• Nie Znaleziono Wyników

Lecture held before norges tekniske hogskole, Norway

N/A
N/A
Protected

Academic year: 2021

Share "Lecture held before norges tekniske hogskole, Norway"

Copied!
42
0
0

Pełen tekst

(1)

S h i p m o t i o n s P r o f . i r . J - G e r r i t s m a R e p o r t n r : 150-P L e c t u r e h e l d b e f o r e N o r g e s T e k n i s k e H ^ g s k o l e , I n s t i t u t t f o r S k p i s b y g g i n g , T r o n d h e i m , Norway, 14-15 S e p t e m b e r '64 D e l f t U n i v e r s i t y of T e c h n o l o g y

Ship Hydromechanics Laboratory Mekelweg 2

2628 CD D E L F T The Netherlands Phone 015 -786882

(2)

Meddelelse SKB I l / M l SHIP MOTIONS Guest Lectures by P r o f . i r , J , Gerritsma Trondheim September 14.- 15. 1964

N O R G E S T E K N I S K E H 0 G S K O L E

I N S T I T U T T F O R S K I P S B Y G G I N G I i T R O N D H E I M — N . T . H .

(3)

I n t r o d u c t i o n o

I n t h i s l e c t u r e I s h a l l t r e a t f o r you some a s p e c t s o f t h e

p r o b l e m o f s h i p m o t i o n s i n s t i l l w a t e r . The s o l u t i o n o f t h i s p r o b l e m i s i m p o r t a n t f o r t h e c a l c u l a t i o n and a n a l y s i s o f shipir.otions and r e -l a t e d phenomena such as b e n d i n g moments, s-lamming, t h e s h i p p i n g o f green w a t e r and B O on, i n r e g u l a r and i r r e g u l a r seas.

To show you t h e i m p o r t a n c e o f t h e o s c i l l a t i o n s i n s t i l l w a t e r we s h a l l s t u d y f i r s t o f a l l , i n a v e r y s i m p l i f i e d way, t h e m o t i o n s o f a S h i p i n l o n g r e g u l a r and l o n g i t u d i n a l head waves»

The s h i p has no f o r w a r d speed and t h o c r o s s s e c t i o n s a r e w a l l

s i d e d i n t h e v i c i n i t y o f t h e l o a d v / a t e r l i n e . Consider a r i g h t hand c o o r d i n a t e s y s t e m , f i x e d in space, ^'^^^^q'^q^' ^ second system i s

a t t a c h e d t o t h e s h i p : ( x y z ) . The o r i g i n o f t h i s system l i e s i n t h e c e n t r e o f g r a v i t y o f t h e s h i p ( G ) . For t h e s h i p a t r e s t t h e two co-o r d i n a t e systems c co-o i n c i d e .

The s u r g i n g m o t i o n i s n e g l e c t e d and t h e heave and p i t c h o f t h e s h i p a r e d e s c r i b e d by z^Ct) and 0( t ) a

(4)

I 2 -A l o n g r e g u l a r wave ^ , v / i t h s m a l l a m p l i t u d e r r u n s i n t h e d i r e c t i o n o f t h e n e g a t i v e a x i s . The s u r f a c e e l e v a t i o n o f t h i s wave i s g i v e n by: ^ = r cos ( k x^ + C*} t ) ,

where k = i s t h e wave number and ^ = 7 ^ i s t h e c i r c u l a r f r e -quency o f t h e wave»

Because we n e g l e c t t h e s u r g i n g m o t i o n and by assumin;-^ t h a t the m o t i o n a m p l i t u d e s a r e v e r y s m a l l , we m.ay w r i t e : X ^ X o o The v e r t i c a l d i s p l a c e m e n t o f a s t r i p o f t h e s h i p a t a d i s t a n c e x from t h e c e n t r e o f g r a v i t y i s g i v e n b y : z - X 6 0 o The d i s p l a c e m e n t r e l a t i v e t o t h e water s u r f a c e i s : z - X e - f . o The r e l a t i v e v e r t i c a l v e l o c i t y i s g i v e n b y : ! The r e l a t i v e v e r t i c a l a c c e l e r a t i o n w i l l be: i z - X 8 - « The v e r t i c a l f o r c e s a c t i n g on Q s t r i p o f l e n g t h dx o f t h e s h i p a r e r e l a t e d by ,the f o l l o w i n g e q u a t i o n : (Newton) ( — d x ) ( z - x 8 ) = / ) g A dx - 2 / 0 e Y ( z ^ - X 0 - ^ ) dx - w dx g o / X / O N ' (z - X Ó - ^ ) dx + m * Cz^ - X Ö ) d x , where: w' i s t h e w e i g h t o f t h e s h i p p e r u n i t l e n g t h ; A i s t h e c r o s s s e c t i o n under t h e l o a d w a t e r l i n e ^ X Y i s t h e h a l f w i d t h o f t h e w a t e r l i n e a t x; N' i s a c o e f f i c i e n t ( t h e s e c t i o n a l damping c o e f f i c i e n t ) ; m' i s a c o e f f i c i e n t ( t h e s e c t i o n a l added mass).

Here we assume t h a t t h e p r e s s u r e i n t h e wave i s n o t d i s t u r b e d by t h e presence o f t h e s h i p .

(5)

The t o t a l v e r t i c a l f o r c e on t h e s h i p i s f o u n d by i n t e g r a t i o n . We have: pg

/ k_^dx = J

vi' dx, because a t r e s t t h e w e i g h t o f t h e s h i p equals t h e w e i g h t o f t h e d i s p l a c e m e n t . A l s o we have:

14

dx = o T t h e mass o f t h e d i s p l a c e m e n t , S ' 2 p g y Y dx = |OgA^j.= e t h e w a t e r l i n e a r e a t i m e s t h e s p e c i f i c g r a v i t y o f t h e w a t e r . T h i s c o e f f i c i e n t i s c a l l e d : t h e r e s t o r i n g f o r c e c o e f f i c i e n t ,

^ f> ë / Y x d x = + /Og S^^ = g t h e f i r s t moment o f the w a t e r p l a n e a r e a w i t h r e s p e c t t o a t r a n s v e r s e a x i s t h r o u g h G, assuming t h a t G l i e s i n the w a t e r p l a n e ; ƒ N' dx = h t h e damping c o e f f i c i e n t f o r heave; ƒ N' x d x = e a dynamic c r o s s c o u p l i n g c o e f f i c i e n t ; L

ƒ

• m dx = a t h e added mass; L ƒ m X dx = d a dynamic c r o s s c o u p l i n g c o e f f i c i e n t , L P e - a r r a n g i n g a f t e r i n t e g r a t i o n we f i n d t h e heave e q u a t i o n : (a + iOTDz + b z + C Z - ' d 0 - e Ó - g O = 2 g / Y i d x + ' o o o T + / N ' i dx +

ƒ

m'l^' i C c j t + 6„) dx = F e ^ ^ a By, t a k i n g t h e moment o f t h e f o r c e s on t h e s t r i p w i t h r e s p e c t t o G, we f i n d i n a s i m i l a r way the p i t c h e q u a t i o n : j

(6)

4

-E z - G z = M e o o a

These e q u a t i o n s f o r heave and } ) i t c h a r e second o r d e r l i n e a r d i f -f e r e n t i a l e q u a t i o n s , w h i c h a r e c o u p l e d . I n t h e heave e q u a t i o n we liave terms which c o n t a i n t h e p i t c h angle " 0 " and i n t h e p i t c h moment equa-t i o n equa-t h e heave "z appears equa-t o be p r e s e n equa-t . The c o u p l i n g a r i s e s from the f a c t t h a t t h e d i s t r i b u t i o n o f t h e f o r c e s a l o n g t)ie h u l l i s n o t sym-m e t r i c w i t h r e s p e c t t o G. For i n s t a n c e t h e tersym-m g 0 e x i s t s f o r a f o r

and a f t non symmetric w a t e r l i n e , because g = g ^^j^i where 3^^^ ^ j , ^ ^ s t a t i c a l moment o f t h e w a t e r p l a n e w i t h r e s p e c t t o a t r a n s v e r s e a x i s

t h r o u g h G. For a s y m m e t r i c a l w a t e r l i n e g = 0 . For a s y m m e t r i c a l s h i p -form a t zero speed t h e o t h e r c o u p l i n g c o e f f i c i e n t s a r e a l s o e q u a l t o z e r o . I n t h a t case:

d = e = g = D = E •= G = 0 ,

I t has t o be emphasized t h a t up t i l l now our p r o b l e m i s v e r y s i m p l i -f i e d : t h e wave l e n g t h i s v e r y l a r g e i n c o m p a r i s o n w i t h t h e s h i p l e n g t h and c o n s e q u e n t l y t h e boyancy i n t h e wave i s t a k e n as i n t h e case o f a h y d r o s t a t i c c a l c u l a t i o n ; a l s o t h e e f f e c t o f f o r w a r d speed i s n o t c o n

-terms a r e s i t u a t e d i n t h e r i g h t hand s i d e s ^ These r i g h t hand s i d e s g i v e t h e f o r c e s and moments on a non h e a v i n g and non p i t c h i n g s h i p i n waves. vVe have t h e same s i t u a t i o n wlien a more r e f i n e d a n a l y s i s i s a p p l i e d t o t h e p r o b l e m , a t l e a s t as a f i r s t a p p r o x i m a t i o n .

s i d e r e d o

The l e f t hand s i d e s o f t h e e q u a t i o n s c o n t a i n o n l y q u a n t i t i e s w h i c h d e s c r i b e t h e m o t i o n i n s t i l l w a t e r . The wave e l e v a t i o n )

(7)

The c a l c u l a t i o n o f s h i p r . o t i o n s i n r e g u l a r head waves by u s i n g a s t r i p t h e o r y , has been d i s c u s s e d i n a number o f p a p e r s , Hecent c o n t r i b u t i o n s v/ero g i v e n by Korvin»Kroukovsky and Jacobs [ l ] , Fay [ 2 j , 7/atanabe [jJ. and Fukuda [k] .

I n these papers the i n f l u e n c e o f f o r w a r d speed on the h y d r o d y namic f o r c e s i s c o n s i d e r e d and dynamic c r o s s c o u p l i n g terms a r e i n -c l u d e d i n the e q u a t i o n s o f m o t i o n , w h i -c h are assumed t o d e s -c r i b e the h e a v i n g and p i t c h i n g m o t i o n s .

I n e a r l i e r work [ 5 ] i t was shown t h a t a r e l a t i v e l y s m a l l i n f l u e n -ce o f speed e x i s t s on t h e damping coe f f n . c i e n t s , the added mass and the e x c i t i n g f o r c e s , a t l e a s t f o r t h e case o f head waves and f o r speeds w h i c h are o f p r a c t i c a l i n t e r e s t . On the o t h e r hand, f o r w a r d speed has an i m p o r t a n t e f f e c t on some o f the dynamic c r o s s - c o u p l i n g c o e f f i c i e n t s . A l t h o u g h , a t a f i r s t g l a n c e these terms c o u l d be r e garded as second o r d e r q u a n t i t i e s , i t was p o i n t e d o u t by K o r v i n -K r o u k o v s k y [1] and a l s o by Fay [ s ] t h a t t h e y can be v e r y im^portant f o r the a m p l i t u d e s and phases o f t h e m o t i o n s . T h i s has been c o n f i r m e d i n [5]where t h e c o u p l i n g terms a r e n e g l e c t e d i n a c a l c u l a t i o n o f t h e h e a v i n g and p i t c h i n g m o t i o n s . I n t h i s c a l c u l a t i o n we used c o e f f i -c i e n t s o f t h e m o t i o n e q u a t i o n s , w h i -c h were d e t e r m i n e d by f o r -c e d osc i l l a t i o n t e s t s . I n oscomparison w i t h t h e osc a l osc u l a t i o n v/here t h e osc r o s s -c o u p l i n g terms are i n -c l u d e d and a l s o i n -comparison w i t h t h e measured m o t i o n s , an i m p o r t a n t i n f l u e n c e i s o b s e r v e d , as shown i n F i g u r e 1 , w h i c h i s t a k e n from r e f e r e n c e [ 5 j . F u r t h e r a n a l y s i s showed t h a t t h e d i s c r e p e n c i e s between the c o u p l e d and uncoupled m o t i o n s were m a i n l y due t o the damping c r o s s - c o u p l i n g t e r m s .

The i n f l u e n c e o f f o r w a r d speed has been d i s c u s s e d t o some ex-t e n ex-t i n Vossers's ex-t h e s i s [ 6 ] . From a f i r s t o r d e r s l e n d e r body t h e o r y i t was found t h a t the d i s t r i b u t i o n o f t h e hydrodynamic f o r c e s a l o n g an o s c i l l a t i n g s l e n d e r body i s n o t i n f l u e n c e d by f o r w a r d speed. VoBsers concluded t h a t the i n c l u s i o n o f speed dependent damping c r o s s - c o u p l i n g terms i s n o t i n agreement w i t h the use o f .a s t r i p t h e o r y . I n view o f t h e above m e n t i o n e d r e s u l t s such a s i m p l i f i c a -t i o n does n o -t h o l d f o r a c -t u a l s h i p f o r m s .

(8)

6

-For s y m m e t r i c a l s l i i p f o r n r s a t forv/ard speed, i t v/as shown by Timman and Newman ( 7 ]t h a t the damping c r o s s - c o u p l i n g c o e f f i c i e n t s f o r heave and p i t c h are e q u a l i n m a g n i t u d e , b u t o p p o s i t e i n s i g n . T h e i r c o n c l u s i o n i s v a l i d f o r t h i n or s l e n d e r submerged o f s u r f a c e s h i p s and a l s o f o r non s l e n d e r b o d i e s .

Golovato's work [8] and some o f our e x p e r i m e n t s [ 5 ] on o s c i l l a t i n g shipmodels c o n f i r m e d t h i s f a c t f o r a c t u a l s u r f a c e s l i i p s t o a c e r t a i n e x t e n t .

The e f f e c t s o f f o r w a r d speed are i n d e e d v e r y i r . p o r t a n t f o r the c a l c u l a t i o n o f s h i p m o t i o n s i n waves. The t w o - d i m e n s i o n a l s o l u t i o n s f o r damping and added mass o f o s c i l l a t i n g c y l i n d e r s on a f r e e s u r -f a c e , as g i v e n by G r i m [ 9 ] a n d T a s a i[ l o ] show a v e r y s a t i s f a c t o r y agree-ment w i t h e x p e r i m e n t a l r e s u l t s . When t h e e f f e c t s o f f o r w a r d speed can be e s t i m a t e d w i t h s u f f i c i e n t a c c u r a c y , such t w o - d i m e n s i o n a l v a l u e s may be used t o c a l c u l a t e t h o t o t a l hydrodynamic f o r c e s and moments on a s h i p , p r o v i d e d t h a t i n t e g r a t i o n over t h e s h i p l e n g t h i s p e r m i s s i b l e .

I n o r d e r t o s t u d y t h o speed e f f e c t on an o s c i l l a t i n g s h i p f o r m i n more d e t a i l , a s e r i e s o f f o r c e d o s c i l l a t i n g e x p e r i m e n t s was des i g n e d . The main o b j e c t o f thedese e x p e r i m e n t des wades t o f i n d t h e d i des t r i -b u t i o n o f t h e hydrodynamic f o r c e s a l o n g the l e n g t h o f t h e s h i p as a

f u n c t i o n o f f o r w a r d speed and f r e q u e n c y o f o s c i l l a t i o n . 2. The e x p e r i m e n t s .

The o s c i l l a t i o n t e s t s were c a r r i e d out w i t h a 2 . 3 meter model o f t h e S i x t y S e r i e s , h a v i n g a b l o c k c o e f f i c i e n t C^ = . 7 0 . The main dimensions a r e g i v e n i n Table 1 . The model i s made o f p o l y e s t e r , r e -i n f o r c e d w -i t h f -i b r e g l a s s , and c o n s -i s t s o f seven s e p a r a t e s e c t -i o n s o f e q u a l l e n g t h . Each o f the s e c t i o n s has two e n d - b u l k h e a d s . The w i d t h o f t h e gap between two s e c t i o n s i s one m i l l i m e t e r . The

sec-t i o n s are n o sec-t connecsec-ted sec-t o each o sec-t h e r , b u sec-t sec-t h e y a r e k e p sec-t i n sec-t h e i r p o s i t i o n by means o f s t i f f s t r a i n - g a u g e dynamometers, w h i c h are con-n e c t e d t o a l o con-n g i t u d i con-n a l s t e e l box g i r d e r above the m.odel.

(9)

Table 1 . Main p a r t i c u l a r s o f t h e s h i p m o d e l . L e n g t h betv/een p e r p e n d i c u l a r s 2 . 2 5 8 m L e n g t h on t h e v / a t e r l i n e 2 . 2 9 6 m B r e a d t h 0 . 3 2 2 m Draught 0 . 1 2 9 m Volume o f d i s p l a c e m e n t 0 . 0 6 5 7 m ^ B l o c k c o e f f i c i e n t 0 . 7 0 0 C o e f f i c i e n t o f mid l e n g t h s e c t i o n 0 . 9 8 6 P r i s m i a t i c c o e f f i c i e n t 0 . 7 1 0 tVaterplane a r e a 0 . 5 7 2 m^ Waterplane c o e f f i c i e n t 0 . 7 8 5

k

0 . 1 6 8 5 m L o n g i t u d i n a l moment o f i n e r t i a o f w a t e r p l a n e 0 . 7 8 5

k

0 . 1 6 8 5 m L.C.B. f o r w a r d o f L / 2 PP C e n t r e o f e f f o r t o f w a t e r p l a n e a f t e r LPP / 2 0 . 0 1 1 m 0 . 0 3 8 m

Froude number o f s e r v i c e speed

a f t e r L / 2 PP

0 . 2 0

The dynamometers a r e s e n s i t i v e o n l y f o r f o r c e s p e r p e n d i c u l a r t o t h e b a s e l i n e o f t h e model.

By means o f a ScotchYoke miechanismi a harmonic h e a v i n g o r p i t -c h i n g m o t i o n -can be g i v e n t o t h e -c o m b i n a t i o n o f t h e seven s e -c t i o n s , w h i c h form t h e s h i p m o d e l . The t o t a l f o r c e s on each s e c t i o n c o u l d be measured as a f u n c t i o n o f f r e q u e n c y and speed.

A non segmented model o f t h e same form was a l s o t e s t e d i n t h e same c o n d i t i o n s o f f r e q u e n c y and speed t o compare t h e f o r c e s on t h e whole model w i t h t h e sum>B o f t h e s e c t i o n r e s u l t s . A p o s s i b l e e f f e c t o f t h e gaps between t h e s e c t i o n s c o u l d be d e t e c t e d i n t h i s way. The arrangement o f t h e t e s t s w i t h t h e segmented model and w i t h t h e whole model i s g i v e n i n F i g u r e 2 .

The m e c h a n i c a l o s c i l l a t o r and t h e measuring system i s shown i n F i g u r e 3« I n p r i n c i p l e t h e measuring system i s s i m . i l a r t o t h e one d e s c r i b e d by Goodman [ I I ] : t h e measured f o r c e s i g n a l i s m u l t i

(10)

8

o f t h e inphase and q u a d r a t u r e components can be found w i t h o u t d i s t o r t i o n due t o v i b r a t i o n n o i s e . I n some d e t a i l s t h e e l e c t r o n i c c i r -c u i t d i f f e r s somewhat from t h e d e s -c r i p t i o n i n [11]. I n p a r t i -c u l a r synchro r e s o l v e r s a r e used i n s t e a d o f s i n e - c o s i n e p o t e n t i o m e t e r s , because t h e y a l l o w h i g h e r r o t a t i o n a l speeds. The a c c u r a c y o f t h e i n s t r u m e n t a t i o n p r o v e d t o be s a t i s f a c t o r y w h i c h i s i m p o r t a n t f o r t h e d e t e r m i n a t i o n o f t h e q u a d r a t u r e compo-n e compo-n t s , w h i c h a r e s m a l l i compo-n comparisocompo-n w i t h t h e icompo-n-phase compocompo-necompo-nts o f t h e measured f o r c e s .

Throughout t h e e x p e r i m e n t s o n l y f i r s t harmonics were d e t e r m i n e d . I t s h o u l d be n o t e d t h a t n o n - l i n e a r e f f e c t s may be i m p o r t a n t f o r t h e s e c t i o n s a t t h e bow and t h e s t e r n where t h e s h i p i s n o t w a l l - s i d e d . The f o r c e d o s c i l l a t i o n t e s t s were c a r r i e d o u t f o r f r e q u e n c i e s up t o

CJ = 14 r a d / s e c . and f o u r speeds o f advance were c o n s i d e r e d , namely: Fn = . 1 5 , . 2 0 , ,25 and .30. Below a f r e q u e n c y o f ,CJ = 3 t o 4 r a d / s e c , t h e e x p e r i m e n t a l r e s u l t s a r e i n f l u e n c e d by w a l l e f f e c t due t o r e -f l e c t e d waves g e n e r a t e d by t h e o s c i l l a t i n g model.

The m o t i o n a m p l i t u d e s o f t h e s h i p m o d e l covered a s u f f i c i e n t l y l a r g e range t o s t u d y t h e l i n e a r i t y o f t h e measured v a l u e s (heave r j h cm, p i t c h / V 4,6 d e g r e e s ) . An example o f t h e measured f o r c e s on s e c t i o n 2, when t h e c o m b i n a t i o n o f t h e seven s e c t i o n s p e r f o r m s a p i t c h i n g m o t i o n , i s g i v e n i n F i g u r e 4,

(11)

3 . P r e s e n t a t i o n o f t h e r e s u l t s .

3 , 1 , Whole model.

I t i s assumed t h a t t h e f o r c e F and t h e moment M a c t i n g on a f o r c e d h e a v i n g o r p i t c h i n g s h i p m o d e l can be d e s c r i b e d by t h e f o l i o w i n g e q u a t i o n s : Heave; ( a + / 0 7 ) z + b i + cz = F sin(COt + «t) ' o o o z Dz +Ez +Gz = - M s i n ( c J t + (3) o o o z P i t c h ; ( A + k ^ ^C)ö + BO + 0 0 = M s i n ( Q t + ^ ) dS + eÓ + gO = - F ^ s i n C w t + S ) ( 1 ) ( 2 ) For a g i v e n h e a v i n g m o t i o n : z = z s i n t j t , i t f o l l o w s t h a t O cL b = a =

F since

z z 03 cL cz - F cos«t a z E = D = -^z ^^""/^ Gz + M cos /3 ' a z z r o 2 a'^ ( 3 ) S i m i l a r e x p r e s s i o n s a r e v a l i d f o r t h e p i t c h i n g m o t i o n .

The d e t e r m i n a t i o n o f t h e damping c o e f f i c i e n t s b and B and t h e dam-p i n g c r o s s - c o u dam-p l i n g c o e f f i c i e n t s e and E i s s t r a i g h t f o r w a r d : f o r a g i v e n f r e q u e n c y these c o e f f i c i e n t s a r e p r o p o r t i o n a l t o t h e qua-d r a t u r e components o f t h e f o r c e s o r moments f o r u n i t a m p l i t u qua-d e o f m o t i o n . For t h e d e t e r m i n a t i o n o f t h e added mass, t h e added mass moment o f i n e r t i a , a and A, and t h e added mass c r o s s - c o u p l i n g c o e f

f i c i e n t s d and D i t i s n e c e s s a r y t o know t h e r e s t o r i n g f o r c e and moment c o e f f i c i e n t s c and 0 , and t h e s t a t i c a l c r o s s c o u p l i n g c o e f -f i c i e n t s g and G.

The s t a t i c a l c o e f f i c i e n t s can be d e t e r m i n e d by e x p e r i m e n t s as a f u n c t i o n o f speed a t z e r o f r e q u e n c y . For heave t h e e x p e r i m e n

(12)

l o

-i n t h e a n a l y s -i s o f t h e t e s t r e s u l t s .

I n t h e case o f p i t c h i n g t h e r e i s a c o n s i d e r a b l e speed e f f e c t on the r e s t o r i n g moment c o e f f i c i e n t 0 . 0 decreases a p p r o x i m a t e l y 12?'o

when t h e speed i n c r e a s e s from Fn = . 1 5 t o . 3 0 . T h i s r e d u c t i o n i s due t o a hydrodynamic l i f t on t h e h u l l wlien t h e s h i p m o d e l i s towed w i t h a c o n s t a n t p i t c h a n g l e . O b v i o u s l y t h i s l i f t e f f e c t a l s o depends on the f r e q u e n c y o f t h e m o t i o n . C o n s e q u e n t l y , t h e c o e f f i c i e n t o f t h e r e s t o r i n g moment, as d e t e r m i n e d by an e x p e r i m e n t a t z e r o f r e q u e n c y , may d i f f e r from t h e v a l u e a t a g i v e n f r e q u e n c y .

As i t i s n o t p o s s i b l e t o measure t h e r e s t o r i n g moment and t h e s t a t i c a l c r o s s - c o u p l i n g as a f u n c t i o n o f f r e q u e n c y , i t was d e c i d e d t o use t h e c a l c u l a t e d v a l u e s a t z e r o speed. T h i s i s an a r b i t r a r y c h o i s e , w h i c h a f f e c t s t h e c o e f f i c i e n t s o f t h e a c c e l e r a t i o n t e r m s : f o r harmonic m o t i o n s a decrease o f C by AC r e s u l t s i n an i n c r e a s e of,A by ^ when C i s used i n t h e c a l c u l a t i o n .

. The r e s u l t s f o r t h e whole model a r e g i v e n i n t h e F i g u r e s 5 and 6, The r e s u l t s f o r t h e h e a v i n g m o t i o n were a l r e a d y p u b l i s h e d i n[ l 3 ] ; t h e y a r e p r e s e n t e d here f o r c o m p l e t e n e s s .

(13)

3 . 2 . P e s u l t s f o r t h e s e c t i o n s .

The components o f t h e f o r c e s on each o f t h e seven s e c t i o n s were d e t e r m i n e d i n t h e same way as f o r t h e whole model. As o n l y t h e f o r c e s and no moments on t h e s e c t i o n s were measured two equa-t i o n s remain f o r each s e c equa-t i o n :

Heave: ( a * +fiQ*')z + b * z + c*z = F* s i n ( 031 + ot* ) ' ' o o o z P i t c h : ( d * + ^ V * x ^ ) Ö + e 6 + gO = - F * s i n ( o 3 t +S*) (4) where V* i s t h e mass-moment o f t h e s e c t i o n i w i t h r e s p e c t t o t h e p i t c h i n g a x i s . The s t a r (*) i n d i c a t e s t h e c o e f f i c i e n t s o f t h e s e c t i o n s . Tho s e c t i o n c o e f f i c i e n t s d i v i d e d by t h e l e n g t h o f t h e s e c t i o n s g i v e t h e mean c r o s s - s e c t i o n c o e f f i c i e n t s , t h u s : a" L ~ 7 7 PP = a

and so on. Assuming t h a t t h e d i s t r i b u t i o n s o f t h e c r o s s - s e c t i o n a l v a l u e s o f t h e c o e f f i c i e n t s : a', b* e t c e t e r a , a r e c o n t i n u o u s c u r v e s , t h e s e d i s t r i b u t i o n s can be determiined from t h e seven mean c r o s s

-s e c t i o n v a l u e -s . I n t h e F i g u r e -s 7, 8, 9 and 10 t h e d i s t r i b u t i o n s o f t h e added mass a, t h e damjJing c o e f f i c i e n t b and t h e c r o s s c o u p l i n g c o e f f i c i e n t s d and e a r e g i v e n as a f u n c t i o n o f speed and f r e -quency. N u m e r i c a l v a l u e s o f t h e s e c t i o n r e s u l t s , a*, b* e t c e t e r a , a r e summarized i n the T a b l e s 2, 5 , 4 and 5.

I n F i g u r e 8 i t i s shown t h a t t h e d i s t r i b u t i o n o f t h e damping c o e f f i c i e n t b depends on f o r w a r d speed and f r e q u e n c y o f o s c i l l a t i o n . The damping c o e f f i c i e n t o f t h e f o r w a r d p a r t o f t h e s h i p m o d e l i n -c r e a s e s when t h e speed i s i n -c r e a s i n g . A t t h e same time a de-crease o f t h e damping c o e f f i c i e n t o f t h e a f t e r b o d y i s n o t i c e d . For h i g h f r e q u e n c i e s n e g a t i v e v a l u e s f o r t h e c r o s s s e c t i o n a l damping c o e f f i -c i e n t s are f o u n d .

The added mass d i s t r i b u t i o n , as shown i n F i g u r e 7t changes v e r y l i t t l e w i t h f o r w a r d speed b u t t h e r e i s a s h i f t f o r w a r d o f t h e d i s t r i b u t i o n curve f o r i n c r e a s i n g f r e q u e n c i e s .

N e g a t i v e v a l u e s f o r t h e c r o s s - s e c t i o n a l added ma.ss a r e found f o r t h e b o w - s e c t i o n s a t low f r e q u e n c i e s . For h i g h e r f r e q u e n c i e s t h e i n f l u e n c e o f f r e q u e n c y becomes v e r y s m a l l .

(14)

12

-The d i s t r i b u t i o n o f t h e damping c r o s s - c o u p l i n g c o e f f i c i e n t e v a r i e s w i t h speed and f r e q u e n c y as shown i n F i g u r e 10, From F i g u r e 9 i t can be seen t h a t t h e added mass c V o s s - c o u p l i n g c o e f f i c i e n t depends v e r y l i t t l e on speed. For h i g h e r f r e q u e n c i e s t h e i n f l u e n c e o f f r e q u e n c y i s s m a l l .

As a check on t h e a c c u r a c y o f t h e measurements t h e sum o f t h e r e s u l t s f o r the s e c t i o n s were compared w i t h t h e r e s u l t s f o r t h e whole model. The f o l l o w i n g r e l a t i o n s v;ere a n a l y s e d :

H a * = a

ƒ

X dx = A L C b * = b / e ' x d x = B L 5 I d * = d / a ' x d x = D L ETe* = e / ' b ' x d x = E

The r e s u l t s are shown i n F i g u r e 11 f o r a Froude number Fn = .20. For t h e o t h e r speeds a s i m i l a r r e s u l t was f o u n d . A n u m e r i c a l compa-r i s o n i s g i v e n i n the T a b l e s 2, 3, ^ and 5 . I t may be c o n c l u d e d t h a t t h e s e c t i o n r e s u l t s a r e i n agreement w i t h t h e v a l u e s f o r t h e whole model. No I n f l u e n c e o f t h e gaps between t h e s e c t i o n s c o u l d be f o u n d .

'f. A n a l y s i s o f t h e r e s u l t s .

The e x p e r i m e n t a l v a l u e s f o r the hydrodynamic f o r c e s and moments on the o s c i l l a t i n g s h i p m o d e l w i l l now be a n a l y s e d by u s i n g the s t r i p t h e o r y , t a k i n g i n t o a c c o u n t the e f f e c t o f f o r w a r d speed. For a de-t a i l e d d e s c r i p de-t i o n o f de-t h e s de-t r i p de-t h e o r y de-t h e r e a d e r i s r e f e r r e d de-t o [ l ] , [2] and [3J. For convenience a s h o r t d e s c r i p t i o n o f the s t r i p t h e o r y i s g i v e n h e r e . T h e ' t h e o r e t i c a l e s t i m a t i o n o f t h e hydrodynamic f o r c e s on a c r o s s s e c t i o n o f u n i t l e n g t h i s o f p a r t i c u l a r i n t e r e s t w i t h r e -g a r d t o t h e measured ' d i s t r i b u t i o n s o f t h e v a r i o u s c o e f f i c i e n t s a l o n -g t h e l e n g t h o f the s h i p m o d e l .

(15)

4.1, s t r i p t h e o r y ,

A r i g h t hand c o o r d i n a t e system x ^ y ^ z ^ i s f i x e d i n space. The

z ^ - a x i s i s v e r t i c a l l y upwards, the x ^ - a x i s i s i n t h e d i r e c t i o n o f t h e f o r w a r d speed o f t h e v e s s e l and t h e o r i g i n l i e s i n t h e u n d i s t u r b e d w a t e r s u r f a c e . A second r i g h t hand system o f a x i s x y z i s f i x e d t o t h e s h i p . The o r i g i n i s i n t h e c e n t r e o f g r a v i t y . I n t h e mean p o s i -t i o n o f -t h e s h i p -t h e body a x i s have -t h e same d i r e c -t i o n s as -t h e f i x e d a x i s ,

Consider f i r s t a s h i p p e r f o r m i n g a pure harmonic h e a v i n g mo-t i o n o f s m a l l a m p l i mo-t u d e i n s mo-t i l l w a mo-t e r . The s h i p i s p i e r c i n g a mo-t h i n s h e e t o f w a t e r , n o r m a l t o t h o f o r w a r d speed o f t h e s h i p , a t a f i x e d d i s t a n c e x f r o m t h e o r i g i n . At t h e t i m e t a s t r i p o f t h e s h i p a t a d i s t a n c e x from t h e c e n t r e o f g r a v i t y i s s i t u a t e d i n t h e s h e e t o f w a t e r . From x^ = V t + x i t f o l l o w s t h a t x = - V, where: V i s t h e speed o f t h e s h i p . The v e r t i c a l v e l o c i t y o f t h e s t r i p w i t h r e g a r d t o t h e w a t e r i s z^, t h e h e a v i n g v e l o c i t y . The o s c i l l a t o r y p a r t o f t h e h y d r o m e c h a n i -c a l f o r -c e on t h e s t r i p o f u n i t l e n g t h w i l l be:

where: ra' i s t h e added mass and N' i s t h e damping c o e f f i c i e n t f o r a s t r i p o f u n i t l e n g t h and y i s t h e h a l f w i d t h o f t h e s t r i p a t t h e w a t e r l i n e . Because: dm' _ dm * . dt ' "dT * ^ ' i t f o l l o w s t h a t : o 2 ƒ) g y z^, ( 5 ) For t h e whole s h i p we f i n d , ( 6 ) where A^ i s t h e w a t e r p l a n e a r e a .

(16)

14

-The moment produced by t h e f o r c e on t h e s t r i p i s g i v e n b y :

= -xFj» = ( x m ' ) Zo +(N« x - V x ~ - ) z ^ + 2 |» g x y z^ ( 7 ) Because J -x. —- dx = -m, we f i n d f o r t h e whole s h i p : L M„ = ( / x r a ' d x ) z + ( / N ' x d x + Vm)z + / j g S z ( 8 ) n £ ° L o / w o where i s t h e s t a t i c a l moment o f t h e w a t e r p l a n e a r e a . For a p i t c h i n g s h i p t h e v e r t i c a l speed o f t h e s t r i p a t x w i t h r e g a r d t o t h e w a t e r w i l l be: - x è + VO, and t h e a c c e l e r a t i o n i s : - x 8 + 2 V Ó . The v e r t i c a l f o r c e on t h e s t r i p w i l l be: F ' = - ~ m ' ( - x 6 + V 9 ) - N ' ( - x ö + V 0 ) + 2 ^ g y x 0 , d o r : = m' x 8 + ( N ' X - 2 Vm' - x V ^ ) 9 + ( 2; o g y x + ^ - N ' V) 0 ( 9 ) The t o t a l h y d r o m e c h a n i c a l f o r c e on t h e p i t c h i n g s h i p w i l l b e : F = ( / m ' x d x ) Ö + ( / l l ' x d x - V m ) Ó + ( og S - V/ n' d x ) © ( 1 0 ) ^ L L < L

The moment produced by t h e f o r c e on t h e s t r i p i s g i v e n b y : M' = - x F ' = . m ' x ^ ö - ( N ' x 2 - 2 Vm' x - x ^ V — • ) Ó -p -p dx - (2;»gy x^ + V ^ x ^ ,-N' V x ) e . ( 1 1 ) The t o t a l moment on t h e p i t c h i n g s h i p w i l l be M = - ( ƒ m'x^ dx)Ö - ( / N ' x ^ d x ) 0 - (/9g I - V^m - V / N ' x dx)ö, ( 1 2 ) T • T I W , P L because:-/ x ^ V ^ dx = - 2 v because:-/ m ' x d x . L L A summary o f t h e e x p r e s s i o n s f o r t h e v a r i o u s c o e f f i c i e n t s f o r t h e whole s h i p a c c o r d i n g t o t h e n o t a t i o n i n e q u a t i o r i s ( 1 ) and ( 2 ) i s g i v e n i n T a b l e 6.

(17)

Table 6. C o e f f i c i e n t s f o r t h e whole s h i p a c c o r d i n g t o t l i e s t r i p t h e o r y , a = ƒ m' dx d = / r a ' x d x + L L CJ2 b = / N ' d x e = / N ' x d x - V m L L c = ^ g g =

p

g S w (15) A = y r a X dx + —T' D = y m x d x L L B =

y

N' x ^ d x E

= ƒ

N' x d x + Vm L L w For t h e c r o s s - s e c t i o n a l v a l u e s o f t h e c o e f f i c i e n t s s i m i l a r ex p r e s s i o n s can be d e r i v e d from t h e e q u a t i o n s (5) t o ( 1 2 ) . For t h e comparison w i t h t h e e x p e r i m e n t a l r e s u l t s two o f these e x p r e s s i o n s a r e g i v e n h e r e , namely: b' . N' - V ^ dx ( 1 4 ) ' • • dm' e = N x - 2 V m - x V ^ dx A l s o i t f o l l o w s t h a t : A =

ƒ

d ' X dx and: (15) B s:

J

e X dx

(18)

16

-4 . 2 . Comparison o f t h e o r y and e x p e r i m e n t .

For a number o f cases t h e e x p e r i m e n t a l r e s u l t s a r e compared w i t h t h e o r y . F i r s t o f a l l t h e damping c r o s s - c o u p l i n g c o e f f i c i e n t t are c o n s i d e r e d . From e q u a t i o n s (13) i t f o l l o w s t h a t : E = / N ' x d x + Vm (16) X d x - V m The f i r s t term i n b o t h e x p r e s s i o n s i s t h e c r o s s c o u p l i n g c o e f f i -c i e n t f o r z e r o f o r w a r d speed. For a f o r and a f t s y m m e t r i -c a l s h i p t h i s term i s e q u a l t o z e r o . For such a s h i p t h e r e s u l t i n g e x p r e s -s i o n -s are e q u a l i n magnitude b u t have o p p o -s i t e -s i g n , w h i c h i -s i n agreement w i t h t h e r e s u l t found by Timman and Newman [?]. The e x p e r i ments c o n f i r m t h i s f a c t as shown i n F i g u r e 13 where e and E a r e p l o t t e d on a base o f f o r w a r d speed as a f u n c t i o n o f t h e f r e q u e n c y o f o s c i l l a t i o n . The magnitude o f t h e speed dependent p a r t s o f t h e c o e f f i -c i e n t s i s e q u a l w i t h i n v e r y -c l o s e l i m i t s . E x t r a p o l a t i o n t o z e r o speeds shows t h a t t h e e and E l i n e s i n t e r s e c t i n one p o i n t w h i c h s h o u l d r e p r e s e n t t h e z e r o speed c r o s s - c o u p l i n g c o e f f i c i e n t .

U s i n g Grim's t w o - d i m e n s i o n a l s o l u t i o n f o r damping and added mass a t z e r o speed [9]t h e c o e f f i c i e n t s e and E were a l s o c a l c u l a t e d a c c o r d i n g t o t h e e q u a t i o n s ( 1 6 ) . The d i s t r i b u t i o n o f added mass and damping c o e f f i c i e n t f o r z e r o speed i s g i v e n i n F i g u r e 12 and t h e c a l c u l a t e d damping c r o s s - c o u p l i n g c o e f f i c i e n t s a r e shown i n F i g u r e 13.

The c a l c u l a t e d v a l u e s a r e i n l i n e w i t h t h e e x p e r i m e n t a l r e s u l t s . The n a t u r a l f r e q u e n c i e s f o r p i t c h and heave a r e r e s p e c t i v e l y 0 = 7 . 0 / 6.9 rad/sec and i n t h i s i m p o r t a n t r e g i o n the c a l c u l a t i o n o f t h e dam-p i n g c r o s s - c o u dam-p l i n g c o e f f i c i e n t s i s q u i t e s a t i s f a c t o r y . The z e r o sdam-peed case w i l l be s t u d i e d i n t h e near f u t u r e by o s c i l l a t i n g e x p e r i m e n t s i n a wide b a s i n t o a v o i d w a l l i n f l u e n c e . A n o t h e r c o m p a r i s o n o f t h e o r y and e x p e r i m e n t c o n c e r n s t h e d i s t r i -b u t i o n a l o n g t h e l e n g t h o f the s h i p m o d e l o f t h e damping c o e f f i c i e n t and o f t h e damping c r o s s - c o u p l i n g c o e f f i c i e n t e.

(19)

From e q u a t i o n ( l 4 ) :

dx

e' = N' X - 2 Vm* - x V ^

dx

A g a i n u s i n g Grim's t w o - d i m e n s i o n a l v a l u e s f o r n' and m*, these d i s -t r i b u -t i o n s c o u l d be c a l c u l a -t e d . An example i s g i v e n i n F i g u r e l 4 . A l s o i n t h i s case t h e agreement between the c a l c u l a t i o n and t h e exp e r i m e n t i s good. For h i g h sexpeeds n e g a t i v e v a l u e s o f t h e c r o s s s e c -t i o n a l damping i n -t h e a f -t e r b o d y can be e x p l a i n e d on -t h e b a s i s o f t h e e x p r e s s i o n f o r b', because i n t h a t r e g i o n i s a p o s i t i v e quan-t i quan-t y .

F i n a l l y t h e v a l u e s f o r t h e c o e f f i c i e n t s A, B, a and b f o r t h e whole model, as g i v e n by t h e e q u a t i o n s (13) were c a l c u l a t e d and com-p a r e d w i t h t h e e x com-p e r i m e n t a l r e s u l t s . F i g u r e 15 shows t h a t t h e damcom-p- dampi n g dampi n p dampi t c h dampi s over e s t dampi m a t e d f o r low f r e q u e n c dampi e s . The o t h e r c o e f -f i c i e n t s agree q u i t e w e l l w i t h t h e e x p e r i m e n t a l r e s u l t s .

(20)

18

-TABLE 2,

Added mass f o r t h e s e c t i o n s and the whole model. kg sec /m. Fn = .15» CO a * a r a d / s e c 1 . 2 3 4 5 6 7 sura o f s e c t i o n s whole model -1 ,21- 0,59 0,54 0,87

0,41

-0,17 1

,84

6 0,31 0,66 1,08 1,38 1,26 0,65 0,02 5,36 5,37 8 0,24 o,6o 1,09 1,37 1,28 0,76 0,10 5,44 5,26 10 0,20 0,69 1,29

1,48

1,34 0,85 0,14 5,99 5,91 12 0,18' 0,78 1,4o 1,60 1,45 0,90 0,17

6,48

6,39 Fn = .20. 0,59 0,83 1,29 1,59 1,15 0,22 -0,27 5,40 5,63 6 0,32 0,65 1 ,00 1,4o 1,23

0,64

0

5,24

5,19 • 8 0,21 0,55 1,08 1,38 1 ,21 0,75 0,12 5,30 5,18 10 0,19 0,65 1,23 1,49 1,33 0,83 o,i4 5,86 5,78 12 0,20 0,77 1,37 1,60 1,45 0,88 0,17 6,44 6,32 Fn : = .25. 0,86 1,09 1,26 1 ,66 1 ,20 0,16 -0,32 5,91 4,99 6 0,33 0,65 1,01 1,38 1,19 0,55 -0,02 5,09 4,89 8 0,20 0,54 1,03 1,39 1 ,26 0,68 0,08 5,18 5,15 . 10 0,18 0,62 1,19

1,48

1,34 0,77 0,12 5,70 5,65 12 0,20 0,76 1,37 1,60 1 ,45 0,83 0,16 6,37 6,21 Fn = = .30. 0,70 0,91 1,49 1,58 1,07 -0,10 -0,22 5,43 5,59 • 6 0,25 0,44. 1,15 1,39 1,07 0,45 0,07 ^,82 4,51 8 0,16

0,42

1,14 1,45 1,08 0,58 0,13 4,96 4,93

•10

0,15 0,55 1,26 1 ,47 1 ,22 0,68 0,17 5,50

5,48

12 0,17 0,69

1,41

1,57 1,35 0,81 0,19 6,19 6,18

(21)

Damping c o e f f i c i e n t s f o r t h e s e c t i o n s and t h e whole model. kg sec/m. Fn o .13. CO • b b r a d / sum o f whole sec 1 2 3 4 5 6 7 s e c t i o n s model 2,03 9,78 5,78 3,80 4,80 2,00

-

35,63 .. 6 1,82 4,42 4,55 4,58 4,52 4,78 1,67 26,34 26,53 8 1,61 2,31 2,26 2,75 3,35 3,94 1,53 17,75 17,49 10 1,56 1,08 0,76 1,39 2,36 3.43 1,49 11,87 11 ,63 12 0,95 0,47 0,44 0,87 1,89 3,09 1,50 9,21 8,54 Fn = .20. 4 1,33 4,53 5,08 5,05 5,73 6,63 2,50 31,05 31 ,35 6 1,95 3,95 4,32 4,45 4,52 5,07 . 2,07 26,33 26,15 , 8 ; 1,50 • 1,91 2,25 2,81 3,49 4,38 1,94 18,28 17,78 10 1,10 0,37 0,62 1,54 2,70 4,01 1,90 12,24 12,14 12 0,74 -0,15 0,21 1 ,01 2,18 3,84 1,93 9,76 9,03 Fn = .25. 4 2,13 4,80 5,38 5,20 5,98 7,63 2,85 33,97 35,88 6 1,97 3,43 4,17 4,23 , 4,62 5,68 §,35 26,45 27,63 8 1,48 1,58 2,28 2,83 3,68 5,21 2,19 19,25 18,75 10 0,95 -0,06 0,60 1,68 3,00 4,96 2,20 13,33 12,69 12 0,52 -0,56 -0,03' 1,03 2,63 4,74 2,29 10,62 9,78 Fn = . 30. 4 1,78 4,40 4,40 5,15 6,78 7,60 2,98 33,09 38,10 6 1,75 2,77 3,50 4,10 5,18 6,32 2,55 26,17 28,45 8 1,21 0,99 1,70 2,81 4,50 5,73 2,51 19,45 20,4o 10 0,64 -0,87 0,17 1,88 4,07 5,42 2,59 13,90 13,95 12 0,42 -0,56 -0,63 1,37 3,72 5,28 2,66 11,26 10,4'

(22)

20

-TABLE k.

Added mass c r o s s - c o u p l i n g c o e f f i c i e n t s f o r t h e s e c t i o n s and t h e v/hole model.

2 kg sec . Fn = .15. CO

d d r a d / s e c 1 2 3 4 5 6 7 sum o f s e c t i o n s whole model k _

-

+0,59 +0,28

-

-

-6 . -0,42 -0,47 -0,33 +0,02 +0,46 +0,57 +0,13 -0,04 +0,09 8 -0,27 -0,44 -0,40 -0,01 +0,38 +0,50 +0,13 -0,11 -0,16 10 -0,19 -0,43 -0,4o -0,01 +0,37 +0,49 +0,15 -0,02 -0,10 12 -0,19 -0,45 -0,4o -0,01 +0,40 +0,51 +0,15 +0,01 -o,o4 Fn = = .20. . ,4 -0,57 -0,67

-

-

-

+0,78 +0,32

-

-6 -0,39 -0,52 -0,34 +0,01 +0,46 +0.,59 +0,13 -0,06 -0,06 8 -0,24 -0,45 -0,40 -0,01 +0,39 +0,51 +0,11 -0,09 -0,14 10 -0,20. -0,45 -0,4o -0,01 +0,38 +0,51 +0,13 -o,o4 -0,08 12 . -0,20 -0,47 -0,41 -0,01• +0,40 +0,53 +0,14 -0,02 -0,03 Fn = = .25. -0,62 -0.59 -0,01 +0,12 +0,72 +0,86 +0,21 +0,69 +0,15 6 -0,39 -0,50 -0,32 +0,02 +0,46 +0,59 +0,13 -0,01 0,00 • 8 -0,25 -0,48 -0,40 -0,01 +0,39 +0,52 +0,14 -0,07 -0,13 10 -0,18 -0,46 -0,42 -0,01 +0,38 +0,51 +0,13 -0,05 -0,08 12 -0,20 -0,46 -0,42 . -0,01 +0,40 +0,51 +0,15 -0,03 -0,05 Fn = = .30. . h -0,62 -0,61 +0,13 +0,08 +0,64 +0,95 +0,20 +0,75 +1,09 6 -0,29 -0,47 -0,36 +0,01 +0,43 +0,59 +0,21 +0,12 +0,01 8 -0,21 -0,47 -0,44 -0,01 +0,38 +0,53 +0,16 -0,06 -0,11 • 10 -0,19 -0,46 -0,44 -0,02 +0,38 +0,51 +0,15 -0,07 -0,10 12 -0,20 -0,46 -0,44 -0,02 +0,39 +0,52 +0,16 -0,05 -0,06

(23)

Damping c r o s s - c o u p l i n p ; c o e f f i c i e n t s f o r t h e s e c t i o n s and t h e whole model»

kg s e c . CO e e r a d / sec 1 2 3 4 5 6 7 sum o f s e c t i o n s whole model k

-

-

-

-

+1,63 +1,34

-

-

- 2,43 6 -1,65 -2,58 -2,12 -1,19 -0,09 +1,70 +1 ,21 - 4,72 - 5,32 8 -1,71 -2,49 -2,45 -1,81 -0,68 +1,20 +1,09 - 6,84 - 6,75 10 -1,4o -2,01 -2,43 -2,10 -1,21 . +0,88 +1,05 - 7,22 - 7,04 12 -1,07 -1,55 -2,28 -2,39 -1,52 +0,63 +1 ,05 - 7.13 - 6,88 Fn : = .20, k -1 ,22 -3,07

-

-

-

+2,39 +1,77

-

- 6,63 6. -1,68 -2,43 -2,40 -2,06 -0,68 +1,52 +1,42 - 6,31 - 6,65 8 -1,59 -2,36 -2,83 -2,50 -1,25 +1,11 +1,32 - 8,10 - 8,23 10 -1,29 -2,04 -3,02 -2,87. -1,75 +0,82 +1,29 - 8,86 - 8,86 12 -0,98 -1,65 -2,99 -2,97 -2,06 +0,61 +1,30 - 8,74 - 8,75 Fn : = .25. k -1,52 -3,04 -5,47 -3,03 -0,96 +2,16 +1,91 - 7,95 - 6,70 6 -1,50 -2,21 -2,83 -2,66 -1,36 +1,47 +1,61 = 7,50 - 7,38 8 -1,50 -2,26 -3,21 -2,97 -1,79 +1,11 +1,51 - 9,11 - 9,30 10 -1,22 -2,14 -3,56 -3,39 -2,27 +0,86 +1,49 -10,23 -10,18 12 -0,85 -1,81 -3,66 • -3,58 -2,53 +0,66 +1,47 -10,30 -10,31 • Fn : = ,30, k -1,37 -2,82 -3,61 -3,06 -1,22 +2,19 +1,98 -.7,91 - 7,55 6 -1,23 -1,93 -3,16 -3,06 -1,84 +1.43 +1,72 - 8,07 - 7,95 8 -1,30 -1,96 -3,55 -3,42 -2,32 +i-,03 +1,67 - 9,85 - 9,81 10 -1,19 -2,06 -3,94 -3,90 -2,70 +0,76 +1,67 -11,36 -11,25 12 -0,91 -1,97 -4,08 -4,19 • -2,97 +0,56 +1,69 -11,87 -11,84

(24)

L i s t o f symbols. a . • g A . , G a*. . g* A*. . G* a' . . g' A''. . G' Fn s k yy L PP m' N' t Y x y z X ,y ,z © C o e f f i c i e n t o f t h e m o t i o n e q u a t i o n s ( h y d r o m e c h a n i c a l p a r t ) . The same f o r a s e c t i o n o f t h e s h i p . The same f o r a c r o s s - s e c t i o n o f t h e s h i p . B l o c k c o e f f i c i e n t . Froude number. A m p l i t u d e o f v e r t i c a l f o r c e on a h e a v i n g o r p i t c h i n g s h i p . O s c i l l a t o r y p a r t o f t h e h y d r o m e c h a n i c a l f o r c e on a h e a v i n g o r p i t c h i n g s h i p . A c c e l e r a t i o n o f g r a v i t y . L o n g i t u d i n a l r a d i u s o f i n e r t i a o f t h e s h i p . L e n g t h between p e r p e n d i c u l a r s . A m p l i t u d e o f moment on a h e a v i n g o r p i t c h i n g s h i p . O s c i l l a t o r y p a r t o f t h e h y d r o m e c h a n i c a l moment on a h e a v i n g o r p i t c h i n g s h i p . Added mass o f a c r o s s - s e c t i o n ( z e r o s p e e d ) . Damping c o e f f i c i e n t o f a c r o s s - s e c t i o n ( z e r o s p e e d ) . Time. . Forward speed o f s h i p . R i g h t hand c o o r d i n a t e system, f i x e d t o t h e s h i p . R i g h t hand c o o r d i n a t e system, f i x e d i n space. V e r t i c a l d i s p l a c e m e n t o f s h i p .

D i s t a n c e o f c e n t r e o f g r a v i t y o f a s e c t i o n t o t h e p i t c h i n g a x i s .

Phase a n g l e s . P i t c h a n g l e .

(25)

D e n s i t y o f w a t e r . C i r c u l a r f r e q u e n c y .

Volume o f d i s p l a c e m e n t o f s h i p . Volume o f d i s p l a c e m e n t o f s e c t i o n .

(26)

2h -5. R e f e r e n c e s . 1 . B.V. K o r v i n - K r o u k o v s k y , V/.R. Jacobs. " P i t c h i n g and h e a v i n g m o t i o n s o f a s h i p i n r e g u l a r waves". S.N.A.M.E. 1957. 2, J.A. Fay.

"The m o t i o n s and i n t e r n a l r e a c t i o n s o f a v e s s e l i n r e g u l a r waves". J o u r n a l o f S h i p Research 1958.

3» Y. Watanabe.

"On t h e t h e o r y o f p i t c h and heave o f a s h i p " .

Technology Reports o f t h e Kyushu U n i v e r s i t y . V o l . 31 No. 1, 1958. E n g l i s h t r a n s l a t i o n by Y. Sonoda, 1963»

h, J . Fukuda.

"Coupled m o t i o n s and m i d s h i p b e n d i n g moments o f a s h i p i n r e g u l a r waves".

. ^ J o u r n a l o f t h e S o c i e t y o f Naval A r c h i t e c t s o f Japan, No. 112, 19^2. 5. J . G e r r i t s m a . " S h i p m o t i o n s i n l o n g i t u d i n a l waves". I n t e r n a t i o n a l S h i p b u i l d i n g P r o g r e s s I 9 6 O . 6. G. Vossers. "Some a p p l i c a t i o n s o f t h e s l e n d e r body t h e o r y i n s h i p h y d r o d y n a m i c s " . T h e s i s D e l f t I 9 6 2 , 7. R. Timman, J.N. Newman,

"The c o u p l e d damping c o e f f i c i e n t o f a symmetric s h i p " . • J o u r n a l o f S h i p Research, I 9 6 2 .

8. P. G o l o v a t o .

"The f o r c e s and moments on a h e a v i n g s u r f a c e s h i p " . J o u r n a l o f S h i p Research 1957.

9. 0. Grim.

"A method f o r a more p r e c i s e c o m p u t a t i o n o f h e a v i n g and p i t c h i n g m o t i o n s b o t h i n sm.ooth w a t e r and i n waves".

(27)

10, F. T a s a i .

a, "On t h e damping f o r c e and added mass o f s h i p s h e a v i n g and p i t -c h i n g " .

b, "Measurements o f the- w a v e h e i g h t produced by t h o f o r c e d h e a v i n g of t h e c y l i n d e r s " ,

c, "On t h e f r e e h e a v i n g o f a c y l i n d e r f l o a t i n g on t h e s u r f a c e o f a f l u i d " .

R e p o r t s o f Research I n s t i t u t e f o r A p p l i e d Mechanics. Kyushu U n i v e r s i t y , Japan. V o l . V I I I I96O,

11, A. Goodman.

" E x p e r i m e n t a l t e c h n i q u e s and methods o f a n a l y s i s used i n submerged b o d y research''.

T h i r d Symposium on N a v a l Hydrodynamics, Scheveningen I96O. 12. H.J. Z u n d e r d o r p , M. B u i t e n h e k .

" O s c i l l a t o r t e c h n i q u e s a t t h e S h i p b u i l d i n g L a b o r a t o r y " .

Report no. 111. S h i p b u i l d i n g L a b o r a t o r y , T e c h n o l o g i c a l U n i v e r s i t y , D e l f t , 1963,

13, J . G e r r i t s m a , W. Beukelman,

" D i s t r i b u t i o n o f dam.ping and added mass a l o n g t h e l e n g t h o f a s h i p

-m o d e l " , .

(28)

HEAVE AFTER PITCH

0.75 1.00 1.25 1.50 1.75

X / i ^ W A V E LENGTH RATIO

I N F L U E N C E OF C R O S S ^ C O U P L I N G

(W&S 5 3 2 0 )

F I G U R E 1

(29)

I

£ F * sin(ü)t + a * )

i6i

1 2 3 4 5 6 7 HEAVING TEST WITH SEGMENTED MODEL

F j * s i n ( a ) t + 6 j * )

1 2 3 4 5 6 PITCHING TEST WITH SEGMENTED MODEL

0) ca W W

W t

HEAVING TEST WITH WHOLE MODEL PITCHING TEST WITH WHOLE MODEL

ARRANGEMENT OF OSCILLATION TESTS

FIGURE 2

(30)

(W&S 5 3 2 0 )

ELECTRONIC STRAIN INDICATOR CARRIER AMPLIFIER RESOLVER

AMPLIFIER

DEMODULATOR

T = INTEGRATOR

S T R A I N GAUGE DYNAMOMETER IN PHASE COMPONENT QUADRATURE COMPONENT

PRINCIPLE OF MECHANICAL OSCILLATOR AND ELECTRONIC CIRCUIT

(31)

F n =

.20

Q U A D R A T U R E COMPONENT

1 2

CIRCULAR FREQUENCY ^adƒsec IN P H A S E COMPONENT ^ 0 - L • r =

1

c m • r =

2

c m A r =

3

c m I I I I ' I 1 ! L

COMPONENTS OF FORCE ON SECTION 2 . PITCHING MOTION

FIGURE A

(32)

HEAVING MOTION o 4 * 'i 10 (JÜ. 15 Fn =.15 Fn = .20 F n =.25 F n =.30

EXPERIMENTAL RESULTS FOR WHOLE MODEL

(33)

0)

10

rad/sec

15 0) 10

rad/sec

15 U w O) 2', Ul y t UJ O u O z 0 . O O _1 _2 3 h -0) 10 rad/sec 15 10 15 CO Fn = .15 _ _ F n = .20 F n =.25 _.._Fn = .30

rad/; sec

EXPERIMENTAL RESULTS FOR WHOLE MODEL

(34)

F n . , 1 5 F n . . 2 0

F n r . 2 5 F n = .30

DISTRIBUTION OF d'' OVER THE LENGTH OF THE SHIPMODEL

(35)
(36)

'•• r o d / . ï ' 1 ^ -(fl A . (H - 2" - 2" i i 10 1 • • I I I ' I

!

i ] 1 i 5 10 • S U M OF S e C I I O M S O W H O L E M O D E L S »

C O M P A R I S O N OF THE S U M S OF SECTION R E S U L T S AND T H E WHOLE MODEL R E S U L T S FOR F R O U D E NUMBER F n = . 2 0

F I G U R E 11

(37)

DISTRIBUTION O F e OVER T H E L E N G T H O F THE SHIPMODEL (W&S 5 3 2 0 ) F I G U R E 10

(38)
(39)
(40)

( i ) _ » r o d / s 10 15 Fn..15 F11..JO Fn..J5 ll) ^ rad/s 10 15 Fn ..30

COMPARISON OF CALCULATED AND MEASURED VALUES FOR a . b . A AND B ( W H O L E MODEL) F I G U R E 15

(41)
(42)

DISTRIBUTION O F a OVER T H E L E N G T H OF T H E S H I P M O D E L (WtS 5 3 2 0 ) F I G U R E 7

Cytaty

Powiązane dokumenty

A database management system (DBMS) is a special software for managing large amount of data stored in operating system files.... Disadvantages of the simplest DBMSs

To calculate the probability in question imagine the triangle rotated so a side is perpendicular to the radius.. The chord is longer than a side of the triangle if the chosen

When random events are the main source of errors, it is necessary to make sure that distribution of results can be described by Gauss function. If not, should one expect some

Choć trzeba przyznać, że oba typy sytuacji występują, nie ma powodów, by sądzić, iż nie istnieją przypadki pośrednie. Można przytoczyć różne sposoby, w jakie

The peak solar radiation is 1 kW/m 2 , so the number of peak sun hours is identical to the average daily solar insolation.. Seasonal variations

The leverage and headstone of any business is the idea that can be defined as a nonmaterial thing that by its nature is very similar to a human thought. However, it

* separate property system in cases of marriage sine manu (husband could administrate her estate but he was obliged to give an account upon dissolution of marriage).

At the .05 significance level, can we conclude there is a difference in the mean appraised values of the homes?.. The test statistic is the mean of