a lc u la t e d from the LSM r e g r e s s io n l i n e »

( 9 ) b ( r ) - o j r ♦

0*

d e te rm in e d f o r the o b ta in e d s e t s o f p o in t s w ith c o o r d in a t e s ( r , b ( r 0 » . T h ree r e g r e s s io n l i n e s f o r th r e e s u b s e ts y 1 »K1 »L i 1 - 1 , n c o rre s p o n d in g to t h r e e l e v e l s £ ( K , L ) - 0 .3 2 4 , 0 .7 2 7 , 0 .9 3 5 w ere d e te rm in e d . These a r e : ( 1 0 ) b ■ 0 .1 1 9 B 2 9 6 r + 0.375885 f o r £> (K,L) - 0 .3 2 4 , (1 1 ) b - 0.1372636r V 0.3726333 f o r g ( K , L ) - 0 .7 2 7 , ( 1 2 ) b • 0.1547703r ♦ 0.3697843 f o r g ( K , L ) - 0 .9 3 6 .

From the r e s u l t s p re s e n te d In T a b le 1 i t f o llo w s t h a t in each ca se b eing c o n s id e re d th e v a lu e s o f b ( r Q ) in c r e a s e w it h the i n ­ c r e a s e in r . A t a f ix e d l e v e l o f r the v a lu e s o f b ( r ) in

-u O O .

c r e a s e w it h th e In c r e a s e in th e c o r r e l a t i o n d eg ree o f v a r i a b l e s K , L when r Q > ^ , and t h e y d e c re a s e when r Q< ^ . H ence, the d e te rm in e d r e g r e s s io n l i n e s (1 0 ) - (1 2 ) a r e c h a r a c t e r iz e d by the In c r e a s e o f In t e r c e p t v a lu e o f 0 * and the d e c re a e e o f random term D* f o r h ig h e r v a lu e s o f £>(K, L ) .

(7)

re-T a b l e 1 V a lu e s o f c o o r d in a t e s b ( r ) f o r s e le c t e d v a lu e s o f r c *• £ ( K , L ) - 0 .3 2 4 / p (K ,L ) - 0 .7 27 ç ( K , L ) - С>.936 . 0 b ( r Q) e ( r 0 ) b ( r o ) n ( r o ) cr О • ( r o ) 1.0 0 0.4950 -0.00C71 0.5 09 3 -0.00060 0.5 25 2 ♦0.00065 0 .9 0 0.4 83 4 -0.00033 0.4961 -0.00007 0.5098 ♦0.00072 0 .8 0 0.4 71 7 -0.00005 0.4 82 6 ♦0.00016 0.4 94 3 ♦0.00070 0 .7 0 0.4599 +0.00013 0.4691 ♦0.00038 0.4 78 7 ♦0.00058 0 .6 0 0.4481 +0.00032 0.4554 ♦0.00041 0.4630 ♦0.00035 0 .5 0 0.4361 ♦0.00030 0.4 41 6 ♦0.00033 0 .4 47 2 ♦0.00003 0 .4 0 0.4241 ♦0.00028 0.4278 ♦0.00026 0 .4 31 4 -0.00029 0 .3 0 0.4121 ♦0.00027 0.4139 ♦0.00009 0.4 15 7 -0.00052 0 .2 5 0.4060 ♦0.00018 0.4069 ♦0.00005 0.4078 -0.00068 0 .2 1 0.4012 ♦0.00015 0.4014 -0.00006 0.4 01 6 -0.00069 0 .2 0 0.4000 ♦0.00015 0.4000 -0.00009 0.4000 -0.00074 0 .1 9 0.3908 ♦0.00015 0.3986 -0.00011 0.3904 -0.00079 0 .1 5 0.3 94 0 ♦0.00014 0.3931 -0.00012 0.3922 -0.00080 0 .1 0 0.3879 ♦0.00003 0.3861 -0.00026 0.3044 -0.0008G -0 .1 0 0.3637 -0.00020 0.3585 -0.00041 0.3536 -0.00071 -0 .2 0 0.3517 -0.00022 0.3448 -0.00038 0.3385 -0.00033 - 0 .3 0 0 .3 39 7 -0.00024 0.3 31 3 -0.00015 0.3 23 6 ♦0.00025 -0 .4 0 0 .3 2 7 7 -0.00025 0.3 17 6 ♦0.00007 0.3089 ♦0.00102 •*0.50 0.3159 -0.00007 0.3 04 6 ♦0.00060 0.2945 ♦0.00210 N o t e i I n the column e ( r 0) t h e v a lu e s o f r e s i d u a l s I . e . e ( r 0 ) - b ( r 0) - b ( r 0 ) a re g iv e n .

s l d u a l s s ( r o ) . N am ely, th e g ro u p in g o f r e s i d u a l s o f the same s ig n I s an e v id e n c e t h a t th e r e l a a u t o c o r r e l a t i o n In the r e s id u ­ a l s s e r i e s . F r o « a fo rm a l p o in t o f v ie w t h i s a u t o c o r r e l a t i o n can p r o v id e e v id e n c e t h a t , f i r s t , t h e r e a re s y s t e m a t ic e r r o r s in n u m e r ic a l c a l c u l a t l o n a , and s e c o n d ly , th e re can be an e rro n e o u s h y p o th e s is t h a t th e symmetry a x is o f l e v e l l i n e s i s a s t r a i g h t l i n e . Changing a b s o lu te v a lu e s o f r e s i d u a l s back up th e second v a r i a n t r a t h e r , a lth o u g h th e y do n ot e x c lu d e th e f i r s t one. I t i s w o r th w h ile to n o te t h a t w it h th e in c r e a s e o f c o r r e l a t i o n d e g re e

(8)

of variables tho distribution of positivo and nogative rooiduals

changos and their absoluto valuó incre&303.

T a b lo o 2-4 p ro e o n t the v a lu e s o f c o o f f i c i a n t s 0^ and D2 of • t r o ig h t l i n o s d e to rm in a d in ( 6 ) . They a ro o b ta in e d in such a way t h a t a l l o f them have ono common p o in t r Q ■ 0 .5 and b ( r ) and the p o in t ( r ^ , b ( r ^ ) ch an gos. I n most o f the in v e s t ig a t e d

T a b l e 2 C o e f f i c i e n t s and 02 o f s t r a i g h t l i n e ( 5 ) d e te rm in e d f o r ( r 0 ,b o )- ( 0 . 5 , 0 .4 3 6 1 ) a t g ( K , L ) * 0 .3 24 r

i ri

° 1 ° 2 d * ( l , ( 0 . 2 , 0 . 4 ) ) 1.0 0 0.117630 0.377326 0.000846 ( P ) 0 .9 0 0.118138 0.377072 0.000695 ( P ) 0 .8 0 0.118747 0.376727 0.000473 ( P ) 0 .7 0 0.119035 0.376624 0.000428 ( P ) 0 .6 0 0.119415 0.376434 0.000314 ( P ) 0 .4 0 0.120039 0.376121 0.000129 ( P ) 0 .3 0 0.120282 0.376000 0.000056 ( P ) 0 .2 5 0.120381 0.375951 0.000027 ( P ) 0 .2 1 0.120455 0.375916 0.000005 ( P ) 0 .2 0 0.120471 0.375906 0.000000 0 .1 9 0.120486 0.375898 0.000005 ( n ) 6 .1 5 0.120547 0.375868 0.000023 ( n ) 0 .1 0 0.120608 * 0.375038 0.000041 ( n ) - 0 .1 0 0.120716 0.375783 0.000073 ( n ) -0 .2 0 0.120687 0.375790 0.000064 ( n ) * 0 .3 0 0.120599 0.375841 0.000039 ( n ) -0 .4 0 0.120453 0.375915 0.000007 ( p ) -0 .5 0 0.120248 0.376018 0.000008 ( p )

* Sym bol d 0 , ( 0 . 2 , 0 . 4 ) ) d e n o te s the d is t a n c e betneun the r e a l p o in t ( 0 . 2 . 0 . 4 ) and the s t r a i g h t l i n e i l г b - D, r ♦ 0, sym- b o ls ( p ) and ( n ) in th e f o u r t h column d en o te t h a t th e p o in t ( 0 . 2 , 0 . 4 ) i s b elow th e s t r a i g h t l i n e 1 and above the s t r a i g h t l i n e 1, r e s p e c t i v e l y .

c a s e s th e r e a l p o in t ( ¿ o » i ) l i e s below th e s e s t r a i g h t l i n e s w h ich back up th e s ta te m e n t t h a t th e d e t e r a in e d o s tim a to a o f p a ra m e te r g can be o v e r e s tim a te d to a g r e a t e x t e n t . H ow ever, when r^ ie

(9)

choaan n e a r the a c t u a l v n lu o o f p a ra m e te r 5 the e t r n ig h t l i n e a boing d ete rm in ad n re q u it s n ear to th a p o in t ( ç , 5 ) .

T n b 1 о 3 C o e f f i c i e n t s О} d e to rm in ed f o r ( r Q, b0) end 0-> o f o t r a l g h t li n o ( 5 ) « ( 0 . 5 ‘, 0 .Л 4 1 6 ) J t ^ .( K ,U ) • 0 ,7 2 7 r l ° 1 D2 d ( 1, (.0. 2, 0 . 4 » 1.00 0.135495 0.373047 0.000937 ( p ) 0 .9 0 0.130142 0.373524 0.000746 ( P ) 0.00 0.135724 0.373233 0.000572 ( Р ) 0 .7 0 0.137238 0.372976 0.000420 ( P ) о . во 0.137676 0.372757 0.000209 ( P ) 0 .4 0 0.138320 0.372432 0.000096 ( P ) o .s n 0.138500 0.372350 O.OOOOiiO ( P ) 0 .2 5 0.130599 0.372295 0.000015 ( P ) 0 .2 1 0.138641 0.372274 0.000002 (P> 0 .2 0 0.130650 0.3/2270 0.000000 ( n ) 0 .1 9 0.138658 0.3722C6 0.000002 0 .1 5 0.130670 0.372256 0.000000 ( n ) 0 .1 0 0.130683 0.372254 0.000009 ( n ) -0 .1 0 Q . 138403 0.372353 0.000049 ( Р ) - 0 .2 0 0.130240 0.372471 0.000119 ( P ) -0 .3 0 0.137922 0.372634 0.000216 ( P ) -0 .4 0 0.137507 0.372842 0.000340 <P> - 0 .5 0 0.137002 0.373094 0.000490 (P) .... N 0 t e i C f . T a b le C o e f f i c i e n t s t 2. T ), and D , o f O t r a ig h t l i n e ( 5 ) D0 ) - ( 0 . 5 , 0 .4 4 7 2 ) a t ¿ » ( K . U a b l e A >■ • 0 .9 3 6 d e te rm in e d f o r ( r 0#l r l ° 1 ° 2 d ( l.C O .2 , 0 . 4 ) ) 1 2 3 4 1.00 0.155913 0.369247 0.000424 ( p ) 0 .9 0 0.156469 0.360969 0.000260 ( p ) 0 .8 0 0.156923 0.368742 0.000125 ( p )

(10)

T a b le 4 (c o n t d . ) 1 2 3 4 0 .7 0 0.157271 0.368568 0.000022 ( p ) 0.0/0 0.15751 6 0.368445 0.000051 (n ) 0 .4 0 0.157655 0.360376 0.000092 ( n ) 0 .3 0 0.157559 0.368424 0.000063 ( n ) 0 .2 5 0.157465 0.368471 0.000036 ( n ) 0 .2 1 0.157370 0.368518 0.000008 ( n ) 0 .2 0 0.157333 0.368533 0.000000 0 .1 9 0.157316 0.368545 0.000008 ( p ) 0 .1 5 0.157195 0.368606 0.000044 ( p ) 0 .1 0 0.157015 0.368696 0.000098 ( p ) -0 .1 0 0.156008 0.369199 0.000396 ( p ) - 0 .2 0 0.155334 0.369536 0.000596 ( p ) -0 .3 0 0.154551 0.369928 0.000785 ( p ) -0 .4 0 0.153660 0.370374 0.001093 ( p ) -0 .5 0 0.152665 0.370871 0.001388 ( p ) N o t e i C f . T a b le 2. 5. R e s u lt s o f th e H o n te - C a rlo E x p e rim e n ts

Tho M o nto-C ario e x p e rim e n ta con cern ed a choeen sam ple

Ki# L ) . 1 » 1 , . . . . n j f o r w hich the c o r r e l a t i o n c o e f f i c i e n t ^ (k, L ) was about 0 .7 2 3 . Tho sam ple c o n t a in e d : n - 20, 30, 40 e le m e n ts , r e s p e c t i v e l y . I n each sam ple th e re w ere random ly d i ­ s t r ib u t e d the v a lu e s o f v a r i a b l e Y assum ing Y^ d e fin e d by (8 ) in s t e a d o f YT¿ ,

Th u s, th r e e s e t s o f sam ples in th e form

{ { ( Y t , 1 ■ 1 , . r t | n j ffl ■ 1 , . . . I P ^ t

,/ere o b ta in e d (a c c o r d in g to th e number n ). They w ere used to de­ te rm in e the r e a l i z a t i o n o f sample e s t im a t o r s o f e x p e cte d v a lu e s or p a ra m e te r e s t im a te s in model ( l ) and t h e i r s e le c t e d c h a r a c t e ­ r i s t i c s such as v a r ia n c e e s t im a t e s , v a r i a b i l i t y c o e f f i c i e n t s , b ia s v a lu e s , RSME ( v a r ia n c e s o f e v a lu a t io n s oround th e a o t u a l v a ­ lu e s o f p a r a m e te r s ).

(11)

The above m easures wore d e te rm in e d f o r I P » 5 , 10, 15, 20, 25, . . . , 95, 100 in o rd e r to o b se rv o t h e i r chongos when the numbar o f sam ples In c r e a s e d and then to fo rm u la te c o rre s p o n d in g h yp o th e ­ ses on tho p r o p e r t ie s o f th e e a tim o t o r s o f model p a ra m e te rs ( l ) o b ta in e d u sin g the a x i a l d ou b le i t e r a t i o n method.

I t f o llo w s from the ex p e rim e n to c a r r ie d o u t by the a u th o rs t h a t w it h the In c r e a s e in tho number e f I P tho f l u c t u a t io n s o f mean e s t im a te s c o rre s p o n d in g to A , b , r d e c re a s e but the e s t i ­ m ates of p a ra m e te r a a re not b ia s e d n u m e r ic a lly , -w h llo th e e s ­ tim a te s o f p a ra m e te r 5 a re g e n e r a l ly o v e r e s t im a t e d . Mean v a lu e s o f b io s a re lo w e r than th e s ta n d a rd d o v i o t io n . Tho e s t im a te s of p o ra m ete r g a re c h a r a c t e r iz e d by h ig h e r v a r i a b i l i t y . The v a lu e o f r i s e s tim a te d to be tho w o r s t. Tho in c r e a s e In th e somple s iz e ( n ) a f f e c t s p o s i t i v e l y tho r e s u l t s o f e s t im a t io n , i . e . w it h th e in c r e a s e o f n tho v a lu e s o f b ia s and r e s p e c t iv e v a r ia n c e s de­ c r e a s e . BI0LIOGRAPHY [ 1 ] 3 a c k i o w i c z C . , K l e p a c z H . , Ż ó ł t o w ­ s k a £ . (1 9 7 7 ), E s ty m a c ja n ie li n io w y c h p o s t a c i f u n k c j i p r o d u k c ji p r z y w arunkach pobocznych (E s t y m a c ja f u n k c j i p ro ­ d u k c j i typ u C E S ) . P o r t I I , Ł ó d ź , G ra n t R . I I I . 9 . 5 . 4 . [ 2 ] 3 n c k i e w i c z C. , K l o p a c z H . , Ż ó ł t o w ­ s k a E . (1 9 7 0 ), E s ty m a c ja f u n k c j i p r o d u k c ji typ u CES p r z y w y k o rz y s ta n iu i n f o r m a c j i o p r i o r i u zysk anych z różn ych metod e s t y m a c ji teg o typ u f u n k c j i . Metoda p o d w ó jn e j i t e r a c j i . P a r t I , Ł ó d ź , G ra n t R . I I I . 9 . 5 . 4 .

[ o j O u o z c z o k C. (1 9 7 7 ), A n a liz a w ła s n o ś c i estym atorów p aram etrów f u n k c j i p r o d u k c ji typ u CES otrzym an ych metodę Kme- n t y , Ł ó d i , G ra n t R . I I I . 9 . 5 . 4 ,

[

4

] « l e p a c z H . , Ż ó ł t o w s k a E . (1 9 7 9 ), W łasn o ś­ c i e stym ato ró w u zysk an ych metodę p o d w ó jn e j I t e r a c j i a w sp ó ł­ z a le ż n o ś ć zm iennych o b j a ś n ia j ą c y c h . P a r t I , Ł ó d ź , G ra n t R . U I . 9 . 5 . 4 .

[ 5 ] K l e p a c z H . , Ż ó ł t o w s k a E . (1 9 8 0 ), W łasno­ ś c i e stym a to ró w u zysk anych metodę p o d w ó jn ej i t e r a c j i a w

(12)

spół-CG CsorUwa Ju c k ltw lc z , H alina Kiepacz, B U b io ta Żółtowska

z a le ż n o ś ć zm iennych o b j a ś n ia j ą c y c h . P a r t I I , Ł ó d ź , G ra n t R. I I I . 9 , 5 , 4 .

[ 6 ] K l e p a c z H . , Ż ó ł t o w s k a E . (1 9 0 1 ), W e r y f ik a ­ c j a o s io w e j motody e s t y m a c ji param otrów f u n k c j i C E S, Ł ó d ź , C ro n t П . I l i . 9 . 5 . Л.

[ 7 ] Ż ó ł t o w а к a E . , ( l9 7 G ) , E s ty m a c ja n i e l i n i o w e j p o s ta ­ c i f u n k c j i p r o d u k c ji p r z y w arunkach pobocznych (E s t y m a c ja f u n k c j i p r o d u k c ji typ u C J S ), P a r t I , Łó d ź , G ra n t R . I I I . 9 . 5 . 4 . [ 0 ] 2 ó ł t o w а к o E . (1 9 8 0 ), Udoeikonulonlo metody p o d w ó jn ej

i t e r a c j i . U s p ra w n ie n ia alg orytm ó w o b l ic z e n i o w y c h . 1 oelow o me­ toda p od w ó jnej i t e r o c j l , Ł ó d ź , G ra n t R. I I I . 9 . 5 . 4 .

C ze sław a J a c k i e w i c z , H a lin a K le p a c z , E l ż b i e t a Ż ó łto w s k a

ESTYMACJA PARAMETRÓW FU N K C JI PROOUKCJI TYPU CES OSIOWĄ METODĄ PODWÓJNEJ IT E R A C JI

W a r t y k u le omówiono motodg e s t y m a c ji param etrów f u n k c j i p ro ­ d u k c j i typ u CES n&zwang oaiowg metod? p o d w ó jn e j I t e r a c j i o ra z w y n ik i eksperym entu M o n te -C a rlo przeprow adzonego d la t e j motody. E k sp e rym e n ty te m ia ły na c e lu zbodonle num erycznych w ła s n o ś c i o- trzym an ych ocen param etrów f u n k c j i C ES, Przoprow adzono j e d la w yb ran ych p rób d w u d z ie s to - , t r z y d z ie s t o - , c z te rd z le s to o ie m e n to - w ych, k tó r y c h w s p ó łc z y n n ik k o r e l a c j i m iędzy zm iennym i o b ja ś ­ n i a j ą c y » ! w y n o si 0 ,7 2 3 . 2 badań ty c h w y n ik a , że w raz ze w z ro s­ tem i l o ś c i i t e r a c j i m a le ją w ahan ia ocen ś r e d n ic h o d p o w ie d n ich rs - g l i z ^ c j l e stym ato ró w p a ra m e tró w : s k a l i p r o d u k c ji ( a ) , p o d z ia łu ( f f ) , s u b s t y t u c j i ( # ) . Oceny p a ra m e tru a ni© w ykazu ję numerycz- nogo o b c i^ ż s r jla , n a to m ia s t o ce n y p a ra m e tru S oą z r e g u ły p r z e ­ szacow ane. S ro d n le w i e l k o ś c i o b c ię ź e ń sg je d n a k m n ie js z e n iż jsd r.o o d c h y le n ie stan d ard ow e z p r ó b y . W ięk sz y z m ie n n o ś c ią cha­ r a k t e r y z u je s ię ocen y p a ra m e tru q .

Cytaty

Powiązane dokumenty

dowych, którego przewyższa chyba tylko Nietzsche. Wprowa­ dzając Lelewela, jednego z przyszłych kierowników powstania, W yspiański odrazu na wstępie poszedł za

tion a part of research concerning the average results on (1) learners’ attitude towards MST school subjects, (2) influence of topics, activities and teachers on liking the

When a polygraphist is assigned a task and starts working with a subject examined, he does not know whom he/she is facing - a person completely unrelated to the event,

Inwentaryeaoja murów i ustalanie ohronologll kolejnyoh poziomów użytkowyoh na terania Wzgórza Zamkowego mają na oelu rekonstrukoję otoczenia XVII - wleoznego pałaou* Założono

Bernhard N e u m a n , Die ältesten Verfahren der Erzeugung technischen Eisens durch direkte Reduktion von Erzen mit Holzkohle in Remfeurn und Stücköfen und die

In order to determine the early warning index for flash floods (i.e., the rising rate of the flood stage), four 24 h designed rainfall events with different frequencies (1%, 2%,

Jeśli to jest majestatis, uniwersałami na sejmiki pro 8 Aprilis albo później naznaczone, per litteras obwieściwszy wyjazd swój po Koronie, deklarowawszy znowu

Rozpad dotychczasowych struktur politycznych iw części także kościelnych (m.in. kraj opuści! arcybiskup praski), wzrost popularności hasła „precz od Rzymu”, konstytuowanie