• Nie Znaleziono Wyników

Studies on intermolecular interactions in monoethanolamine-water liquid mixtures by means of H-NMR spectra and electric permittivities

N/A
N/A
Protected

Academic year: 2021

Share "Studies on intermolecular interactions in monoethanolamine-water liquid mixtures by means of H-NMR spectra and electric permittivities"

Copied!
10
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FO LIA C H I M I C A 10, 1993 Cez ar y M. K i n a r t * S T U D I E S O N I N T E R M O L E C U L A R I N T E R A C T I O N S IN M O N O E T H A N O L A M I N E - W A T E R L I Q U I D M I X T U R E S BY M E A N S OF * H - N M R S P E C T R A A N D E L E C T R I C P E R M I T T I V I T I E S The H-N MR s pe c t r a of liq ui d b i n ar y m i x t u r e s m ad e of wa ter and m o n o e t h a n o l a m i n e (MEA) at 2 9 8 .1 5 K w i t h i n the n e a r l y w h o l e r an ge of s o l ve nt c o m p o s i t i o n s (i.e. f ro m 3.22 to 72.95 m ol % of MEA), were rec orded. F ro m these e x p e r i ­ m e n ta l data, the c he m i c a l shi ft d i f f e r e n c e s , S (M EA - H 20), b e t w e e n the p r o t o n s i g n a l s of w at er and the m e t h y l e n e g ro ups of m o n o e t h a n o l a m i n e were d e t e r m i n e d and, s u b s e q u e n t l y , the va lues of the s pe c t r a l p a r a m e t e r A S ( M E A - H 20) w er e found g r a p h i c a l l y for the s t u d i e d mi x tu re s . F ro m the m e a s u r e m e n t s of e l e c t r i c p e r m i t t i v i t i e s (£) at 293.15, 298.15 and 3 03 .15 K and over the w h o l e range of s o l v e n t c o m p o s i t i o n s , v a l ue s of the t e m p e r a t u r e c o e f f i c i e n t s of £, viz. a = (l/£)-[dE/d (1/T)] , were det e rm i ne d.

The thus r e s u l t s o b t a i n e d w ou ld in d ic at e at the f o r m a ­ tion of some r e l a t i v e l y most s ta ble " c o m p l e x e s " ( s u b - un i ts ) MEA • 2 H 20 in the liq ui d m i x t u r e s u nd er i n v e s t i g at io n .

This p a p er c o n t i n u e s my p r e v i o u s s t u di es on the i nt erna l s t r u c t u r e s of v a r i o u s liq uid b i n ar y mi x tu re s , with e m p h a s i s put on m u t u al i n t e r m o l e c u l a r i n t e r a c t i o n s t h r ou gh the h y d r o g e n b o n ­ d ing [1-4] . The ^H-NMR spe ct ra p r e s e n t e d h e r e i n were r e c o r d e d for b i n ar y s o l u t i o n s of m o n o e t h a n o l a m i n e (MEA) and w at er ( H 20) w i t h i n the n e a rl y full range of c o m p o s i t i o n s . S u b s e q u e n t l y , ba sed on the se data, the r el a ti v e d i f f e r e n c e s in the ch e mi ca l sh ift val ue s b e t w e e n the c en ter of the p r o t o n sig na l of H 20 and

(2)

the c e n t er of the MEA m e t h y l e n e g r o u ps signal, 6(ME A - H 20), were c al c u l a t e d . The g r a p h i c a l m e t h o d was used as p r e v i o u s l y [1-4] , for d e t e r m i n a t i o n of the u s e fu l s pe c t r a l p a r a m e t e r A<5(MEA - 1^0) in the m i x t u r e s studied.

I n d e p e n d e n t l y , the m e a s u r e m e n t s of e l e c t r i c p e r m i t t i v i t i e s (£) were p e r f o r m e d for the a n a l y z e d s y s t e m at three t e m p e r a t u r e s and the v a l ue s of the t e m p e r a t u r e c o e f f i c i e n t s of £ were c a l ­ c u l a t e d at 298 .1 5 K.

The c h o i ce of the said binary m ix ture for the p r e s e n t s t u di es was due to the fact that m o n o e t h a n o l a m i n e , b ei ng the si m pl es t a m i n o a l c o h o l , p o s s e s s e s both the - N H 2 and the -OH g r o u ps w hi ch are apt to s t r o n g i n t e r m o l e c u l a r i n t e r a c t io ns . Thus, it is able to f or m the f ai rly s t a bl e h y d r o g e n b o n d i n g w it h w at er mol e cu l es , wh ere e i t he r the a m i n o or the hy d ro xy l group is i nv o l v e d or the both [5-10]. The a q u e o u s s o l u t i o n s of ME A were also the "model" s ys t em for the s t u d i e s on some b i o l o g i c a l o b j ec ts [ l l ] . They are as well w i d e l y used in c h e m i c a l t e c h n o l o g y as s u r f a c t a n t s [ l l ] .

E X P E R I M E N T A L

For the p r e s e n t *H-NMR s pe c tr a l s t u di es and the m e a s u r e m e n t s of e l e c t r i c p e r m i t t i v i t i e s , m o n o e t h a n o l a m i n e (p.a., Flu ka) was used. After its p r e l i m i n a r y d r y i n g over m o l e c u l a r sie ve s 4 A, MEA was p u r i f i e d and d ri ed by a f ra c t i o n a l d i s t i l l a t i o n under r e d u c e d p re ssur e. For all the e x p e r i m e n t s , r e d i s t i l l e d water from a q ua rtz g la ss d i s t i l l e r was used.

All the b i n a ry s o l u t i o n s s t u di ed were p r e p a r e d by weight. The ^H-NMR s p e ct ra (at 298 .1 5 + 1 K) were r e c o r d e d on a Tesla s p e c t r o m e t e r of the type BS 487C (80 MHz). The c h e m i c a l shi ft va lues for the p r o t o n s i g n a l s of MEA and w at er in ea ch bin ary m i x t u r e we re m e a s u r e d with an a cc u r a c y of +0.2 Hz in r e l a t i o n to an e x t e r n a l s ta n dar d, HMDS ( h e x a m e t h y l d i s i l o x a n e ) .

The e l e c t r i c p e r m i t t i v i t y m e a s u r e m e n t s were p e r f o r m e d with an a c c u r a c y of +0.2%, u si ng a b r i d ge of the type 0H- 30 1 (made in H un g ary ). All the m e a s u r e m e n t s of e l e c t r i c p e r m i t t i v i t i e s were p e r f o r m e d at 293.15, 2 98 .15 and 3 03 .15 K. Each t e m p e r a t u r e was m a i n t a i n e d with an a c c u r a c y of +0.01 K, u si ng a c a s c a d e t h e r m o ­ s t a t ic system.

(3)

R E S U L T S AND D I S C U S S I O N

M o n o e t h a n o l a m i n e (MEA) b e l o n g s to a group of o r g a n i c c o m ­ p o u n d s n am ed a m i n o a l c o h o l s . In liv ing o r g a n i s m s it is for med from s e r in e by its d e c a r b o x y l a t i o n [12-13]. The IR s tu d i e s [14] have r e v e a l e d that in d i l ut e t e t r a c h l o r o e t h y l e n e s o l u t io n s, three d i f f e r e n t forms of ME A are s i m u l t a n e o u s l y p r e s e n t Fig. 1.

H ,

---g' Gg’ gGt

F i g . 1

The m os t s t a b le is the form ( G ,GG ,), in w h i c h the int erna l h y d r o g e n bond, 0 -H ...N , is formed b et w e e n the h y d r o x y l group (pr ot on d on or) and the a mi no group (pr ot on a cc e pto r). Two other fo rms are: the form gGy with no i nt erna l h y d r o g e n bond (less s t a bl e than the for me r by ca. 2.8 k J/ mol) , and the form jG-p w h e re - N H 2 is a p r o to n d on or and -OH is a p r o t o n a cc e p t o r (it is less s t a bl e than the form g > ^ G , by 5.6 kJ/ mol) . The p re s e n c e and the r e l a t i v e s t a b i l i t y of the c o n f o r m e r g > G G , was c o n f i r m e d bo th by ab ini tio c a l c u l a t i o n s [5] and by m i c r o w a v e m e a s u r e m e n t s

(4)

in the gas phase [6-9] and in the s ol id p ha se [10]. The s t r u c t u r e of liq ui d water was b r i ef ly d i s c u s s e d in the p r e v i o u s p ap er [3]. There are s ev eral r e p or ts in the l i t e r a t u r e d i s c u s s i n g mut ua l i n t e r a c t i o n s b e t w e e n MEA and h^O t h r ou gh i n t e r m o l e c u l a r hydrogen bon ds [5-10]. R o d n i k o v a [15, 16] has s t u d i e d dil ute a q u e o u s s o l u t i o n s of MEA, u si ng the d i e l e c t r o m e t r i c method. She has c o n c l u d e d that up to 8 mol% of MEA, c o n s i d e r i n g the s t r u c t u r e and the d i r e c t i o n s of b on ds in the m o l e c ul e s, MEA does not a p ­ p r e c i a b l y i n f l u en c e the i nt e rn a l s t r u c t u r e of l iq uid water. C a- b a n i [17] and B r u s a l e v a [18] have m e a s u r e d the heat c a p a c t i e s and the e n t h a l p i e s of m i x i n g in the s t u di ed mixtures, d e t e r m i n i n g the d on or n u m be r of MEA to be equal to 41.

In the p a p er s [l9 - 2 l ] , their a u t h o r s have a ss umed , on the b as is of m e a s u r e m e n t s of a n u m be r of v ar ious p h y s i c o c h e m i c a l p r o p e r t i e s of the MEA - H 2 0 mi x tu re s , the p o s s i b i l i t y of f o r m a ­ tion of some r e l a t i v e l y s t a bl e c o m p l e x e s ( s u b -u n it s) b et w e e n MEA and H 20 m o l e c ul e s, wi th the c o m p o s i t i o n s : M E A / h ^ O = 1 : 1 and 1 : 2

D et aile d p h y s i c o c h e m i c a l s t u di es on the MEA - H 20 l iq uid m i x ­ tures were p e r f o r m e d by W e n c e 1 in her PhD t h e s i s [22].

On the basis of the m e a s u r e d v a l u es of d e n i s it i es , v i s c o s i ­ ties, r e f r a c t i v e i n d ic es at sev er al t e m p e r a t ur es , and c a l c u l a t e d from them the d e v i a t i o n s from "i d ea li t y" of the s t u d i e d p r o ­ p e r t i e s as well as the m ol ar p o l a r i z a t i o n s and the t e m p e r a t u r e c o e f f i c i e n t s of v i s c o s i t y and density, the a u t h o r e s s has put f o r w ar d some a s s u m e d i nt erna l str u ct u re s. She has a s s u m e d that the m os t p r o b a b l e fairly sta bl e " c o m p le x es " ( su b - u n i t s ) formed via h y d r o g e n bonds b e t w e e n MEA and H 2 0 m o l e c u l e s are: MEA • 2 H 20 and MEA • 3 H 20.

In o rd er to c o n f i r m or to v er ify the e x i s t i n g l i t e r a t u r e p o i n ts of view c o n c e r n i n g m u t u al i n t e r a c t i o n s b e t w e e n MEA and H 20 m o l e c ul e s, in this work I have n ew ly m e a s u r e d the v a l ue s of c he m i c a l shift d if f e r e n c e s , S ( M E A - H ? 0) (in Hz), b e t w e e n the

i L

c e n t e r s of the H-N MR s i g n a l s of water m o l e c u l e s and the c e n te rs of the *H-NMR s i g na ls of - C H 2 - g ro ups in m o l e c u l e s o ve r a wide range of s o l ve nt c om p o s i t i o n s , 3.22 to 72.95 mo l% of MEA.

Su b s e q u e n t l y , u si ng the same m e t h o d as p r e v i o u s l y [1-4], from these new s pe c t r a l data the val ue s of the s pe c t r a l p a r a m e ­ ter A S ( M E A - H 20) w er e g r a p h i c a l l y d e t e r mi n ed . The S ( M E A - H 20)

(5)

and the A S ( M E A - H^O) val ues are shown in Tab. 1, and they are v i s u a l i z e d in Fig. 2 as a f un c ti o n of the m i x t u r e c o m p o s i t io ns . T a b l e 1 R e l a t i v e c he m ic a l shifts, 8 ( H 2 0 - MEA), and 1HN MR sp e ct ra l p a r a m e t e r s ,A 8 ( H 2 0 -- MEA), m e a s u r e d at 298 .15 K m ol % of MEA S ( H 2 0 - MEA) [Hz] A 5 ( H 2 0 - MEA) [Hz] 3.22 96.5 0.0 6.97 95.5 2.0 11. 40 94.0 3.4 16.65 91.5 4.5 23.05 87.5 5.4 31.01 82.0 6.1 41.15 74.0 4.3 54.51 62. 5 2.5 72.95 47.5 0.0

The a n a l y s i s of the data o b t a i n e d i nd i ca t es the p r e s e n c e of a d i s t i n c t m a x i m u m for the p ro p e r t y a 5 ( M E A - H 20) loc at ed at ca 33 ma l^ of MEA. As it was d e s c r i b e d e a r li er [ l - 4 ] , the m a x i m u m for this p a r a m e t e r p o i n ts at the c o m p o s i t i o n w he re the s t r o n g e s t i n t e r a c t i o n s b e t w e e n c o m p o n e n t s with i n v o l v i n g h y d r o g e n bonds, are di s pl ay e d. Thus, from the new s pe c tr a l r e s u l t s thus obtained, the c o n c l u s i o n w ou ld be d ra wn that the most s ta ble "co mple x" ( s u b - un i t) b e t w e e n MEA and water m o l e c u l e s is of the MEA • 2 H 20 - type.

In o rd er to s u p p o r t this c on c l u s i o n , I also p e r f o r m e d the i n d e p e n d e n t m e a s u r e m e n t s of e le c t r i c p e r m i t t i v i t i e s (£) over the w ho le ran ge of s o l v e n t c o m p o s i t i o n s , at the t e m p e r a t u r e s 293.15, 298 .15 and 303 .15 K (the m e a s u r e d val ue s of E are s u m m a r i z e d in Tab. 2). U si ng these data, I have c a l c u l a t e d the val ue s of the t e m p e r a t u r e c o e f f i c i e n t s of £, d en o t e d ot, at 2 98 .15 K. This c o e f f i c i e n t , in a g r e e m e n t with the r e s u l t s of R a e t z s c h

(6)

% mol. M E A

Fig. 2. C h a ng es in the f un c tio ns, S ( H 2 0 - MEA) = f (m ol%) and A S ( H 2 0 MEA) = f(mol%), for the liq uid m i x t u r e s w a t e r m o n o e t h a

-n o l ami-n e, at 2 98 .15 K

[23], sho ul d be used as one of the c ri t e r i a for e s t i m a t i n g the m ut ual i n t e r a c t i o n s b e t w e e n p ol ar c o m p o n e n t s of b in ary sol vent s. The c om p o s i t i o n , w h e r e this s pe c t r a l p a r a m e t e r is d i s p l a y i n g a m a x i m u m p o i n t s at the " co m ple x" with a s t r o n g e s t i n t e r m o l e c u l a r h y d r o g e n bond i n t e r a c t i o n b e t w e e n the com p on e nt s. In the p r e v i o u s p a p e rs [1-4] I have s ho wn that there is a fai rly good a g r e e me n t in c o n c l u s i o n s d ra wn from the both maxima: for the s pe c t r a l p a ­ r a m et er A 5 ( M E A - H 20 ) , and for the oi property.

U sing the e x p e r i m e n t a l v al ues of e le c t r i c p e r m i t t i v i t i e s , I have c a l c u l a t e d the val ue s of their d e v i a t i o n s from "i d ea li t y" as a f un c t i o n of the MEA m ol ar f ra c ti o n as follows:

(7)

( A E 1 2 ^ i d e a l . = E12 ' ( x l ’ £ 1 + * 2 ' C 2 ) " AC a d d .

T a b l e 2

Dielectric p e r m i t t i v i t i e s for binary liq uid m i x t u re s , H 2 0 - MEA, m e a s u r e d at 293.15, 298 .15 and 303 .15 K m ol % of MEA e 293.15 K 298 .1 5 K 303 .1 5 K 0.00 80.37 78.48 74.95 3.22 78.47 76.51 73.31 6.97 76.18 74.04 70.38 11.40 72.98 70.78 66.79 16.65 69.11 66.87 62.35 23.05 64.28 61.74 55.91 31.01 59.75 56.61 50.36 41.15 55.49 53.43 47.84 54. 51 51.07 49.96 45.47 72.95 45.58 44. 93 41.89 100.00 38.11 37.70 36.88

The val ue s of £ , a and e 12^ idea l as f u n c t i o n s of the s ol v e n t c o m p o s i t i o n are shown in Fig. 3.

A n a l y s i s of the f u n c t i o n a = f ( m ol % MEA) i n d i c a t e s that the in c r e a s i n g a d d i t i o n of MEA to water up to 10 m o l 5-. of MEA n ea rly does not c h a ng e the v a l ue s of a . This s u g g e s t s lack of a p ­ p r e c i a b l e s t r u c t u r a l c h a n g e s in liq ui d w at er upon a d d i t i o n of such small q u a n t i t i e s of MEA, and it also c o n f i r m s the r e s ul ts of R o d n i k o v a [15, 16].

The v al ues of oi r e a c h a m a x i m u m at the c o m p o s i t i o n h a v in g ca 33 m o l 5. of MEA. Thus, for this c o m p o s i t i o n one w o u l d e x p ec t the s t r o n g e s t i n t e r a c t i o n s b e t we en MEA and w a t er m ol e c u l e s , and the f o r m a t i o n of some fai rl y s t a bl e " co mple x" (s u b- un i t) of the MEA • H 20 - type.

(8)

% mol. M E A % mol. M E A

% mol. M E A

Fig. 3. C h a ng es in t e m p e r a t u r e c o e f f i c i e n t s of d i e l e c t r i c p e r ­ m i t t i v i t y d ra wn as a f un c ti o n of c o m p o s i t i o n for the liq ui d m i x ­

(9)

This c o n f i r m s the for mer c o n c l u s i o n s drawn abo ve and b a s e d on the a n a l y s i s of the 1H-NMR s pe c tr a l p ar a m e t e r , A S f M E A - h^O). In the same area of the c o n c e n t r a t i o n s the re is also a m a x i m u m d e v i a t i o n from "i d ea li t y" for e l e c t r i c p e r m i t t i v i t i e s as a f u n c ­ tion of the MEA m o l a r f ra c t i o n (see Fig. 3).

On the basis of the p r e s e n t results, and those found in the literature, it may be c o n c l u d e d that the mo st s t a bl e " co m p l e x e s " ( su b -u n it s) e x i s t i n g in the MEA - H 20 l iq uid b i n a ry m i x t u r e s are those of the MEA • 2 H 2 0 - type. Other " c o m p l e x e s " ( su b - u n i t s ) tho ugh they are q ui te p os sibl e, are a p p a r e n t l y less stable.

R E F E R E N C E S [1] C . M. K i n a r t , W. J. K i n a r t , L. S k u 1 s k i, Pol. J . Chem. , .59 , 591 (1985). [2] C,. M. K i n a r t , W . J . K i n a r t , L. S k u 1 s k i, Pol. J,. C h e m . , 52, 599 (1985) . [3] c,. M. K i n a r t , W. 3. K i n a r t , L. S k u 1 s k i, Pol. 3,. C h e m . , 60_, 879 (1986). [4] L,. S k u 1 s k i , C. M. K i n a r t , Pol. 3. C h e m . , 66, 287 (1992). [5] L.. R a d o n n , W . A. L a t h a n , J. A. P o P 1 e , J . Amer. C h e m . S o c . , 92, 693 (1973). [6] R., G u n d e , A . A z m a n, J. Molec. Str uc t . , 27, 215 (1975). [7] R.. E. P e n n , R . F. K u r 1, J. Chem . Phys. . .55, 651 (1971) [8] P.. J. K r e u g e r, H. D. M e t t e e , Can . 3. Chem 43, 2970 (1965). [9] R ,. G u n d e , A . A z m a n, J. M ol ec S t r u c t ., 1 1 ., 415 (1976). [10] 0. M o o t z , D . ,B r o d a l l a , M. W i e b c k e , Acta C r y s t a l l . S. C . , 45, 754 (1989). [11] M. 3. R o d n i k o v a, G. V. S p i v a k, P. S. Y <3 S t r a m-s k i i, V. G. M a k a r o v a, Zh. Strukt. Khim. . 1 2 , 148 (1980).

[12] C h e mi e ABC, VEB FA B r o c k h a u s Verl., L e i p z i g 1987, Bd I.

[13] J. D u l d n e r , A. W e i d e n b a e c h e r . A . B u z i a s , S. S e r b a n, E. M a z a n e k, Rev. C h i m., 2_1, 3 (1970).

(10)

[14] M. R a e s a e n e n , A. A s p i a l a , L. H o m a n e n , J. M u r t o, J. Mol. Str uct. , _1, 81 ( 1982). [15] M . J . R o d n i k o v a , G . V. S p i v a k, Zh. Strukt. K h i m . , 39, 158 (1986). [16] V . N . K a r c e v , M . N . R o d n i k o v a , V . V . C e p u- 1 i n , V . G . M a k a r o v a , Zh. Strukt. Khim., 62., 2236 (1988). [17] C. C a b a n i , I. S h e i l a , J. Solution Chem., 1_, 5 (1979). [18] M . N . 8 u s 1 a e v a , V . G . I s v e t k o v , Koord. Khim., 6 , 752 (1983). [19] M. J. B 1 a n d a in e r, N. J. H i d d e n , M. C. S y m o n s, Trans. F a r a d a y Soc., 66, 316 (1970). [20] J. D u l d n e r , A. W e i d e n b a e c h e r , A . B u z i a s , S. S e r b a n, E. M a z a n e k , Rev. Chim., _20, 5 (1970). [21] B . A . A k h v e r d i e v , S . A . B i n a n d a , B. G. G a- s a n o v, Zh. Fiz. Khim., 47, 2143 (1973).

[22] A. M. W e n z e 1, PhD Thesis, Dept. of Ch e mi st r y, W ar saw U n i v e r s i t y (The B r a n ch in B i a ł ys t ok ), B i a ł y s t o k 1990.

[23] M. T. R a e t z s c h , H. K e h l e n . H . R o s n e r , Z. Phys. Chem. ( Le i pzi g), 2 5 5 . 115 (1974).

Cez ar y M a c i e j Kin ar t B A D A N I A O D D Z I A Ł Y W A Ń M I Ę D Z Y M O L E K U L A R N Y C H W M I E S Z A N I N A C H M 0 N 0 E T A N 0 L 0 A M I N Y Z WODĄ M E T O D Ą P OM I A R U ICH W ID M XH - N M R I P R Z E N I K A L N O Ś C I E L E K T R Y C Z N E J Z m i e r z o n o w id ma ^H- NMR c i e k ł y c h m i e s z a n i n wody i m o n o e t a n o - l o a mi ny (MEA) w t e m p e r a t u r z e 2 98 ,15 K (w z a k r e s i e od 3,22 do 7 2,95 mo l% MEA) oraz w ar t o ś c i p r z e n i k a l n o ś c i e l e k t r y c z n e j dla tego u k ł ad u w t e m p e r a t u r a c h 293,15, 2 98 ,15 i 303 ,1 5 K, w p e ł ny m z a k r e s i e s k ł a du m i e s z a n y c h r o z p u s z c z a l n i k ó w . Z d a n yc h d o ś w i a d ­ c z a l n y c h w y z n a c z o n o p r z e b i e g i w z g l ę d n y c h p r z e s u n i ę ć c he m ic z n y c h , S (M EA - H 2O), p o m i ę d z y ś ro d k a m i s y g n a ł ó w p o c h o d z ą c y c h od wody i od grup m e t y l e n o w y c h m o n o e t a n o l o a m i n y , a n a s t ę p n i e w ar t o ś c i p a ­ r a m e t r u s p e k t r a l n e g o , A 5 ( M E A - H 2O), w b a d a n y c h m ie s z a n i n a c h . Z t e m p e r a t u r o w y c h z a l e ż n o ś c i p r z e n i k a l n o ś c i e l e k t r y c z n e j w y z n a ­ c z o no dla b a d a n y c h u k ł a d ó w w a r t o ś c i t e m p e r a t u r o w e g o w s p ó ł c z y n n i ­ ka p r z e n i k a l n o ś c i e l e k t r y c z n e j a. O t r z y m a n e w y n ik i w s k a z u j ą na t w o r z e n i e się w z g l ę d n i e t r w a ­ łych " k o m p l e k s ó w " o s k ł a d z i e MEA • 2H„0 w c i e k ł y c h m i e s z a n i n a c h wody i m o n o e t a n o l o a m i n y .

Cytaty

Powiązane dokumenty

Combined electroosmotic and Poiseuille flow in ~30 µm deep fused-silica microchannels at electric fields less than 9 V/cm and pressure gradients less than 1.1 Bar/m

Moreover, analysis of structural relaxation times and rate of mutarotation in the D-fructose leads to the conclusion external proton transfer in the glassy state should

In the bioheat transfer equation the additional source term associated with the heat generation caused by electric field distribution appears.. Action of electric field

The measured subclass signals come from the terminal methyl groups on the lipids in the particle shell and core!. To a close approximation, the number of these methyl groups in a

The analysis of Fe(III) pairs requires higher order anisotropy terms than the systems studied up to now. Making a consequent use of the properties of &#34;irreducible

A number of calcu- lations were made using larger and smaller unit cells and it transpired that reducing the unit-cell parameters 共0.5%- 2.0%兲 had little effect on the

In the moderately low frequency band, the KdV–Burgers equation describes the behavior of waves in the far field, where the weak dissipation and weak dispersion effects appear

Another water production mechanism is shown in Figure 1.5 where water is produced from a bottom layer that is separated from the oil layer by shale.. This is an open-hole