• Nie Znaleziono Wyników

An integral formula for a riemannian manifold with two ortogonal distributions

N/A
N/A
Protected

Academic year: 2021

Share "An integral formula for a riemannian manifold with two ortogonal distributions"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA M ATH EMATICA 7, 1995

Maria Danaszczyk

A N I N T E G R A L F O R M U L A F O R A R I E M A N N I A N M A N IF O L D

W I T H T W O O R T H O G O N A L D I S T R I B U T I O N S

We deriv e global resu lts concerning in teg rals of cu rv a tu re s for closed o rien ted R iem ann ian manifolds.

Let D be a distrib utio n on a R iem annian m anifold (M , ( , )). T he second fundam ental form B of D is defined in th e following way: B ( X , Y ) is th e norm al com ponent of the field |( V x F - ) - V y X ) w here X , Y are two ta ngen t vector fields to D (see [1]) an d V is th e Levi- C ivita connection on M . T he trace H of the form B is called the m ean c urva tu re vector of D. Let D \ , D2 be two orthogonal d istrib u tio ns on M such th a t d im D j + dim £>2 > d im M . Let us p u t £>3 = £)j D D2. In this p a pe r we consider the m ean curvature vectors Hk of Dk, k =

1,2,3 , and calculate th e q uan tity div Hi + div H2 — div H3. A pplying th e G reen theorem for M closed and oriented, we derive global resuls concerning integrals of curvatures.

T he results obtained generalize a theorem proved in [2] for two com plem entary orthogonal distributions.

T h e a u th o r is indebted to Pawel W alczak for suggesting th e p ro b -lem a nd for his helpful rem arks.

(2)

T hrou gh ou t the paper, m anifolds, fields, m etrics etc. are assum ed to be C°°-difFerentiable.

Let D^~ denote th e orthogonal com plem ent of a d istrib u tion D. We say th a t a distributio n D \ is orthogonal to a d istribu tio n £)2 if the intersection D \ D ( D\ fl D ?)1- is orthogonal to the intersection D i fl (£>i fl Suppose th a t e i , . . . , e m is a local orth ono rm a l fram e on M and assum e th a t

(i) ei is tang ent to D % for i = 1,2, . . . , dim D 2 ,

(ii) ea is tang ent to Df- for a = dim D ^ + 1, . . . , dim D f- + dim D 2 ,

(iii) ej is ta ngen t to £)j n.D2 for j = dim (D j n Z ^ ^ + l) • • • 1 dim M . If v is a vector ta ngen t to M , we w rite

v = v Tl + vT2 + vT3

where i»Tl is ta ngen t to D ^ , vT2 is ta nge nt to D j1 and uT} is ta n ge nt to D \ fl D 2.

By v ±k an d v TDk, k — 1 ,2,3 , we denote, respectively, th e com po-nen ts of v orthogonal and tang ent to D k. T he inte grability tensors T k of D k are defined by the form ula

T k( X k , Y k) = ± [ X k, Y k]±k for vector fields X k , Y k tangent to D k .

Let B k be the second fundam ental form of D k. T he m ean curva-tu re vectors H k of D k are given by

Hi = ^ -Di(e,-, e,) + ^ B \ ( e j , e j ) i = + E o v j ) 11. * i H 2 = y^ J B2(ea , e a ) + s}TJ B2{ej , e j ) a j = E ( v ^ e«)-L1 + D v ^ e>)±2’ O f j

(3)

H 3 = ^ 2 B 3(ej ,e j ) = ^ ( V e ^ j ) - 13. 1 j Therefore d i v H , = - | f f i|2 + £ ( V t „ f f i ,e „ ) O' = - | i f , | 2 + £ ( V i „ ( V „ e i )T2,e„) Or,«

+ l Z ^ Ve« (V e ;ej ) T2i ea)^ Q<J d i v / f2 = - | f f2|2 + ^ ; ( V ( ,f f2, e () * (1) = - | ^ l2 + £ < V « , ( V , . e i)T\ e i> Qf,i + £ < V . , ( V « i ej f hJ d i v t f3 ~ \H3 \2 + J 2 ( ^ e i H3, e i ) + Y / ( ^ e aH3, e a ) 1 a = - i ^ i 2 + E ( - « v « , ^ ) T2, v „ e i) + ( V „ ( V t i ei ) T1, e i) + (V e>( V e, e , ) T2, e „)). It follows from (1) th a t d i v / f , + d i v t f 2 = - | / r , | 2 - | i i 2|2 + 5 ^ ( < V e„ ( V , . e i )T2, e ct> «»«.>

+ ( V e„(V«i ej )T2,e „) + ( V „ ( V t „e<, ) T1, ei)

(4)

+ I f t l2 + E ( « v *ie>)T J' V ^ e<> i,a,j

+ « V ej e , )T1, V.„ e„) + (V,„ (V e, ei) T2, e„)

+(V«((V„,e„)T‘ ,e j)).

Now, we calculate the last com ponent of the above sum by applying th e definition of th e c urvature tensor R:

(2)

E « V *.(V « ei)T2, ^ ) + ) V t,(Vt„e<I)T1,ei))

i,a

- 5 ^ ( 2 ( R ( e i , e a )ea ,ei) +

<Veo

V eieQ,ei)

+ (Vei V eae,-,ea )

i,a + " ( V . . ( V „ i j)T1,««> - ( V , . ( V t , e, ) T3,e „) - ( V „ ( V <>e „ ) T2,e ,) - (V «,(V e. e „ ) T3,e i )) . T hen we observe th a t V e a ^», 6 « ) t,Or

= ^

^

ea e a ) ~

(Vea Cj, V e( ea )) ,

(3) i,Q ^ e , Cj) »,<*

~ ^ ~]( ea{eat Veje,-)

(Ve;ea, V£q ej))

1,0

and

ea(eof, Veie,) — ea(eQ, (Ve;ei)T2)

(3>)

=

(Veaea,(Ve,.e,)T2>

+ <ea, V ea(Ve,.el)T2),

ei(eti VeQea) = e,(ei, ( V£

q

ea )Tl)

(5)

Le t us p u t

K ( D

i

, D 2) = ^ (/2 (e j,e a)ea,ej),

i,a * #22 = J ] ( ( V e aea ) T1 + ( V ec>e ,)T3). Ot

C o m pa rin g equalities (1), (2) and (3), ( 3 ’), we have

d iv Hi + d iv H i - d iv = - | # j | 2 - \H2\2 + | # 3|2

+ K ( D

u

D 2) + 5 ^ ( ( V[ea,e,ie.-,eQ) -(- ((Veiei)T3, Ve„eQ)

*>«>>

(4) - ( V e<ea , V ea e<) + ( (V Ca ea ) T l , V £, t , )

+ ( ( ^ e , e i) T2, v e. ey)) + ( #11, # 22) + ( # 11, # 3) + ( # 22? #:})• Since [.AT, F ] = Va' F — V y X fo r a r b itra r y vector fields on M , fo llow s th a t

( V [e .,.,]*,<*«> = ' 5 2 ( ( V e aei , e p) ( V ep ei t ea ) p,P,j

+ ( V , . e i ,e /,) ( V i , e j l e .) -f- ( V Cae , ,e j) ( V e;-et ,e a )

(5)

—(Veiea, eJ))(Vepe,-, eQ) — (Ve;ea, e^)(Vc^e,-, ea)

= £ ( ( V e„e i , ( V e,e <t) T>)

P , 0 j

+{Vt<,e„,(V,„e„)T1) + {Ve<1ej,(Vei ea)T1)

(6)

+{ V «ie y, ( V ejei )T!» .

F rom (5) we have

(^[«a ,«<1®*’ e°) — (^e.'eari ^ ea et) = ~ (Via ej, ( Ve,-ea ) )

+ (V«<,c 9 , ( V « , e it)T1) + <V,„ei ,(V«j e „) T1)

+ ( V „ e „ ( V . , e i )T2) + (V I(ei , ( V c, e i) T2>. Now, we shall introduce some notation:

2 B , ( e 7, e , ) = ( V e, e i ) T2 + ( V e<e7 )T2, 2 r 1(e7 , e i ) = ( V e, e #) T 2 - ( V „ e 7 )T2

for 7 , 6 G { 1 , . . . , d im £>2"} U {dim £)j- + dim + 1 , . . . , m} = A i , 2B 2( e1, es) = ( V e i e#) T1 + ( V „ e T)T1,

2T2(e7 , e s ) = ( V e, e « ) T1 - ( V I, e 1 )T1

for 7,(5 G {d im D j1 + 1 , . . . , m} = A 2,

2 B 12(e7, e$) = ( V e7e i ) T3 + ( V e<e7)T3,

2

T12(ey , e s ) = (V eyes)T3

- (V£<e7)T3

for 7 ,6 € {1, . . . , d i m D j- + dim Z)^} = A3,

2B 3(ci , e i ) = (Vei ci )-L3+ ( V e, e i )-L3, 2T3(ej , e ?) = ( V eieq)±3 - ( V Cf c,-)X3, 2 £ 11(ei , e p) = ( V e,.ep)TD’ + ( V epe<)TD’ ,

2Tn (ei , e p) = ( V £iep)TD’ - ( V £j>ei) TDi, 2 B 22(ea , ep) = ( V £ae^)TD‘ + ( V £/3 e0 )TDl,

(7)

Let us notice th a t

Y , ((V,,e»)T2,(VI(e ,)T2)

7,«e>4i = £ (IB i(e T, e , ) |2- | T . ( e , , e , ) | I ) y ,S e A i = \Bi |2 — \T\ |2.

For the rem aining form s, analogous equalities are true. Hence

(6 ) ^ l ((^ [e n ,e i]e'» ea) ~ ( ^ e ; , V e„ C j))

i,a

= i ( l « i |2 +

m2

+ |B „ |2 + |B22|2 - |B3|2 - |B12|2

-

\T

\\2

-

|T2|2 - |T„ |2 -

|T22|2

+

|T3|2

+ |r12|2).

Equalities (4) and (6) lead us to the form ula (7) div i f i + div # 2 — div # 3 = K ( D i , D 2)

+

¿ ( - l i f i l 2 + k |B ,|2 + |B«|2 - |T.|2 - |Tü|2))

1 = 1

+ I f tl2 + | ( - | S 3|2 - |B,2|2 + |7i|2 + |T12|2).

P r o p o s i t i o n . I f D \ , D2 are two orthogonal distribu tions on a Rie- m ann ian m anifold M , such that dirnD i + dim £>2 > d i m M , then

div H i + div H2 - div H3 = K ( D \ , D 2)

+ ¿ ( - I t f i l 2 + k |B ,|2 + IB.il2 - |r ,|2 - |T

ü

|2))

1=1

+ IH312 + — ( —I-£?312 — I-B12I2 + |T3 |2 -f |T12|2). w here B n , H n , T n , n = 1 ,2 ,3 , denote, respectively, the second fu n -dam enta l form s, m ean curvature vectors and integrability tensors o f

(8)

D i , D2, D3 = D i D D 2; B a ,T ii, i = 1,2, are, respectively, the sec-ond fun da m e nta l forms and integrahility tensors o f (D\ D D 2)^~ fl D t ; B \2, T\ 2 are the second fundam ental form s and integrahility tensors o f (D i n

T his is a direct consequence of (7). Now, applying the G reen theorem , we obta in the following result:

T h e o r e m . I f D \ , D2 are tw o orthogonal distributions on a closed ori-e ntori-ed Riori-em annian m anifold M , such that dim D \ + dim D2 > dim M , then

j M { K { D ' ’ D2) + £ H f f < i2 + 5 ( |fli|2 + " |T'f ~ |T ,,|2 ))

+ltf>l2 +

\ ( - m

2 - |b12|2 + |r,|2 + |t12|2))

n

= o

w here Q is the volum e elem ent on M .

C o r o l l a r y . I f T \ , T2 are two orthogonal foliations on a closed ori-ented R iem annian m anifold M , such tha t dim F\ + dim F2 > dim M , then

/ u + j d B 'i2+ if l " i2 - it - i 2)) i= i

+ 1-^3 |2 + “ ( — | 12 — I-0J212 + | î l 2|2) ^ Q = 0

where Î2 is the volum e elem ent on M .

T his follows im m ediately from our theorem . Re f e r e n c e s

[1] B .L. R ein h a rt, Foliated m anifolds w ith bundle-like m etrics, A nn. o f M ath . 69 (1959), 119-132.

[2] P .G . W alczak, A n integral fo rm u la fo r a R iem a n n ia n m an ifo ld w ith two or-thog onal co m plem en ta ry distributions, Colloq. M ath 58 (1989), 85-94.

(9)

IN T E G R A L FO R M U ŁA F O R A R IEM A N N IA N M A N IF O L D 23 Maria Danaszczyk

W Z Ó R C A Ł K O W Y D L A R O Z M A I T O Ś C I R I E M A N N O W S K I E J Z D W I E M A D Y S T R Y B U C J A M I O R T O G O N A L N Y M I

P ra c a zaw iera globalne wyniki dotyczące całek z krzyw izn n a zori-entow anej zw artej rozm aitości riem annowskiej bez brzegu.

In s titu te of M a th em atics Lodz U niv ersity ul. B an ach a 22, 90 - 238 Lodz, P o lan d email: m zb anasz® krysia.u ni.lod z.pl

Cytaty

Powiązane dokumenty

М,, Геометрическая теория функций комплексного переменного, Москва- -Ленинград,

In the present paper we will consider algebraic properties of 3-structures induced on the hypersurfaces in the Riemannian manifold by genera­.. lized 3-structures given

In this paper we consider a certain analogue of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical and study the question about

Some authors gave similar univalence conditions by using bounded functions f (z) ∈ A in their papers, see the works (for example Breaz et al.. We note that the functions f ∈ A do

Both manifolds are submanifolds of a hypersurface embedded in M* n with an induced 3-etructura Also connections induced on these manifolds and integrability conditions

VOL. This paper deals with a representation ai a 4n-dimensional Riemannian manifold as a Cartesian product of R&#34; and three »-dimensional manifolds with suitably chosen

To prove the existence of solutions for the integral equation (6), we have to show that the integral operator S defined by the right-hand side of (6) satisfies the assumptions of

Janas [2] found some integral formulas for the functional calculus, based on the representation formulas for holomorphic functions in various kinds of domains in