• Nie Znaleziono Wyników

On the characteristics of the driving machine in the self-propulsion test among waves

N/A
N/A
Protected

Academic year: 2021

Share "On the characteristics of the driving machine in the self-propulsion test among waves"

Copied!
8
0
0

Pełen tekst

(1)

,**1'Ì. i 10

ARCHIEF

Lab. y.

Scheepsbouwkuncle

Technische Hogeschorot

Deift

25 32 fr- S

t**

1EEfI

lIte

On the Characteristics of the Driving Machine in the Self-PropuLsion Test among Waves

By R Tasaki, Mei,ber

Abstract

When a ship goes in regular waves, the torque,,

the thrust and the r. pi, of the propeller

ductuate about some mean values. These uctuations, the motion of ship md the

characceri-stics of the driving machine interact each other. The author studied these interactions and the foUowug resu'ts were obtained.

In the self-propulsion test in waves the motion of ship is fed back intoitself throutb the

propeller and the drivingmachine.For theship of ordinary type, these feed backs are solittle that

the motion gf ship is not affected by the characteristics of the driving machine. Then tisera

are no differences between the monon of the model in the self-propulsion test sac that its the

resistance test with the gravity dynarnometer. Huwever. the patterns of the uctuationz of the

torque and etc. are altered by

the charactersatics of the driving machine. Therefore, in the

self-propulsion test in waves

the characteristics uf the driving machine are

not important

matterS, when the self-propulsion factors are not affected by the p*tterna of the ßuctuations.

When the effects of patterns are not negligible t ¡a necessary to reconasder the self-propulsion

test together with tbe driving machine.

The ccrssiderations of theactual engine give the ftct that

the driving machin, of the ship

ii less infirmrs and heaviness in comparsn *-hi. the electric motor used

for the seif-propul'

aÄon rnel st the Mejiro Basin of the T. 'i. R. TanIa i & Fig. 4).

Q)tK* Lt)è

Xblt

Uts

7 gravity dynamometer

r

6

tlC-

L( XH

K**

-ttf< t,

orbital motion

Q)jQ)

tP-.I-.

*

')*Tht

torque

Jtft

1*b-$ L' surging motion torque,

U, ;

5

tzU,

-OD.t 51

$r)g

*-tit:Q 5

'*t-.'1.

(2)

26

**

1ol

1. *1#

*W»r4i*)Ô1*O

asirging motion.

torque

»jyot*cr

L

1L

u-c.

-rit* u-',

,

!)1t

surging motion

M* L

*Itt4

{l-t

u--cU

Laplace

*0

L

I

(Fig 1), ') (in)

(m)

*J

(*Mn*I)(kgs2itn)

4

C:

A: (m)

fr-

----L

2r; (m)

2xv Fig.

i

Co-ordrnates and Noiets

ß:

À : À (lis) Te: (s) - L4 :

'fj

T:

4

(s)

J:

(kg-m-s'. Laplace

4

torque(kgm) q, q(t) Q z (kg) v(t T s r. p. L (lis) a(t) Ns (m/s) v

v()

V(s) (m/s) r v.(t) V Ve(s) 1(t) F(s)

0) orbital motion (mis)

surging force § 1.

*F

(i) 1fJ

WVc torque

Q(s>

=P.N(s) +FVg(3).

T'Cs)

P,N.$) +F,,V(s).

P=(P4w P

\Prpi Pe,!

eJtIR.

(ii)

00: L

*ALXU

I

1) Pig 21

(3)

Fig.3 Block Diagram of the Mech-anism of tbe Self.Propulsion Test among Waves

27

i7)-:)C. ¿,

-j LC

K

O),

411

torque f.b1'Y( torque Q(a) input

L1* N(s)

output

E(s

N(s)-Ea)Q(s)

4) E(s)

5t

E,

Es)- -

Ts± I E, R

T2JE,.

6) F.. R-l-íc K K1 E,

jI gain

R,

*ìtc,

I'*

*JCt. K1

16))X 5Ç*t, T

i I

$I Fig. 2

1',

(iii) surging force

to

Fg 2

Schematic Dgre of the Shafting

of the Self Prpeled Model = 8

surging force F(sj LJJ T's)

S(s' f'

t V(s

tj surging speed

SC,) j surging force response (8,

çiv) Surging force

j- L-c1- surging force

4t*z (

surging force (10)

Z- rL{e'},

9) s

E(y

&tt7

.'

-t, tL

P

tc0').

Q *))Pt,

(V)

)tk surging speed V(i) LÇÇ) orbital motion

j(

V(s

c)-r-$-)

(Il)

V.(s)=V(s)-V(s).

(9) LC V.,(z)

V.(s)=9.../-

.

1

).Le'c'1 .

12 2. Block diagram

U

cÇ) block diagram

f't4L

Pig. 3 ¿o 5cZ

.1.

2, (3),

(4j,

W)

..,A1.o. 1). 4),

(7) ki

(11) ?t *K L

z'

5 f -r.. '4 (13 51

G(s) =1-P,E(s\

Ers.

(14)

'j5)

(4)

28

*4*i$ *1O1

Fig.4 Characteristics of the Motor for the Self-Propulsion Test Q(s)= G(s) V5(s). . torque factor Ges) 3) H(s) G(s) : (IT) T(s)

- G(s)

V4(s), thrust factor

Es)

E(a)

Po., V.çs. revo'ution factor

S) H(s) V(s) .S(s){F(s) CC)

P.V(s)}

, (IS) G(s) P,.S(z) i VJa) = ¡((s) P,,S(s) C(s) (IO)

I'

V(s)=S(s)F(s). r =0). (21)

Ø-4lt

E(s)=0,

E,=0. tt.1t

T--cj)jtI,

V(s)= 1P,,?9(s) {F(s)P.V.(s)},

t1&Z (.0).

fl

torque it

E(s)-.

E,-, T-4const.

Y(s) =

i

S(s)

{F(s)_ J'i V..(s'}. torque -

(q=0.

23 S(s)

.1_q,

i

(19) Ic

sC1l1Q) surging force

2') orbital

r-rC

f

I

-P,,S(z)

*tè?iI T,20s TLCIt

I ¿JLO H(s)/C(s) BI

T. lOs

L0.9L0t51

o surgirig,$Vs gravity dvssarno.

surging K2E1

SUrVflE O) y

H( s

surging 11G

PV(s)

g. dynamo pzj: YW") surging F s

ti

UL

Fig. 5 M

Fig 5f)

aectiotal ara function

C, 4*ò Ivi

f) cross curves 8j<

Fig. 6

5Kf, :*t*4)!

4

fi

S4. order V) 5 IC

L4.00rn

Pf.0075 .021

M20kgs'm

\.37

1.4

(4) E(s L.Ct f) . Fig.

7).t5

R 50-150A]p C, Ct E. i

50-15O/kgms. T it l--2 s t.$ge.

§ 5.

**S

RA..

so suo o (i) Surging motion

surging motion It

(19)

c-t

gravity dynamo

nt., r0 Ç) surg-

4

Ing motion

P,,=0

<c.

ct-t.

R

UrC.

oo o o so IOU ¿r

att.

Zs1 24.0)

a

(5)

ivi

4

A

Fig. 6 Critical Wave Length Ratio

25

29

._ Ai,.. ,..

j

t

Fig. 7 Surging Speed-Speed of Orbital Motion Ratio, SC,)?'f,)/V,(j), for the Sectional Area Function,

=1--1.,.( H(s)/C(s) thrust factor factor

øtio

K.,

A/L1

surging speed:

orbita1 motion

¿ L'

jO)

jlC) orbital

motion K.J urgir.g motion

30% (ni) Torque,

1J. [¼c

..tut

]6,, .17), :.18 Torque

jcT1C

Vis;

K.jÏEO) torque Q)(

P.,V4 s factor lfG's C torque

''C1/G(s)

- torque factor

:K-1i,

E(,)/C(s) - revolution

s o a 20

g. 5 Thust Variation due to orbital Motion-Surging

Force Ratio. u for the Sectional A:eaFunctions,

q=l.

,,=1e1 and

i(l-ih5ii.

C,=0.8 AILii i juj Itttb 10%

Tl.tZi

?cUC

C, J'J'

AIL vt 'J'K.t

C90.8--t)tl AIL

i A

tk gravity dynamo. j. 10% surging motion i

L't").

5f

'k1t

(A/L 2L ne C,

'j'tt1'J': < t.

%- aurging motion Fig. 5 5K. O)ZfO*Tit

C

*tft17,,

(ii

(20)

iktQ) surging force

Surging motiGri K.

.tJ, I2itQ) orbital motion ii)

' Q)orbital motion

Ve(s)

u S(s)

Surging Q) S(s)F(s)

tt1ae*ìonaI area function

i qJ(t

AIL base,

tffi

T, parameter

(6)

:to

4aQ*

.tt

factor &ho 5 t

torque,

t1JX YCZ

t'O)

tPN

-K.

*tt', UL°) 5t

1tu

surgirg motion

ii;,4

U1i. %(I$tt

Rt

2.

L.) ojR4

t-rj

)'tjl.

4)

_*t

Froude t1W,

tW*Qr1z

Froucie

flflIJ

,

41$1 E(s)

7

L t.

h'

11

E(s)

= a1"

26. T.=c*°' T1.. V Diesel engine

5t E(s)

diesel engine Ci$ harlle QDf

t.LCi<

engine

torque --$

ODI.. Es)

E(i=

E,. T,=2iL,E 29)

.::t 2B

:Q25% {kUt

E.. j1J.Cj T, Table I

.4.

E § 8. Turbine turbine E(E

)5:

5t-t

E..

-Taj+ i (3

i

Table I Characteristics of the F.ngine

engine e)t- torque

j-C.

s t

suffix jjj ...

F(n,.p., Q) data tab'e i

) F

9.

SZ*

table i

i1

E, (26, $lJt 4,,* E.. t p', 50.-150'/kgsu a)

&

6.i

*I

êt 3O4O*5

0)*frl.**Q't1<

-( gan*.

tIt

*.4c.Fj') 6

turbint i

d*c

gine t(

gain

E(s)

4 C)*Q)

E(i) torque factor, tbtust factor

*

C 4G i NC

f N0IA r),.NAI'

E$ E.- ('mr.-I

Is S I. t

S$tp -D 11L. 3l 3) ?0 1*10 1.7 I 1 1.1 IO Li a

- -

''

5d"&S .

350 ree a 3 p ,plI0 *00 210 $.* .1.3 i e 1m t r io so. e., E ,.. L7i1,SS0 .5'O 300 I.30j5 S IS--1.41 .1 .50 .7 T,=2 1cI,E.0 (31

(7)

'TOe4JE c'.crol

e.

=1

bUIT MO1

l_1

Fig.8 Fluctuation Factors

31 L, t1-.3 Cr 0 s 4

I

-s

Fig. 9 Imgina.e4 R.eordsof the

Se14Propul-sian Tesi for the«'A SÑp

V revolution factor L Fig'. S O

.

'.-'.J 5K)

revo-lution fact-

<. torque

JIt'1'1Ñ *42 %f

Ltt'.0 ft

T.

'P*<.

It--A

iLYt

4ss

iII

F1. g ç

feed 'aek t4l*

surging motion

pitching grf heavrng

L) feed back

severe t1Iø

torque pft4'

j. surging

*b16S. :.

t

1 taue I

tt*

5r*C', o*r

t,'5

tU±L

T.

LIfr*C$

e

6 totqse. *.

pitching heaving i&.I tD orbital motion

Z .LT'4ìt1t 444* Ut41Q)

K)

block diagram 'f'. Fig.

10 a

5P.tO

Át' A tUjèL

U

L1*.t o-t

t4- feed back

11-.

tsu'. w.

*ii

'O.k

T*t'.*C'CJ

pitching, heaving

j,rf) orbital motion

T".*T Z14 &4I 4'. 4-O. O PRØS'.4 *P

.,'i

t 4'. 54 L&5O

. 4,Ø5.U4AD SLA 21. o4.

- ..

VS_t5'..44

(8)

ti.<, *

P,,.1P,r5

o-rrg.-rj-que Oì)6E4c-U

*'

Pqs. Pq, P...

)ìsLt.4. 11

2

-t0

t .1 torque.

t,

. . L' lSj]I

-

s--Q)

Table. 3ijcj

±t*4

LtZ

--,

(1) G. Weinblum & M. St. Denis: On the motions of shipa at Sea.

Tsaris. SNAME, Vol.58 1950)

(2' An Investigation into the Sea Going Qualitie of the Single-screw Cargo

Ship LsShI MAR13 by .Actu.a3end Model Ship Experiments.

TTRI Repgrt. <3)

$*i:

-)t'_c.

$: f)-

83 '4- 1951)

)-._

288 (1950) (4

UJ$:

(1952

R. de Samts: The Effects of ncltnation Immersion, and Scaleon Propeller in Oper

ater Trans. TINA,Vol. 76 (1934)

Fig.1O Block Diagram of the Self-Propulsion Test in Waves

Table 2 Matrix of the Propeller Element

I PLAD(1 4 StADES

-,

n. -1%. 1% 1% -27% 11% IS%J 7e% 45%1

-

- --:-

-i'

32 1o1

1ti3-T)

tit

V.. U torque,

j

Q'r P'r1

-rz, L?I-c.),t

atris P

F.g 10 «..

Lk* coth-" s

-jg -: ..i t::. 2

e.

PROVtLL2I I SIAD(I 4 .A0C1 table. 2 Q)

5ct.

3 5

*lj32 ¡J

-)LW 'L

P

Z 4

DI& C..) 14.1

sii

pos.SAT(0 0.10$ 0.20$

ITCII$ATI0 .IxP LISP

XAatAN. 0414 0)54

Table 3 Effectivity of the Vertical Velocity

3 4 -cs' o°'l o COI) r .1.1

..

.

,

ITAt 0« £QUILIs.IU 71..$.I '. .. o

Cytaty

Powiązane dokumenty

Thus as the theoretical analysis also suggested wrong results are generated, which call for the MAJ3 gate augmentation with an amplitude normalizer able to enable SW gates

W korespondencji na uw agę zasługuje pismo, dotyczące opieki Z w iązku nad młodzieżą autochtoniczną.. olsztyńskiego zachow ało się 11

Dlaczego uczniowie szkół specjalnych rekrutują się ze środowisk o dramatycznie niskim statusie ekonomicznym i jak to się dzieje, że nazywa się ich prze- de

Jest jednak niewątpliwe, że konstrukcja szy­ bowa dawała większą efektywność procesu metalurgicznego, można było bowiem stwierdzić, że przy ściance o

In this paper, we propose a robust optimization approach to optimize post-disaster route restoration under uncertain restoration times. We present a novel decision rule based

Section 5 demonstrates branding strategies and policy initiatives undertaken in Dubai, Abu Dhabi and Qatar to diversify their economies in free economic zones, boost their

osada kultury łużyckiej (środkowa i późna epoka brązu — wczesna epoka żelaza) ślad osadnictwa kultury przeworskiej. (młodszy okres przedrzymski — okres wpły­

Celem konferencji było określenie obszarów współdziałania Pol- ski i Niemiec w celu pogłębiania procesu integracji europejskiej oraz odpowiedzialności za procesy transformacji