• Nie Znaleziono Wyników

An Extremal Problem for Univalent Functions Associated with the Darboux Formula

N/A
N/A
Protected

Academic year: 2021

Share "An Extremal Problem for Univalent Functions Associated with the Darboux Formula"

Copied!
6
0
0

Pełen tekst

(1)

UNIVEKSIT ATIS MAKIAE CÜEIE-SKLODOWSKA LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 18 SECTIO A 1968/1969/1970

Department of Mathematics, University of Cluj, Rumania

PETRU T. MOCANU

An Extremal Problem for Univalent Functions Associated with the Darboux Formula

Powicn problem ekstremalny dla funkcji jednolistnycli Некоторая экстремальная проблема для однолистных функций

1. Let f(z) be a regular function in a convex domain D and гх, z2 two fixed points in D. Then there is a point f on the straight line segment zvz2 and there is a complex number A, |A| < 1, such that

(1) /(«i) —/(«a) = Л/7'CO (^i — «2)- This is the well known Darboux formula.

If the function f is univalent in D, then A 0.

Let J1 be a compact class of regular and univalent functions in D.

A natural problem which arises is to find the minimum value of |A| for all fe F.

The author proposed this problem in 1966 at the Conference on Analytic Functions in Łódź [1].

2. The aim of the present paper is to give, by an elementary way, a lower estimation of |A| in the class $ of functions f(z) = z+a2z2+...

regular and univalent in the unit disc D — {z: |«| < 1}.

Let zlfz2e D, |«x| < |«s| • From (1) we have (2) 1

where

|A| = 1 /fci)-/(3») ki-»«! /'(f)

) Let us write

Ж)-/(*,) = ЖНЖ) №) /'(f) №) - /'(f) '

(2)

132 Petru T. Mocanu If we denote

gW ufD,

we have g(fi) = /(&), g(-zt) = 0,</(u0) = /(z2), where (3)

Further where (4) Then

where (5)

«o = _

1-2122

<z'(o) =

( i - wvm / m =

«, = 1—Zx£

/(«2) “/(»I) 1

7 V =(1_ki|2)A(Mo)>2AlL==

/'(f) A'(«i) /'(*x)

t/ x ff(«)-<Z(0)

*w = 7m '

It is clear that the function h belongs to $.

From (2) we deduce

(6) |2| = A(lto)

l«l-22 &'(«i) where w0 and ul are given by (3) and (4).

Using the well known estimates of the moduli of the function and of its first derivative in the class S, we obtain

Zi(tto)

&'(t»i) Since |«x| < |«0|, we have

> l«„| (l-|«il)3 (l+l«ol)a l+l«il

1+I«l| l+|w0| and from (6) we deduce, finally, the estimation (7)

where

,AI >

M-l^ V

\1 + |WOI/

2« z.

Wn = 1 ZjZjj

(3)

3. The estimate (7) is not the best possible. In virtue of (6) we remark that the sharp estimate of |A| in the class 6’ could be find if we know the precise bounds of the ratio (z2) where zlf zt are fixed points in 1) and f ranges over »S'.

Such kind of problem was solved by J. Krzyż for the ratio f^Zj)/

/(*2), [2].

4. Let SR denote the subclass of $ consisting of these functions having real coefficients. For f fixed in SR the ratio

(8) /(«)

«/'(*)

where a, 0 < a < 1, is fixed, has an extremal value if x, 0 < x < o, is such that

(9) /"(»)= 0.

We put the problem to find the sharp estimation of (8) where x is a solution of (9) and / ranges over SR.

Let f be the extremal function in SR, and let as be a solution of (9).

Consider a variation of f given by the formula (see [3]) /.(f) = /(f) + eF(f,Z) + O(e)

where

F(f,z) =/(t)P(£,3),|C|<l,|s|<l,

P(£, z) = 2re[AQ(f, z)], A — arbitrary complex number,

<?(f, *) = /(f)

/(f)—/(*)

-W[ L*n*)J L

ff/'(f) *(f’-i) L /(f) (f-s)(zf-l)

4

The equation (9), where f is replaced by has a solution x, — a? +

+ efe + o(e), where h is real.

The condition of extremality of / is given by V(a,z) V\x,z) /"(a)1

/'(*) /'(«H ’ re

[-

/(«)

Since /"(a?) = 0 and V(a, z)

/(«) = P(a, z) = 2re[AQ(a, z)]

= P(aa,z) + -^-P'(as,z) = 2re^(aa,z) + fl^

M Q'(,,z)]}>0.

F'(aa, z) f'W

we obtain the condition

/(«) Q'(as,z)]J

re [#(«, z)-Q(x,

*Y /'(*)

(4)

134 Petru T. Mocanu

Since A is arbitrary, we deduce that the extremal function w = f(z) must verify the differential equation

no) ( ZW' V w[c2 + (6-2c)w]

\ w / (b — w)(c — w)2

T (1 —o2)a 2®s + (l2 x*)z-j-2x3z2l L (a — «)(1 — az) + (® —z)2(l — ®z)2 J where b = f (a), c — f(x), a — af (a) If (a).

The equation (10) is of the form

I zw' \2 w[c2 +(6 — 2c)w] _ a0 + axz + a2z2 + a1zs + a0z4

\ w I (b—w)(c — w)2 * (a— z)(l — az)(x — z)2(l — xz)2 where

a„ = x2(l—a2)a + 2x3a

at = a(l — 4®2 — ®4) — 2®3(l + a2) — 2®(1 + ®2)(1 — a2)a.

Letting z -+ 0, we obtain x2a = aob.

The polynomial a0 + atz + atz2 + atz3 + a„z* has a double root k, where k = ±1- Suppose k = 1. Then

1+a 1+2®— x2 1-a a = (1 -®)» ~ and the equation (11) becomes

Izw'^ tc[c2 + (b — 2c)w] aoz(l —z)2(l + 21z + z2)

\ w / (6—w)(c—w)2 (a — z)(l — az)(x — z)2(l — xz)2 where

? ax+2a0 fl-0 Making the substitution w = cm, we obtain (12)

where

zm'\2 m[1 + (j>2)m]

m / (p — m)(1 m)2

aoz(l — z)2(l+2Zz+z2) (a —z) (1 —az) (® —z)2(l —xz)2

m(®) = 1,m'(®) = f'(x)lf(x),p = u(a) — f(a)/f(x).

The equation (12) together with the conditions m(®) = 1, u(a) = p u"(x) — 0, permits a numerical calculation of

/(«) = »*(«) af (®) mm' (®)

(5)

REFERENCES

[1] Proceedings of the Forth Conference on Analytic Functions, Annales Polonici Matheinatici, 20 (1968), p. 316.

[2] Krzyż, J., On the region of variability of the ratio f(ą)/f(22) within the class of univalent Functions, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 17 (8) (1963), 55-64.

[3] Kaczmarski, J., Sur l'équation f(e) = pf(c) dans la famille des fonctions uni­ valentes à coefficients réels, Bull. Acad. Polon. Sci., 15 (1967), 245-251.

STRESZCZENIE

Niech <8 oznacza klasę wszystkich unormowanych i jednolistnych funkcji określonych w kole jednostkowym, a 8R podklasę klasy <8 o współ­

czynnikach rzeczywistych.

Dla dowolnych zt, |«t| < |z2| <1 i fe 8 mamy

= V'({)(«!—»,)

gdzie £ leży na odcinku z1z2 i |A| < 1. W pracy tej znaleziono minimum wartości |A| dla wszystkich feSR.

РЕЗЮМЕ

Пусть *8 обозначает класс всех нормированных однолистных функций, определенных в единичном круге, а 8К — подкласс класса 8, включающий функции с действительными коэффициентами. Для любых г2, |гх| < |«2| <1 и /« 8 есть

Л*1)-/(*а) где С лежит на отрезке г2г2 и |Л| < 1.

В работе представлена проблема нахождения минимума значения

|Л| для всех /е 8К.

(6)

Cytaty

Powiązane dokumenty

D., New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. S., The theory of univalent

Convolutions of Univalent Functions with Negative Coefficients Sploty funkcji jednolistnych o współczynnikach ujemnych Свертки однолистных функций

In the paper there has been presented an attempt of applying the methods of complex analysis and optimal control to investigations of extremal problems for holomorphic and

Analytic Functions with Univalent Derivatives 145 Each of the series converges because is typically real and hence (1/6) • Z&gt;3 &lt; 3.. We wish to eliminate all the

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге

We get two convergence theorems for implicit and explicit schemes, in the latter case with a nonlinear estimate with respect to the third variable.. We give numerical examples

The stratification of the basic class S of functions regular and univalent in the unit disk by the Grunsky op- erator norm as well as the more general one of the class M ∗ of pairs