• Nie Znaleziono Wyników

Process intensification education contributes to sustainable development goals. Part 2

N/A
N/A
Protected

Academic year: 2021

Share "Process intensification education contributes to sustainable development goals. Part 2"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

Process intensification education contributes to sustainable development goals. Part 2

Fernandez Rivas, David; Boffito, Daria C.; Faria-Albanese, Jimmy; Glassey, Jarka; Afraz, Nona; Akse,

Henk; Boodhoo, Kamelia V.K.; Bos, Rene; Cantin, Judith; (Emily) Chiang, Yi Wai

DOI

10.1016/j.ece.2020.05.001

Publication date

2020

Document Version

Final published version

Published in

Education for Chemical Engineers

Citation (APA)

Fernandez Rivas, D., Boffito, D. C., Faria-Albanese, J., Glassey, J., Afraz, N., Akse, H., Boodhoo, K. V. K.,

Bos, R., Cantin, J., (Emily) Chiang, Y. W., Commenge, J. M., Dubois, J. L., Galli, F., de Mussy, J. P. G.,

Harmsen, J., Kalra, S., Keil, F. J., Morales-Menendez, R., Navarro-Brull, F. J., ... Weber, R. S. (2020).

Process intensification education contributes to sustainable development goals. Part 2. Education for

Chemical Engineers, 32, 15-24. https://doi.org/10.1016/j.ece.2020.05.001

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

EducationforChemicalEngineers32(2020)15–24

ContentslistsavailableatScienceDirect

Education

for

Chemical

Engineers

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a te / e c e

Process

intensification

education

contributes

to

sustainable

development

goals.

Part

2

David

Fernandez

Rivas

a,∗

,

Daria

C.

Boffito

b

,

Jimmy

Faria-Albanese

c

,

Jarka

Glassey

d

,

Judith

Cantin

e

,

Nona

Afraz

f

,

Henk

Akse

g

,

Kamelia

V.K.

Boodhoo

d

,

Rene

Bos

h

,

Yi

Wai

Chiang

i

,

Jean-Marc

Commenge

j

,

Jean-Luc

Dubois

k

,

Federico

Galli

b

,

Jan

Harmsen

l

,

Siddharth

Kalra

m

,

Fred

Keil

n

,

Ruben

Morales-Menendez

o

,

Francisco

J.

Navarro-Brull

p

,

Timothy

Noël

q

,

Kim

Ogden

r

,

Gregory

S.

Patience

s

,

David

Reay

d

,

Rafael

M.

Santos

i

,

Ashley

Smith-Schoettker

t

,

Andrzej

I.

Stankiewicz

m

,

Henk

van

den

Berg

u

,

Tom

van

Gerven

v

,

Jeroen

van

Gestel

w

,

R.S.

Weber

x

aMesoscaleChemicalSystemsGroup,MESA+InstituteandFacultyofScienceandTechnology,UniversityofTwente,Enschede,7522NB,theNetherlands bCanadaResearchChairinIntensifiedMechano-ChemicalProcessesforSustainableBiomassConversion,PolytechniqueMontréal,ChemicalEngineering Department,C.P.6079,succ.Centre-ville,Montréal,QC,H3C3A7,Canada

cFacultyofScienceandTechnology,CatalyticProcessesandMaterialsGroupMESA+InstituteforNanotechnology,UniversityofTwenteEnschede,7522NB, theNetherlands

dSchoolofEngineering,MerzCourt,NewcastleUniversity,NE17RU,UnitedKingdom

eBureaud’appuietd’innovationpédagogique,PolytechniqueMontréal,CP.6079,succ.Centre-ville,Montréal,QC,H3C3A7,Canada

fOtto-von-GuerickeUniversityMagdeburg,IAUT(InstituteforApparatusandEnvironmentalTechnology),Universitätsplatz2,39106,Magdeburg,Germany gChairmanPIN-NL,ProcessIntensificationNetwork,theNetherlands

hLaboratoryforChemicalTechnology,GhentUniversity,Technologiepark125,9052,Gent,Belgium iSchoolofEngineering,UniversityofGuelph,50StoneRoadEastGuelph,Ontario,N1G2W1,Canada jLaboratoireRéactionsetGéniedesProcédés,UniversitédeLorraine,CNRS,LRGP,F-54000,Nancy,France kARKEMA,CorporateR&D,420Rued’Estienned’Orves,92705,Colombes,France

lHarmsenConsultancyBV,HoofdwegZuid18,2912EDNieuwerkerkaandenIJssel,theNetherlands

mProcess&EnergyDepartment,DelftUniversityofTechnology,Leeghwaterstraat39,2628CB,Delft,TheNetherlands

nHamburgUniversityofTechnology,DepartmentofChemicalReactionEngineering,EissendorferStrasse38,21073,Hamburg,Germany oTecnológicodeMonterrey,Mexico

pInstitutUniversitarid’ElectroquímicaiDepartamentdeQuímicaFísica,Universitatd’Alacant,Apartat99,E-03080,Alicante,Spain

qDepartmentofChemicalEngineeringandChemistry,MicroFlowChemistryandSyntheticMethodology,EindhovenUniversityofTechnology,DenDolech 2,5612AZ,Eindhoven,theNetherlands

rTheUniversityofArizona,DepartmentofChemical&EnvironmentalEngineering,1133E.JamesE.RogersWay,Tucson,AZ,85721,UnitedStates sCanadaResearchChair,HighTemperature,HighPressureHeterogeneousCatalysisPolytechniqueMontréal,ChemicalEngineeringDepartment,C.P.6079, succ.Centre-ville,Montréal,QC,H3C3A7,Canada

tRAPIDManufacturingInstitute,NewYork,NY,UnitedStates

uSustainableProcessTechnologyGroup,FacultyofScienceandTechnology,UniversityofTwente,Enschede,7522NB,theNetherlands vProcessEngineeringforSustainableSystems(ProcESS),Dept.OfChemicalEngineering,KULeuven,3001,Leuven,Belgium wChemicalEngineeringDepartment,UtrechtUniversityofAppliedScience,Utrecht,theNetherlands

xPhysicalandComputationalSciencesDirectorate,PacificNorthwestNationalLaboratory,Richland,WA,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11February2020

Receivedinrevisedform20April2020 Accepted4May2020

Availableonline23May2020 Keywords:

Industrychallenge Processdesign

a

b

s

t

r

a

c

t

AchievingtheUnitedNationssustainabledevelopmentgoalsrequiresindustryandsocietytodevelop toolsandprocessesthatworkatallscales,enablinggoodsdelivery,services,andtechnologytolarge conglomeratesandremoteregions.ProcessIntensification(PI)isatechnologicaladvancethatpromises todelivermeanstoreachthesegoals,buthighereducationhasyettototallyembracetheprogram.Here, wepresentpracticalexamplesonhowtobetterteachtheprinciplesofPIinthecontextoftheBloom’s taxonomyandsummarisethecurrentindustrialuseandthefuturedemandsforPI,asacontinuationof thetopicsdiscussedinPart1.Intheappendices,weprovidedetailsontheexistingPIcoursesaround theworld,aswellasteachingactivitiesthatareshowcasedduringthesecoursestoaidstudents’lifelong

∗ Correspondingauthor.

E-mailaddress:d.fernandezrivas@utwente.nl(D.FernandezRivas).

https://doi.org/10.1016/j.ece.2020.05.001

1749-7728/©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/).

(3)

Pedagogy ProcessIntensification Entrepreneurship Sustainability Chemicalengineering Educationchallenge

learning.TheincreasingnumberofsuccessfulcommercialcasesofPIhighlighttheimportanceofPI educationforbothstudentsinacademiaandindustrialstaff.

©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisis anopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thecurrentworldeconomic orderdemands professionalsto becreative and innovative, nomatter theirfield of work.This is particularly important in chemical and process engineering disciplinesthatsignificantly contributetoaddressing thegrand challengesfacedbysocietyonclimatechange,energytransition, andfreshwatermanagementasstatedintheUN-SDG(Sustainable

DevelopmentGoals,2019;AusfelderandHannaEwa,2018;Boulay

etal.,2018;CEFICandDECHEMA,2017;Storketal.,2018;Klemeˇs

andJiˇríJaromír,2020),andalsotheonesrelatedtothe

technolog-icalneedofcreatingcircularityoforganic,carbonandinorganic resources.Thisisalsoconnectedwithwatersourcemanagement, includingitsqualityandfootprinttowarrantanoverallsustainable process/productparadigm,wherebylifecyclesassessmentplaysa

keyrole(Boulayetal.,2018).Togetherwiththesechallenges,the

chemicalindustryconstantlyseekstoincreaseenergysavings,an objectiveofthechemicalindustrysincethe70swhilereducing theirgreenhousegasemissions.

Process Intensification (PI) is a relatively new toolset for addressingthesegoalsthatisgainingmomentuminindustryand academiccircles.WeprovideanupdateddefinitionofwhatPIin thecontextofeducationforchemicalengineersinPart1(Rivas etal.,2020),andissummarisedas1)anapproach“byfunction”,a departurefromtheconventionalprocessdesignbyunitoperations, and2)anapproachthatfocusesnotonlyontheprocessitself,but alsoonwhathappens“outsideorasaconsequenceoftheprocess”. TherecentInternationalConferenceonProcessIntensification (IPIC2, Leuven 2019 (EFCE, 2018)) included an academic seg-ment, an industrial segment, as well as several workshops on selectedtopics:continuousmanufacturing,multifunctional pro-cesses,alternative energy sources, and 3D printing. During the LorentzCentreWorkshopheldinJune2019,introducedinPart1

(Rivasetal.,2020),therelevanceofPIfortheeducationofthe

pro-fessionalsoftomorrowwasdiscussed.Thispaperexpandsonthe toolsavailabletomeetthisscope.

Traditionalchemical engineering courses arebased on unit-operationorientedtopics,suchaschemicalreactionengineering, massandheattransfer,polymerprocessing,particletechnology,

etc(Stankiewiczand Yan,2019).PIeducationrequires students

tomasterthosefundamentalconceptsaswellasmaterial-specific functions(e.g.surfacearea,permeability,responsivenessto induc-tion heating and microwave heating, and catalysis) to solve complexchemicalconversionand/orseparationprocesses. Intro-ducingtheseconceptsinthestudyofprocessesandapplicationof thePIprincipleswillrequireconsequentialchangesinthecurrent teachingmethodsandcontent.Forthisreason,wemustupdate the20-yearoldtoolboxapproachtoPIandincludematerialdesign and engineering, i.e. concepts and representative examples on howtoconceive and integratematerialsinto existingand new designstocontributetotheindustrialandecologicalchallenges oftoday.

Thisarticle details current provisions and proposals of how tointroducePIintochemicalengineeringeducationandtraining. Italsospecifiesconcreteresourcesandmaterialsappropriatefor academicsettings(BSc,MSc,andPhD)andprofessionalsworking intheindustrytoeffectivelycreatelong-termlearningofthePI principles.

2. Currenteducationalprogramsonprocessintensification

Thenumberofeducationalprogramsinchemicalscienceand engineeringprograms offeringPIcourses hasgrownin thelast decade, as evidenced by a database of the PI courses offered atseveraluniversitiesand instituteswehavecompiled.Eachof thesecourseshasempiricalexperienceonadvantagesand chal-lengesassociatedwiththetypeofdeliverytheychose.Thejournal EducationforChemicalEngineershasagreedtoupdatethis informa-tion(Supplementarymaterial–Appendix1)regularlytoinclude changes and additions to the database. Furthermore, we have includedsomeofthebooksused.Whilethisnumberofchemical engineeringprogramsactiveinPIissignificant,onecouldstopto wonder:ifthisisenough?

DiscussionsduringanexpertpanelworkshoponPIeducation

(Rivasetal.,2020)recognizedthattheintroductionofnewcourses

inexistingcurriculaisoneoptiontoteachPIatatertiarylevel. How-ever,thismaybedifficultinthealreadyfullcurriculathatareoften structuredtofulfil professionalaccreditationrequirements(e.g.

IChemE,2019(InstitutionofChemicalEngineers(IChemE),2019;

ABET,2017).AmorerealisticapproachistointroducePIelements

(ifnotthewholeframework)acrossseveralcourses.Forthis strat-egytosucceed,studentsmusthavebasicengineeringknowledge first(Part1,Figure3).Forthisreason,thesetheoreticalcoursescan beleveragedtointroducestudentstoPIandsustainabilityconcepts incombinationwithproject-basededucation,inwhichstudents usethelecturer-studentcontacttimetopracticesolvingproblems. ThepreceptsofBloom’sTaxonomy,whichdescribeandorder thedifferentcognitiveskills,offerastructuredwayofteachingPI. IfPIisadeparturefromtheconventionalprocessdesignbyunit operation,withafocusnotonlyontheprocessitself,butalsoon environmentalandsustainabilityissues,thenwhatarethe condi-tionsthatweshouldputintoplaceforthestudentstomastervery high-levelcompetencies(Rivasetal.,2020)?When“complex prob-lemsrequiresophisticatedproblem-solvingskillsandinnovative, complicatedsolutions”(Maddenetal.,2013),educatorsmustbe creativedesignersoflearningexperiencesthatmoveawayfrom traditionallearning(Henriksenetal.,2019).

Bloom’sTaxonomy(Bloom,1956)haslongbeenrecognisedby theinternationalcommunityofpedagogicalexpertsasaneffective framework that is applicableacrossdifferenteducational disci-plinesforconceivingandguidinglearningoutcomes.Revisedin 2001,itconceptualizesandclassifiescognitiveprocessesthatthe brainperformsandordersthosehierarchicallyfromthemost intro-ductory and accessible (remember) to the most advanced and integrative(create).Thethreecognitiveprocessesatthebottom oftheFig.1(righttriangle),remember,understandandapplyare the“lowerorder cognitiveskills”or LOCS,whileanalyse, evalu-ateandcreateare“higherordercognitiveskills”orHOCS(Resnick,

1987);(Thompson,2008)),(Appendix2inSupplementary

mate-rial for more details). These cognitive skills are linked to the Chemical-Engineeringtoolbox,inwhichtransferableskills comple-mentfundamentalknowledgeinchemicalengineeringacademic program.Onlyasmallselectionoftransferableskillsisshownhere: otherslikecriticalmindset,(interdisciplinary)collaboration, com-munication,andinformation literacyarelistedamongthe“21st CenturySkills”andreceivemuchattentioninthedevelopmentof newcourses.

(4)

D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24 17

Fig.1.CombiningthechemicalengineeringtoolboxwiththecognitiveprocesstaxonomyforthedevelopmentofeffectiveteachinginPI.Arguably,thisconceptisvalidalso foraglobalprogram,PIaddssynthesis(integration)tothetoplevel.

Thecognitiveprocesstaxonomyelucidateswhyitisvirtually impossibleforstudentstobecreativeiftheyspendmostofthe classtimelisteningtoanexpert.Hearinganexpertthinkingout loudduring thecreativeprocess is one essentialstep, but it is insufficienttoenablestudentstodoitthemselves.Ifthemain cog-nitiveactivityofstudentsistryingto“understand”,thereislittle roomforthemtorapidlyapply,analyse,andevaluateinfrontof acompetenteducator.Theeducatorinturn,mustdiagnoseany weaknessesandthecognitiveprocessinwhichtheyarestuck.Here, theconceptof“failfast”philosophyisparticularlyimportantforan enjoyableandeffectiveteaching-learningprocess(Khannaetal., 2016).BycombiningBloom’sTaxonomywiththe“Chemical Engi-neeringToolbox”requiredinPI,onecanfindattheintersection clearguidelinestobuildaneffectiveeducationalprogram onPI (Fig.1).Thisposesanadditionalchallengetotheeducators,asoften theyhavenotclimbedthe“PIladder”.WeadvocatethatPIshould beincorporatedinthesingletechnicaltoolbox.

Learning PI and being able to transfer the knowledge into realsituations encouragesstudentstoworkincircumstancesas closeaspossibletothework-floor.Thisrequiresactivelearning approaches,likeproject-basedlearning,problem-basedlearning, team-basedlearningandcasestudies,wherethestudentsare cog-nitivelyengagedandmorelikelytosupporthigherordercognitive skills(Freemanetal.,2014).Ifthetaskinspiresreachingthehigher levelsofthecognitiveprocesses,itwillallowdivergentthinking andinterdisciplinarityneededforthefutureofindustry(Connor

etal.,2017).Table1presentstypicalPIlearningactivitiesandthe

cognitiveprocessstudentspotentiallyreachthroughthese.

3. ChallengesofteachinganddeployingPIwithinhigher education

Preparingstudentstojointhecreativeandopen-minded work-forcerequiresflexibilityintheuniversityenvironmentandlearning conditions (material, flexible schedules, academic tasks, etc.). WhiletheobjectiveistousePIcoursesastheplaygroundfor chem-icalengineeringstudentstofree-uptheircreativityandingenuity tocreate,study,andvalidateintensifiedprocesses,inpracticethe crowdedacademicagendalimitsthetime ofstudentsand

edu-cators.Instructingstudentsusingmoreinteractivestrategieswill increasethestudents’engagement.Thenextsectionfocusseson threechallengestoincorporatePIintoexistingcourses:(1) find-ing the righteducational modules in the chemical engineering curriculum tointroduceand deepenedPItechnologies;(2) lim-itedavailability ofcase studiesfor education;and,(3) theneed topreparestudentswithessential-skillstocommunicateeffective techno-economicanalysesofPIwhenworkinginindustry.

3.1. AdequateintegrationofPIinestablishedchemical engineeringcurriculum

Duringtheworkshop,therewasaquestionthatallparticipants weregrappling with:where doesa PIcoursefit in thealready crowdedacademiccurricula?ThoughthemajorityagreedthatPIis moreappropriateatagraduatelevel,itwasdeemedimportantto findwaystoinspirestudentsevenattheundergraduatelevel, espe-ciallyregardingtheunderlyingphysicsofnon-traditionalforces, withoutdetailedPIanalysesatahigherorderofcognitiveskills (HOCS,Fig.1).However,thisapproachfacesagreaterchallenge nowadaysatalllevels.Thisisrelatedtothemultidisciplinary pro-grammesthatarethenorminmanytechnicaluniversitiesandtend tosaturatethestudentswithinformation.DoesPIaddtothis con-fusion withallitsnoveltyand definitions?We believethat the benefitsofbringingatleastthebasicprinciplesandcomprehensive approachofPIoutweighanyriskofcomplicatingexisting curric-ula,aslongasPIcanbeseamlesslyincorporated,eitherinongoing courses,orinanewcourse.

Aneasier-to-answerquestionthatsurfacedwaswhetheraPI courseshouldbemandatory:unanimously,andnotsurprisingly, theanswerwasyes.Thisanswerwasaccompaniedbypractical suggestionsofprogressiveimplementationwithintheoverall cur-ricula,suchasmentioningPItobothundergraduateandgraduate studentsanddemonstratingexamplesofPIinthecontextof chem-icalreactionengineering and unitoperations,as wellasdesign projectsforthestudentstopracticeandimplementPIprinciples. Itisalsousefultobringpracticalexamplesthatconcernnature. Forinstance,whenmentioningmicro-reactors,apopularexample, PIcontraststraditionalmicrochannelsandhumanbloodvessels:a

(5)

Table1

ExamplesoflearningactivitiesinPIandtherequiredfundamentaldisciplinesandtransferableskills.Appendix3providesspecificimplementationexamplesofeachof theselearningactivitieswheretheinvolvementofdifferentconceptsinchemicalengineeringareillustrated.FurtherdetailsontheexamplesprovidedinAppendix3canbe obtainedfromcitedreferencesorbycontactingtheco-authorsofthiswork.

CognitiveProcess PIlearningactivity Chemicalengineeringtoolbox

Create(Lucas,2001)1 Agroupofthreetofivestudents(frommorethanonediscipline,if

possible)analysearealproblemsituation,co-createanoriginal strategyemergingfromthecombinationofmultidisciplinary frameworks.Theyplanhowtheywouldputitintoplace.

Largergroupsthan5studentsmightprovedifficulttohandle,andthe chanceof“free-riders”increases.

Fundamentalknowledge:

Safety,Sustainability,ProcessDesign,UnitOperations,Transport Phenomena,Thermodynamics,ChemicalKinetics,Chemistry,Physics, Mathematics

Transferableskills:

Teamwork,Innovation,criticalmindsetandinformationmanagement, creativity

SeeAppendix3.2,3.3,3.4,3.5,3.6,3.7inSupplementarymaterial Evaluate Agroupofstudentsanalysearealsituationwithintheirowndiscipline

andshareitwiththeirpeerssoeveryoneunderstands.Together,they evaluateallthepossiblestrategiestosolvetheproblemandidentify whatwouldbethebestoption.Then,studentsshouldbeableto substantiatetheirselectiontothelecturer.StudentscompareaPI processorapparatustoaconventionalone,listingadvantagesand disadvantages

Fundamentalknowledge:

Safety,Sustainability,UnitOperations,TransportPhenomena, Thermodynamics,ChemicalKinetics,Chemistry,Physics,Mathematics Transferableskills:

Teamwork,Innovation,criticalmindsetandinformationmanagement. SeeAppendix3.1,3.2,3.3,3.4,3.6,3.7,3.8and3.9inSupplementary material

Analyse Studentsdeconstructarealsituationintoitscomponentsandconnect thecorrespondingcomponentsofarelevantconcepttoascertainits underlyinglogicandpredictwhatwouldhappenifwechangeoneor moreparameterstotherealsituation.Theyexplainunexpectedresults thathappenedinanexperiment.StudentsdescribeaPIprocess,break itdownintoitscomponentsandindicatewhichphysicalphenomena playarole.

Fundamentalknowledge:Safety,UnitOperations,Transport Phenomena,Thermodynamics,ChemicalKinetics,Chemistry,Physics, Mathematics

Transferableskills:

Teamwork,innovation,criticalmindsetandinformationmanagement. SeeAppendix3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8and3.9in

Supplementarymaterial Apply Studentscansolveabstractproblemsusingformulasprovidedor

learnedbyheart.Theyareabletoreproduceagivenexperimentinthe lab.Studentsapplye.g.mass-transfertheoryinaPIcontext,calculate therequiredsizeofanapparatus

Fundamentalknowledge:TransportPhenomena,Thermodynamics, ChemicalKinetics,Chemistry,Physics,Mathematics

Transferableskills: Teamwork,criticalmindset

SeeAppendix3.0and3.1,3.2,3.3,3.4,3.5,3.6,3.7inSupplementary material

Understand Studentsexplainintheirownwordstheinfluenceofvelocity, temperatureandconcentrationinachemicalprocess.Theycanfind examplesofthepresenceofthesephenomenainotherapplications. Theycanalsorecognizewhy(e.g.)astaticmixerisanexampleofPI equipment.

Fundamentalknowledge:TransportPhenomena,Thermodynamics, ChemicalKinetics,Chemistry,Physics,Mathematics

Transferableskills:Teamworkifinteam

SeeAppendix3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8inSupplementary material

Remember Studentsmemorizeformulas,materialcharacteristics,stepsofa process,conceptsattributes,etc.(oranyothertypeofrotelearning). ThestudentsareabletoreproducethedefinitionofProcess Intensificationwhenasked

Fundamentalknowledge:Thermodynamics,Chemistry,Physics, Mathematics

Transferableskills: Teamworkifinteam

SeeAppendix3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8inSupplementary material

1 AccordingtoLucas(2001),«[c]reativepeoplequestiontheassumptionstheyaregiven.Theyseetheworlddifferently,arehappytoexperiment,totakerisksandtomake mistakes.Theymakeuniqueconnectionsoftenunseenbyothers.»(p.138)(Lucas,2001).

circularmicrochannelof400␮minamicroreactordeliversa spe-cificareaofca.15000m2/m3.Nature,however,beatsengineering:

ourcapillaryveinsareca.10␮mindiameter,havespecificareasof ca.400000m2/m3and(mostofthetime)donotclog(VanGerven

andStankiewicz,2009)!

ParticipantsintheLorentzworkshopalsodiscussedwhatare theminimumresourcesrequiredtohaveabasic,undergraduate PImodulewithinacourse.First,acostlesssolutionwouldbeto introducetheterm“processintensification”anditsmeaningin dif-ferentmandatorycourses(asithappensnowwithheatandmass transfer,unit-operations,safetyetc.).Somebasicrequirementsfor groupproject-basedactivities,include:

• Basic infrastructure for students to meet regularly with the instructorandteachingassistants,andseparatelyasgroups. • Accesstostructuredcourseslides,successstories–some

exam-pleswhereitworks,couldbeinstructionalvideos.

• Accesstoliterature(traditionalorelectronic)includingjournals thatpublishbothPItheoryandapplications.Differentspecific journalsareavailableonPIandreportonboththetheoryand theapplicationofPIindifferentfields.Tobeevenmoreeffective, anonlinedatabasereportingcompaniesapplyingPIprocesses shouldbeavailabletostudentswhowanttoanalyseand under-standrealexamples.Anothervaluabletoolcouldbeacollection ofpatentsonPItechnologies,andfailedPIapplications.Inthis

waystudentswillappreciatethedriverstoapplyPI,aswellas thefactorsthathavepermittedandimpededthedeploymentof thetechnology.

• Meanstocompileinformation,storageandpreparationof docu-ments,reports,etc.

• InthecaseofProblemBasedLearningandChallengeBased Learn-ing(section4.1)thatrequiremodellingactivities,whicharekey inaPIcourse,thecorrespondingtools,e.g.AspenPlus,COMSOL, etc.alongwithateachingassistantdedicatedtotheseactivities. Instructive,learningobjectivescanalsobereachedwithsimpler toolssuchasMicrosoftExcelandMATLABtosolvedifferential equationsforflow,heatandmasstransfer,reactionkinetics,etc. ThesetoolsenabledesignorinvestigationofoneormoreofthePI domains(structure,synergy,energyandtime)atoneormoreof thePIscales(plant,process,particleandmolecular)(Santosand

VanGerven,2011).

• AccesstoRAPID’sandCOSMIC’swebinarsonboththetheoryand modelling(e.g.COSMIC’stutorialonultrasoundandmicrowaves irradiation).Thesewebinarscouldbetakenasanassignment(a reportbyastudentorgroupofstudentscanfollow).

• Brainstorming/creativeactivities.

• Laboratories:ultrasoundhornorbathtoexaminesonication pro-cesses,(Haqueetal.,2017),thermogravimetricanalyser(TGA), ideallywithdifferentialscanningcalorimetry(TGA-DSC) capa-bility,andevenmoreideallyhyphenatedtoamassspectrometer

(6)

D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24 19

(TGA-MSorTGA-DSC-MS),toinvestigatehigh-temperature reac-tionsinreal-time(Santosetal.,2012);tubularandstirred-tank reactorsforbatch-to-continuousandmixed-to-plugflowprocess transitions(Zhangetal.,2019b);in-situanalysers(e.g.particle size,infrared)fortrackinginreal-timeunsteady reaction pro-cesses;amongotherspossibilities.

Ultimately,theresourcesdonotneedtobeexpensiveforthe studentstodeepentheiranalysisandcomeupwithcreativeor wellsupportedideas.MoredetailsaregiveninSection5.

3.2. IndustryrequirementsinPIeducation:commercialsuccess stories

ManylargescaleplantshaveappliedPI(Rivasetal.,2020): distil-lationplants(Kiss,2014)(dividing-wallcolumns(Johnetal.,2008), internallyheatedintegrateddistillation(Fangetal.,2019), reac-tivedistillationsformethylandethylacetate(Singhetal.,2014), andfortheesterificationofaceticacid(AgredaandHeise,1990), structuredreactors(e.g.selectivereactiveNOxreduction), rotat-ingHiGeeequipment(Cortes Garcia etal.,2017)(e.g.seawater deaerator,strippingofhypochlorousacid,CO2absorption),tailgas

cleaningofSO2 bymeansofarotatingpackedbed(RPB)reactor

(Darake et al.,2014), printed circuitheatexchangers(PCHE) in

offshoregastreatmentplants(Baeketal.,2010),andtheTwister foroffshoregasdrying (Esmaeili,2016).Similarly,varioustypes ofmicro-andmilli-reactorsorequipmenthavebeenusedinfine chemicals,automotiveexhaustaftertreatment,andthe pharma-ceuticalsindustry,wherenumbering-upofmicrofluidicstructures orreactorsallowsforproductionscale-up.(Kockmannetal.,2011;

Modestinoetal.,2016;Shenetal.,2018;Zhangetal.,2017).

ThereareimportantreasonswhyPIlarge-scaleequipmentand microreactorsalike,arestillnotusedmorewidely,andeducation hasthepotentialtoresolvethisinpart.Alistofaspectswehave identifiedcanbefoundinAppendix4inSupplementarymaterial. Implementingtheseexamplesandthetheoryandeconomic mod-elsbehindtheorysuccessinPIcourses,aswellascoursesoffered toindustrialstaff,canacceleratePIknowledgedisseminationand itsimplementation.

Thedifficultyofmakinga compellingcasefornewsolutions shouldnotbeunderestimatedinPIeducation.Thisisaboutbeing abletotellacredibletechno-economicstory,tobothmanagement andseniortechnologistsinthecompanyforwhomPIsolutionsare newand“different”aswell,forexample:

• PItechnologyUimprovesyieldX%,reducesenergyconsumption byY%,andlowersCAPEXandOPEXcomparedtoconventional processes,whilereducingourCO2footprintbyZ%.

• ThisPItechnologyis differentindeed,butwe understandthe fundamentals.

Orabelievableinvestmentriskstory:

“ThisnewPIsolutionisdifferentfromconventionaltechnology butwillallowthecompanytoreducecapitalrisk,makenew products(unattainablewithconventionaltechnologies),reduce inventory,managethesupplychainmoreeffectively,etc.” InIndustry,timingiscritical:tellingthetechno-economicand riskstoriesattherighttimeintheinvestmentcycleisfundamental tohavethemanagementselectingPIoveranincumbent technol-ogy.RAPIDdevelopedastudentinternprogramthatfocuses on developingthenextgenerationofleadersinPI.TheInternswork onprojectsatRAPIDmemberinstitutionsthatadvancePIor mod-ularprocessing,whilesimultaneouslylearningabouttheconcepts virtually throughPI E-learning coursesand webinars.This pro-videsstudentswithreal-worldcontextandavalue-propositionfor

PI.Appendix5inSupplementarymaterialsummarizesahistorical accountofpast(Dutch)experienceregardingPIandtheindustry setting.

Implementing PI technology, like any novel development requires up toa decade and includes a research phase, a pilot plant,andademonstrationunit.Trainingstudentswithinnovative technologiesmayincreasetheprobabilityofadoptionandreduce industrytendencytodirectlyjumptoproventechnologieswitha shorterimplementationcycle.

Finally,overcomingthesebarriersrequirescooperativeefforts in academia, industry and certification agencies. For example, largegapsin equipmentdesign inthefieldsof ultrasonic reac-tors,microwaves,electricandmagneticfieldsshouldbehandledin academia,whileproductionproblemsoftherespectiveequipment shouldbehandledbyindustryorindustry-ledconsortia.Butthere aremanyotherdesignproblemsofalreadyintroducedequipment. Forsomeoftheseitemsthereareonlysimplecorrelations.Amajor problemistofindoutwhichunit operationsshouldbestudied first,thatmeanswhichequipmenthashighestprobabilityto pen-etratethemarket.Astherearealreadymanytheoreticalanalyses ofpotentialPIstrategiesforagivenapplications,anevaluationand rankingoftheseinbusinessterms(CAPEX,OPEX)and sustainabil-itypotential(energyuse,rawmaterialefficiencyusage,E-factors, etc.)asundertakeninarecentstudyonintensifiedamidation pro-cessinginthepharmaceuticalindustry,wouldbewelcomedbythe community(Fengetal.,2019).

4. EnablersofPIeducation

Inthissectionwereviewsomeofthestrategiesandeducational technologiesthatcanfacilitatetheimplementationofPI educa-tionina moreeffectivemannerandovercomethesomeof the aforementionedchallenges.

LearningPIinchemicalengineeringprogramsshouldbe con-ceived as sandbox in which students can creatively apply all theirknowledgeonunitoperationtotackle chemicalindustrial problems.To fosterlively discussionsand brainstorming activi-tiesbetweenstudents,wecanleverageseverallearningtoolsand strategies.

4.1. Problem-basedlearning(PBL)orChallengeBasedLearning (CBL)

In PBL,students analyzeanddiscussa realproblemwithan expectedscopeand solution,defining theacademicconceptsto learn(Dolmansetal.,2016).Therefore,inPBL,thefocusinmore ontheacquisitionofknowledge, ratherthanonitsapplication. In CBL (not to confuse with case-based learning) students are activelyengagedinarelevantandchallengingproblemrelatedto a real-worldcontext(it isan openproblem, where nosolution isknown).CBLismoreadvancedthanPBLasitimpliesthatthe knowledgehasbeenalreadyacquired,anditinterpretsit,rather thanassimilatingit,toimplementsolutionsthatanswerthe chal-lenge(Hernández-de-Menéndezetal.,2019).Forexample,when faced witha challenge,successfulgroups andindividuals lever-ageexperience,harnessinternalandexternalresources,develop aplanandpushforwardtofindasolution(VegaandNavarrete, 2019).Alongtheway,thereis experimentation,failure,success andultimatelyconsequencesforactions.Byaddingchallengesto learningenvironmentstheresultisurgency,passion,and owner-ship–ingredientsoftenmissinginschools.CBLcanbestructured inthreecyclingphases(Fig.2):(1)aninvestigatingphaseinwhich studentshavetointernalizetheproblemdefinitionanddiagnosis andself-studytheinformationtosolvethecase;(2)actingphase thatisaimedatdesigning,implementing,andtestingtheproposed

(7)

Fig.2.CyclicphasesofChallengeBaseLearning.(https://cbl.digitalpromise.org/stories/).

solutions:and(3)engagingphaseinwhichthestudentsleverage theinteractionwiththetutorandhispeerstosolvetheproblem. Thisstrategysupportsthedevelopmentofknowledgeacquisition inanautonomousmanner,developmentoftransferable-skillsor essential-skillsandlife-longlearning(Ruiz-Ortegaetal.,2019).In thisstrategy,thestudent-tutorinteractionisemployedtosupport theproblem-solvingstageratherthantheknowledgeacquisition

(KOLMOS, 1996).We reportexamplesofhow different

instruc-torsimplementeitherPBLorCBLinAppendix3inSupplementary material.

4.2. Practicalexperimentation

Practicallaboratorieswithstudents manipulatingequipment continues toplay a prominent role in thecurrent engineering education(Chenetal.,2016)).Inordertoeffectivelycreate life-longlearningonPIthecookbookexperimentation(Hofsteinand

Lunetta,1982; Kontraetal.,2015)shouldbereplacedby

peer-instructionandcollaborativelearning.Tosuccessfullyimplement this,universitieswillstillneedtoprovidetheinfrastructure for theseactivities–space,materials,lab-andpilot-scale equipment-at a cost. While potentially an expensive option, buying an experimentalPIsetupforeducationalpurposescanofferdeeper understandingandhands-onexperienceforstudents.Experiments canbedesignedinwhichtheaimistocomparethePIsetupto amoreconventionaloneanddiscernthebenefitsanddrawbacks ofeach.Possibilitiesrange fromstaticmixerstoreactorsetups. Creativeimplementationofthesesetupsinthecurriculum(e.g.a spinning-diskreactorcanbeusedtostudyfluidflowinonecourse, masstransferprocessesinanotherandreactionkineticsinathird) canhelpalleviatehighcostandmaintenanceoftheapparatus.

Rentingequipmentisamodelwhereitispossiblenotonlyto teachPI,buttoletacompanytestthetechnologyandeducateits

personnel.Severalcompanies(techsuppliers)havearenting pro-gram.Similarly,theequipmentcouldbeownedbyanInstitute,that rentsitandthecompanycanprotectitsknow-howofthechemistry andtestthetechnologyaftersometraining.

4.3. Computer-aidedteachingofPI

Computer-aided teaching can be leveraged to facilitate the learningofPIatmicro-(e.g.molecularandconvectivetransport, heat transfer, chemical reaction mechanism, etc) and macro-scopic(e.g.processcapitalandoperationalcosts,environmental impact,sustainability).Here,PartialDifferentialEquations(PDEs) canbeinteractivelyvisualisedtostudythemicroscopicprocesses occurringin a unit of operation(e.g. thevelocity, temperature andconcentrationchangesasafunctionoftheoperating condi-tions.Newsoftwaremodulesprovideintuitionandapplicability of these fundamentals. For example, to understand the differ-encebetweendiffusionandadvectionofchemicalspecies(Figure A6.3.1),problem-basedlearningorinquiry-basedlearning(Belton,

2016;Glasseyetal.,2013)canbeused.Withthismethodology,one

caninteractivelyvisualisehowtointensifyaprocessbymodifying thegeometryofthechannel,thediffusioncoefficientorthe veloc-ityeventuallyself-discoveringastaticmixer(FigureA6.3.2),one ofthemostversatileprocessintensifiedtechnologies(Keil,2018;

Kiss,2016;TowlerandSinnott,2013).

Atthemacroscopicscale,Processsimulation(RAPID,2020)tools canbeusedtohelpstudentsunderstandingprocessconfiguration andtheconsequencesofPIimplementationthroughcasestudies andeconomicanalysis.Themainfactorhinderingcomputer sim-ulationsofPIisthatcurrentchemicalprocesssimulatorsoftware packageslackofphenomenologicalorevenempiricalmodelsthat cancapturethecomplexityofPIprocesses.Forinstance,inthecase ofmolecularreactors,simulationsshouldintegrateintrinsickinetic

(8)

D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24 21

modelsataresolutionofthemicro-mixingscales,aswellas non-conventionaldrivingforcesorheatandmasstransferratesatthe reactorscalefromafewtoseveralhundred-litrevolume.However, rapidadvancesinfirst-principlecomputationalmodellingpromise thatthesoftwaretoolstosimulatePItechnologiesmaybesoon available(Appendix6.3inSupplementarymaterial),thusspeeding upPIeducationand,asaconsequence,itsimplementationatthe commercialscale(BoffitoandVanGerven,2019;Fontes,2020;Ge

etal.,2019)

Morerecently,advancesinbothmachinelearningalgorithms andcomputerhardwareareopeningupnewpossibilitiestoidentify opportunitiesforprocesscontrol(andtheneededmethodstoteach

it)(Rio-Chanonaetal.,2019).Forexample,ReinforcementLearning

cansuccessfullygenerateanoptimalpolicyofstochasticdecision problems(Petsagkourakisetal.,2020).Thus,bycombiningboth processsimulation softwareand data-driventechniques(Zhang

etal.,2019a), theintensifiedprocesscanbeimprovedin terms

ofcontrolandschedulingdecisions.While,thereareseveraltools forAIavailable,(e.g.MATLAB,neuralnetworktoolboxor Python-basedTensorflow/TFLearning,PyLearn2,NeuroLab,PyTorch,Caffe, andKeras),massiveamountsofdatacollectedinthevicinityof con-trolpointsareinsufficientforextrapolation.So,wemustcaution studentsabouttheseseeminglyrobustmethodologies.

4.4. Exploitingnew(visualization)technologies

VirtualandAugmentedReality,3DPrinting,InternetofThings, ArtificialIntelligence,VirtualLaboratoriesareconsideredas trans-formative technologies that can be leveraged to enhance PI education.Besidesofferinganexcitingwayofeducation,they pro-vide flexibility for students toacquire knowledge and practice theirskillsattheirownpace.Amongthecompetenciesthatthese advancesfostertherearespatialvisualization,innovativethinking, problemsolving,creativity,analysisandcriticalthinking:essential abilitiesthattheworkforceofthefuturemusthave,especiallyin PI.

Twoimportantexamplesare:VirtualandAugmentedReality and3DPrinting.VirtualandAugmentRealityaretworelated tech-nologies.Theformerdevelopsdigitalenvironmentsinwhichusers cangetimmersedandareabletomanipulateobjectsandinteract withthespace.Thelater,superposesvirtualobjectsinrealimages thatarecapturedthroughamobiledevice,theideaistoimprovethe environment.Ineithercase,thesetechnologiesareusefulin edu-cationtodevelop,forexample,intensifiedprocessesinacontrolled manner,exploreabstractconceptsandstudyphenomenaindetail. Theirkey characteristicsare: immersion, interaction and visual realismandthesecanbeclassifiedasimmersive,semi-immersive, andnon-immersive.Thepositiveeffectsofvirtualrealityteaching usinghapticmethodshavebeenalreadydemonstratedforlearning chemicalbonding.Theseforcefeedbackhapticapplicationscanalso offernewopportunitiesforlearningtostudentswhohave difficul-tiesinunderstandingsomesubjects,whichwouldbegamechanger intheapplicationofPIoneducation.(Ucaretal.,2017)

5. NewsubjectsandmaterialtoconsiderinPIcourses

BasedonourpastexperienceinteachingPIandothersubjects, aswellastheoutcomeofthediscussionofourworkshopatthe LorentzCentre,wecompiledalistofitemstointegrateintonew andexistingPIcourses,atseveralcognitivelevels(Fig.1): • Stressonthermodynamicsandtheconceptofentropy(Appendix

3.0inSupplementarymaterial).

• Methodologiesorstepstoguidethestudents(andfutureindustry workers)onwhentointensify(appendix3.1,6.1,6.2in

Supple-mentarymaterial).Incaseswheretheinformationavailablein academicsettingsisunavailable,itmakessensetomotivate stu-dentstoguesstimate(estimatewithinadequateorinsufficient information).

• Modelling,inparticularnewsoftwaremodulestohelpboth edu-cation and scale-up to become commercial (Appendix 6.3 in Supplementarymaterial).Currentmodelsarelimitedanddonot coverallPIsystems,butonlythemostpopularones(staticmixers, reactivedistillation,ultrasoundmixingandinductionheating), whiletheylackmorecomplexcases(modellingofacoustic cav-itation,plasmareactors,etc.).WiththeadventoftheIndustry 4.0,weanticipateanincreaseintheavailabilityofthesemodels, whichcanbetheninturnadoptedasteachingmaterial. • Laboratorysessionscanbeveryeffectivetopractically

demon-stratetherelevanceofintensifieddevices.Despitethesesessions requiring dedicated resources and time, they can be rapidly implemented sincesome manufacturersprovide ready-to-use kits,thatarecompatiblewithstandardacademicfacilitiesand analytics. For example, micro-structured mixers, reactors or spinning-disc reactors efficiently demonstrate the impact of intensificationontheselectivityofchemicalsyntheses.Seesome examplesonrentingequipmentinSection3.1c.

• Tutoredprojectsmayalsobeanoptiontohelpstudents prop-erlyunderstandPIconceptsandapplythemtomorecomplex problems,while gettingintohigher cognitivelevels:thetime dedicatedtotutoredprojectsisalsoappropriate tohelpthem becoming creativeand togobeyondtheircurrentknowledge (Appendix3.3inSupplementarymaterial).

• AnewandimportantlinkcanalsobeestablishedbetweenPIand materials(StankiewiczandYan,2019),sincePIisnotrestricted toreactorsizing/designandactivationmodesonly.Several inten-sification strategies are directly related to various aspects of materialsproperties:thermalconductivityforheatrouting,hot spotscontrol,tortuosityandporosityforcatalyticapplications, etc. Other innovative solutions such as product formulations andcatalysiswerenotconsideredpartofPI.Materialscanbe formedtohave“shape-selective”geometries,fromthe molecu-lartothemesoscale.It issufficienttothinkofzeolites,which havecavitiesthatarebothsizeandshape-selective.Other prop-ertiessuchassuper-wettability,super-hydrophobicity,magnetic andparamagneticproperties,magnetocaloricandmetamaterials offeruniqueopportunitiesforPI.Thedevelopmentsofthenew visualizationtechnologiesoutlinedinSection4.4.mayaccelerate evenmorethissynergy.

• New software modules for education and scale-up can help understanding transport phenomena, especially under non-conventionalconditions andincase ofnon-traditionaldriving forces.Thelackofpseudo-empiricalcorrelationsisoneofthefirst challengesastudentfaceswhentransformingorscalingup/down anewchemicalprocess(Zhangetal.,2018).Oftentaughtasan abstractwayofestimatingheatandmasstransfercoefficients, theseequationslimittheunderstandingandinnovativeaspectof processdesign.Seeappendix6.3inSupplementarymaterialfor anexampleonhowtoenhancemass-transferphenomenausing computer-aidedsimulations.

6. OpportunitiesforPItofulfilitspromises

Toensureindustry-pullintoPIsolutions,theremustbeaclear advantagetoconvincecompaniesand investorstoadoptit.We believethatarealisticapproachistofindabottleneckratherthan tooverhaulacomplete process.For example,aplantemployee explainsaprocesstoaPIexpert,andtogethertheydeterminewhat thebottlenecksare,andjointlydeviseasolution.Thefeasibilityof thePIoptionscanbeassessed,consideringthe(economic)goalsof

(9)

theprocess,andusingavailablemethods(Reayetal.,2013),which rangefrombeingfamiliartoobscure(Appendices6in Supplemen-tarymaterial).Atraditionalriskassessmentmustfollow.Logically, thisreasoningmustbetaughtatallrelevantlevelstothestudents orworkersreceivingtraining.

Therearetwomainsourcesthatcanbeconsultedforproven solutions.First,datafromtheIbDprojectoncontrolofanumberof PIprocesses/demoscanbeshownasexamplesoftherecent suc-cessfulimplementationofPI.-(JannePaaso(VTT),RistoSarjonen (VTT),PanuMölsä(VTT),MarkkuOhenoja(OULU),Christian Adl-hart(ZHAW),AndreiHonciuc(ZHAW),TimFreeman(FREEMAN), 2017)Second,IPIC:https://kuleuvencongres.be/ipic2019/Home.

Modellingduringthedesignofindustrialprocessreducestime requirements.Companiestendtocommissionnewprojectsto min-imizerisksanddelays.Theexpertsperformingthesesimulations musthaveasolideducationandunderstatingofprocess engineer-ingaswellascomputer-aidedsimulationtechniques.

7. Conclusionsandrecommendations(part2)

Itisimportanttoreachandeducateallthesocial layersand increasetheacceptabilityofthechemicalindustriesbyusingthe tightlinkbetweenProcessIntensification(PI)andsustainability. PI offers opportunities to achieve the United Nations Sustain-ableDevelopmentGoals(UN-SDG)becauseitoffersstrategiesto implementtechnologieswithremoteinstallationandlowerCAPEX thanconventionalprocesses.Thisappliesinparticularto miniatur-izedchemicalplants(suchasmicro-pyrolysisorgasificationunits, micro-hydroormicrogas-to-liquidssystems).

WebelievePIhasthepotentialtoidentifysolutionswhere con-ventionalstrategiesfocusedonstep-by-stepincrementalprocess improvementsfail. However,PI solutionsintroduce more tech-nologicalandinvestmentriskthanconventionalapproaches.The involvementofcompaniesinthecontinuousacademiceducation iskey,aswellasnewmethodstocalculateinvestmentandassess risk,someofwhichweproposeinthisdocument.

A thorough analysis of the thermodynamics, kinetics, and transportinintensifiedprocessesaffordnewopportunitiesto illus-tratethecorepreceptsofchemicalengineering.Themultiphysics attributesthatcharacterizemostoftheintensifiedreactorsclearly introduceanon-linearbehaviourforthesedevices.The accelera-tionofphenomena(fastreactionskinetics,hightransfercapacities, processgainnonlinearity,etc.)alsorequiresfastmeasurementsand actuatorstoensurestability.Furthermore,theconversionofbatch processestocontinuousprocessesnecessitatesdrastic modifica-tionsofthecontrolsystems,aswellastrainingforengineers.

Forthisreason,weconsiderthatprocesscontrolinthecontext ofPIshouldreceivespecial attentioninPIeducation.PI-specific casestudies,eitherintegratedinthelast-yearchemical engineer-ingdesignproject,orinothercourses,isanapproachthatmostof theparticipantsoftheworkshoprecommend(seeAppendicesin Supplementarymaterial),andthatstudentsseemtoenjoy. Expos-ingallofthestudentstoPIalreadyattheundergraduatelevels, increasestheopportunityofthemtoproposePIsolutionsinthe futureintheindustrialcontexttheywillworkon.

Webelievethatthiswork,togetherwithPart1,willpavethe waytoamoreefficientadoptionofeducationonPI,andhopefully afasterimplementationintheindustry.

ReferencescitedintheSupplementarymaterial

AndersonandKrathwohl(2001),Andresen(2011),Charpentier

(2010), Chen et al. (2015), Crooks (2007), Denbigh (1951),

Durmayaz(2004),Fengetal.(2017),Ghanemetal.(2014),Janne

Paaso(2017),KingstonandRazzitte(2017),Kockmannetal.(2017),

Lawetal.(2017),Leitesetal.(2003),Lieberman(1989),Livotov

(2019),Livotovetal.(2019),LivotovandPetrov(2013),Milanovic

andEppes(2016),Missenetal.(1998),Navarro-Brulletal.(2019),

Noel(2019),PatienceandBoffito(2020),Reay(1991),Rivasetal.

(2018),ROSJORDEetal.(2007),StankiewiczandMoulijn(2002),

Torabietal.(2019),TribeandAlpine(1986),Weberand

Snowden-Swan(2019),Wright(1936).

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgments

TheauthorsthanktheLorentzCentrefor hostingthis work-shop(EducatingonProcessIntensification)andallattendeesofthe workshopfortheirinvaluableinput,visionforprocess intensifi-cationtechnologies,andcandiddiscussions.Wearealsograteful tootherparticipantswho voluntarilyarenotco-authorsof this manuscript:M.Goes(TKIChemie),P.Huizenga(Shell),J.P.Gueneau deMussy(KULeuven),C.Picioreanu(TUDelft),E.Schaer(Univ. Lor-raine),MarkvandeVen(NationalInstituteforPublicHealthand theEnvironment(RIVM),TheNetherlands).

Theviewsandopinionsexpressedinthisarticlearethoseofthe authorsanddonotnecessarilyreflectthepositionofanyoftheir fundingagencies.

We acknowledge thesponsors of theLorentz’ workshop on “EducatinginPI”:TheMESA+InstituteoftheUniversityofTwente, SonicsandMaterials(USA)andthePIN-NLDutchProcess Intensi-ficationNetwork.

DFRacknowledgessupportbyTheNetherlandsCentrefor Mul-tiscaleCatalyticEnergyConversion(MCEC),anNWOGravitation programmefundedbytheMinistryofEducation,Cultureand Sci-enceofthegovernmentofTheNetherlands.

NAacknowledgestheDeutscheForschungsgemeinschaft(DFG) -TRR63 ¨IntegrierteChemischeProzesseinflüssigen Mehrphasen-systemen¨(TeilprojektA10)-56091768.

TheparticipationbyRobertWeber intheworkshopand this reportwassupportedbyLaboratoryDirectedResearchand Devel-opmentfundingatPacificNorthwestNationalLaboratory(PNNL). PNNL is a multiprogram national laboratory operated for the US Department of Energy by Battelleunder contract DE-AC05-76RL01830

Theviewsandopinionsoftheauthor(s)expressedhereindonot necessarilystateorreflectthoseoftheUnitedStatesGovernmentor anyagencythereof.NeithertheUnitedStatesGovernmentnorany agencythereof,noranyoftheiremployees,makesanywarranty, expressedorimplied,orassumesanylegalliabilityorresponsibility fortheaccuracy,completeness,orusefulnessofanyinformation, apparatus,product,orprocessdisclosed,orrepresentsthatitsuse wouldnotinfringeprivatelyownedrights.

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, intheonlineversion,atdoi:https://doi.org/10.1016/j.ece.2020.05.

001.

References

ABET,2017.ABETEngineeringAccreditationCommission:CriteriaforAccrediting EngineeringPrograms[WWWDocument].

Agreda,V.H.,Heise,W.H.,1990.High-puritymethylacetateviareactivedistillation. Chem.Eng.Prog.86,40–46.

(10)

D.FernandezRivasetal./EducationforChemicalEngineers32(2020)15–24 23 Anderson,L.W.,Krathwohl,D.R.,2001.ATaxonomyforLearning,Teaching,and

Assessing:ARevisionofBloom’sTaxonomyofEducationalObjectives.Longman, NewYork.

Andresen,B.,2011.Currenttrendsinfinite-timethermodynamics.Angew.Chemie Int.Ed.50,2690–2704,http://dx.doi.org/10.1002/anie.201001411.

Ausfelder,F.,HannaEwa,D.,2018.OPTIONENFÜREINNACHHALTIGES ENERGIESYS-TEMMITPOWER-TO-XTECHNOLOGIEN[WWWDocument].

Baek,S.,Kim,J.,Jeong,S.,2010.MicrochannelheatexchangerforLNG-FPSO appli-cation.NinthISOPEPacific/AsiaOffshoreMech.Symp.

Belton, D.J., 2016. Teaching process simulation using video-enhanced and discovery/inquiry-basedlearning:methodologyandanalysiswithina theoret-icalframeworkforskillacquisition.Educ.Chem.Eng.17,54–64,http://dx.doi. org/10.1016/j.ece.2016.08.003.

Bloom,B.S.,1956.Taxonomyofeducationalobjectives.CognitiveDomain,Vol.1. McKay,NewYork.

Boffito,D.C.,VanGerven,T.,2019.Processintensificationandcatalysis.Ref.Modul. Chem.Mol.Sci.Chem.Eng.,http://dx.doi.org/10.1016/B978-0-12-409547-2. 14343-4.

Boulay,A.-M.,Bare,J.,Benini,L.,Berger,M.,Lathuillière,M.J.J.,Manzardo,A.,Margni, M.,Motoshita,M.,Nú ˜nez,M.,Pastor,A.V.V.,Ridoutt,B.,Oki,T.,Worbe,S., Pfis-ter,S.,2018.TheWULCAconsensuscharacterizationmodelforwaterscarcity footprints:assessingimpactsofwaterconsumptionbasedonavailablewater remaining(AWARE).Int.J.LifeCycleAssess.23,368–378,http://dx.doi.org/10. 1007/s11367-017-1333-8.

CEFIC,DECHEMA,2017.CEFICReportLowCarbonEnergyandFeedstockforthe EuropeanChemicalIndustry.

Charpentier,J.-C.,2010.Amongthetrendsforamodernchemicalengineering,the thirdparadigm:thetimeandlengthmultiscaleapproachasanefficienttool forprocessintensificationandproductdesignandengineering.Chem.Eng.Res. Des.88,248–254,http://dx.doi.org/10.1016/j.cherd.2009.03.008.

Chen,Y.,Sabio,J.C.,Hartman,R.L.,2015.Whensolidsstopflowchemistryin com-mercialtubing.J.FlowChem.5,166–171,http://dx.doi.org/10.1556/1846.2015. 00001.

Chen,W.,Shah,U.,Brechtelsbauer,C.,2016.Thediscoverylaboratory–a student-centredexperientiallearningpractical:partI–overview.Educ.Chem.Eng.17, 44–53,http://dx.doi.org/10.1016/j.ece.2016.07.005.

Connor,A.,Sosa,R.,Jackson,A.G.,Marks,S.,2017.Problemsolvingattheedgeof disciplines.In:Zhou,C.(Ed.),HandbookofResearchonCreativeProblem-Solving SkillDevelopmentinHigherEducation.HersheyPA,pp.212–234,http://dx.doi. org/10.4018/978-1-5225-0643-0.ch010.

CortesGarcia,G.E.,vanderSchaaf,J.,Kiss,A.A.,2017.Areviewonprocess intensifi-cationinHiGeedistillation.J.Chem.Technol.Biotechnol.92,1136–1156,http:// dx.doi.org/10.1002/jctb.5206.

Crooks,G.E.,2007.Measuringthermodynamiclength.Phys.Rev.Lett.99,100602,

http://dx.doi.org/10.1103/PhysRevLett.99.100602.

Darake,S.,Rahimi,A.,Hatamipour,M.S.,Hamzeloui,P.,2014.SO2removalby seawa-terinapacked–bedtower:experimentalstudyandmathematicalmodeling.Sep. Sci.Technol.49,988–998,http://dx.doi.org/10.1080/01496395.2013.872660. Denbigh,K.G.,1951.TheThermodynamicsoftheSteadyState.Methuen&Co.&John

Wiley.

Dolmans,DianaH.J.M.,Loyens,S.M.M.,Marcq,H.,Gijbels,D.,2016.Deepandsurface learninginproblem-basedlearning:areviewoftheliterature.Adv.Heal.Sci. Educ.21,1087–1112,http://dx.doi.org/10.1007/s10459-015-9645-6. Durmayaz,A.,2004.Optimizationofthermalsystemsbasedonfinite-time

thermo-dynamicsandthermoeconomics.Prog.EnergyCombust.Sci.30,175–217,http:// dx.doi.org/10.1016/j.pecs.2003.10.003.

EFCE,2018.TheSecondInternationalProcessIntensificationConference[WWW Document](Accessed2.4.20)https://kuleuvencongres.be/ipic2019/Home. Esmaeili,A.,2016.Supersonicseparationofnaturalgasliquidsbytwistertechnology.

Chem.Eng.Trans.52,7–12,http://dx.doi.org/10.3303/CET1652002.

Fang,J.,Cheng,X.,Li,Z.,Li,H.,Li,C.,2019.Areviewofinternallyheatintegrated dis-tillationcolumn.Chin.J.Chem.Eng.27,1272–1281,http://dx.doi.org/10.1016/ j.cjche.2018.08.021.

Feng,R.,Ramchandani,S.,Ramalingam,B.,Tan,S.W.B.,Li,C.,Teoh,S.K., Bood-hoo,K.,Sharratt, P.,2017. Intensificationofcontinuous ortho-lithiationat ambientconditions—processunderstandingandassessmentofsustainability benefits.Org.ProcessRes.Dev.21,1259–1271,http://dx.doi.org/10.1021/acs. oprd.7b00142.

Feng,R.,Ramchandani,S.,Salih,N.M.,Lim,X.Y.E.,Tan,S.W.B.,Lee,L.Y.,Teoh,S.K., Sharratt,P.,Boodhoo,K.,2019.Processintensificationstrategiesand sustain-abilityanalysisforamidationprocessinginthepharmaceuticalindustry.Ind. Eng.Chem.Res.58,4656–4666,http://dx.doi.org/10.1021/acs.iecr.8b04063. Fontes,E.,2020.ModelingApproachesinHeterogeneousCatalysis[WWW

Docu-ment].Comsollog.

Freeman,S.,Eddy,S.L.,McDonough,M.,Smith,M.K.,Okoroafor,N.,Jordt,H., Wen-deroth,M.P.,2014.Activelearningincreasesstudentperformanceinscience, engineering,andmathematics.Proc.Natl.Acad.Sci.111,8410–8415,http://dx. doi.org/10.1073/pnas.1319030111.

Ge,W.,Guo,L.,Liu,X.,Meng,F.,Xu,J.,Huang,W.L.,Li,J.,2019.Mesoscience-based virtualprocessengineering.Comput.Chem.Eng.126,68–82,http://dx.doi.org/ 10.1016/j.compchemeng.2019.03.042.

Ghanem,A.,Lemenand,T.,DellaValle,D.,Peerhossaini,H.,2014.Staticmixers: mechanisms,applications,andcharacterizationmethods–areview.Chem.Eng. Res.Des.92,205–228,http://dx.doi.org/10.1016/j.cherd.2013.07.013.

Glassey,J.,Novakovic,K.,Parr,M.,2013.Enquirybasedlearninginchemical engi-neeringcurriculumsupportedbycomputeraideddelivery.Educ.Chem.Eng.8, e87–e93,http://dx.doi.org/10.1016/j.ece.2013.06.003.

Haque,F.,Dutta,A.,Thimmanagari,M.,Chiang,Y.W.,2017.Integrated Haematococ-cuspluvialisbiomassproductionandnutrientremovalusingbioethanolplant wasteeffluent.ProcessSaf.Environ.Prot.111,128–137,http://dx.doi.org/10. 1016/j.psep.2017.06.013.

Henriksen,D.,Mehta,R.,Mehta,S.,2019.DesignthinkinggivesSTEAMto teach-ing:aframeworkthatbreaksdisciplinaryboundaries.In:STEAMEducation. SpringerInternationalPublishing,Cham,pp.57–78,http://dx.doi.org/10.1007/ 978-3-030-04003-14.

Hernández-de-Menéndez,M.,VallejoGuevara,A.,TudónMartínez,J.C.,Hernández Alcántara,D.,Morales-Menendez,R.,2019.Activelearninginengineering edu-cation.Areviewoffundamentals,bestpracticesandexperiences.Int.J.Interact. Des.Manuf.13,909–922,http://dx.doi.org/10.1007/s12008-019-00557-8. Hofstein,A.,Lunetta,V.N.,1982.Theroleofthelaboratoryinscienceteaching:

neglectedaspectsofresearch.Rev.Educ.Res.52,201–217,http://dx.doi.org/ 10.3102/00346543052002201.

InstitutionofChemicalEngineers(IChemE),2019.AccreditationofChemical Engi-neeringProgrammes:aGuideforHigherEducationProvidersandAssessors [WWWDocument].

JannePaaso(VTT),RistoSarjonen(VTT),PanuMölsä(VTT),MarkkuOhenoja(OULU), ChristianAdlhart(ZHAW),AndreiHonciuc(ZHAW),TimFreeman(FREEMAN), C.R.(Tel-T.,2017.IntensifiedbyDesign©fortheintensificationofprocesses involvingsolidshandling.

JohnG.Pendergast,DavidVickery,PatrickAu-Yeung,JoeAnderson,TheDow Chem-icalCompanyDec192008,ConsiderDividingWallColumns.https://www. chemicalprocessing.com/articles/2008/245/.

Keil,F.J.,2018.Processintensification.Rev.Chem.Eng.34,135–200,http://dx.doi. org/10.1515/revce-2017-0085.

Khanna,R.,Guler,I.,Nerkar,A.,2016.Failoften,failbig,andfailfast?Learning fromsmallfailuresandR&Dperformanceinthepharmaceuticalindustry.Acad. Manage.J.59,436–459,http://dx.doi.org/10.5465/amj.2013.1109.

Kingston,D.,Razzitte,A.C.,2017.Entropyproductioninchemicalreactors.J. Non-EquilibriumThermodyn.42,http://dx.doi.org/10.1515/jnet-2016-0066. Kiss,A.A.,2014.Distillationtechnology-stillyoungandfullofbreakthrough

oppor-tunities.J.Chem.Technol.Biotechnol.89,479–498,http://dx.doi.org/10.1002/ jctb.4262.

Kiss,A.A.,2016.Processintensification:industrialapplications.In:Process Intensi-ficationinChemicalEngineering.SpringerInternationalPublishing,Cham,pp. 221–260,http://dx.doi.org/10.1007/978-3-319-28392-08.

Klemeˇs,JiˇríJaromír,etal.,2020.S.In:ustainableProcessIntegrationand Intensifi-cation:SavingEnergy,WaterandResources.WalterdeGruyterGmbH&CoKG, 2018.

Kockmann,N.,Gottsponer,M.,Roberge,D.M.,2011.Scale-upconceptof single-channelmicroreactorsfromprocessdevelopmenttoindustrialproduction. Chem.Eng.J.167,718–726,http://dx.doi.org/10.1016/j.cej.2010.08.089. Kockmann,N.,Thenée,P.,Fleischer-Trebes,C.,Laudadio,G.,Noël,T.,2017.Safety

assessmentindevelopmentandoperationofmodularcontinuous-flow pro-cesses.React.Chem.Eng.2,258–280,http://dx.doi.org/10.1039/C7RE00021A. Kolmos,A.,1996.Reflectionsonprojectworkandproblem-basedlearning.Eur.J.

Eng.Educ.21,141–148,http://dx.doi.org/10.1080/03043799608923397. Kontra, C., Lyons, D.J., Fischer, S.M., Beilock, S.L., 2015. Physical experience

enhancessciencelearning.Psychol.Sci.26,737–749,http://dx.doi.org/10.1177/ 0956797615569355.

Law,R.,Ramshaw,C.,Reay,D.,2017.Processintensification–overcoming imped-imentstoheatandmasstransferenhancementwhensolidsarepresent,via theIbDproject.Therm.Sci.Eng.Prog.1,53–58,http://dx.doi.org/10.1016/j.tsep. 2017.02.004.

Leites,I.L.,Sama,D.A.,Lior,N.,2003.Thetheoryandpracticeofenergysavinginthe chemicalindustry:somemethodsforreducingthermodynamicirreversibility inchemicaltechnologyprocesses.Energy28,55–97,http://dx.doi.org/10.1016/ S0360-5442(02)00107-X.

Lieberman,M.B.,1989.Thelearningcurve,technologybarrierstoentry,and com-petitivesurvivalinthechemicalprocessingindustries.Strateg.Manage.J.10, 431–447,http://dx.doi.org/10.1002/smj.4250100504.

Livotov,P.,2019.Enhancinginnovationandentrepreneurialcompetencesof engi-neering students through a systematiccross-industry innovation learning course.29thAnnualConf.oftheAustralasianAssociationforEngineering Edu-cation.

Livotov,P.,Petrov,V.,2013.TRIZinnovationtechnology.In:ProductDevelopment andInventiveProblemSolving.Handbook.

Livotov,P.,ChandraSekaran,A.P.,Mas’udah,Law,R.,Reay,D.,Sarsenova,A., Say-yareh,S.,2019.Eco-innovationinprocessengineering:contradictions,inventive principlesandmethods.Therm.Sci.Eng.Prog.9,52–65,http://dx.doi.org/10. 1016/j.tsep.2018.10.012.

Lucas,B.,2001.Creativeteaching,teachingcreativityandcreativelearning.In:Craft, Anna,BobJeffrey,M.L.(Eds.),CreativityinEducation.,pp.35–44.

Madden,M.E.,Baxter,M.,Beauchamp,H.,Bouchard,K.,Habermas,D.,Huff,M., Ladd,B.,Pearon,J.,Plague,G.,2013.RethinkingSTEMeducation:an interdis-ciplinarySTEAMcurriculum.ProcediaComput.Sci.20,541–546,http://dx.doi. org/10.1016/j.procs.2013.09.316.

Milanovic,I.,Eppes,T.,2016.Applicationbuildinginundergraduatecourseswith a simulationcomponent.Fora: Advances inFluids EngineeringEducation; CavitationandMultiphaseFlow;FluidMeasurementsandInstrumentation,

(11)

Vol-ume2.AmericanSocietyofMechanicalEngineers,http://dx.doi.org/10.1115/ FEDSM2016-7844.

Missen,R.W.,Mims,C.A.,Saville,B.A.,1998.IntroductiontoChemicalReaction Engi-neeringandKinetics.JohnWiley&Sons,NewYork.

Modestino,M.A.,FernandezRivas,D.,Hashemi,S.M.H.,Gardeniers,J.G.E.,Psaltis,D., 2016.Thepotentialformicrofluidicsinelectrochemicalenergysystems.Energy Environ.Sci.9,3381–3391,http://dx.doi.org/10.1039/C6EE01884J.

Navarro-Brull,F.J.,Teixeira,A.R.,Giri,G.,Gómez,R.,2019.Enablinglowpower acous-ticsforcapillarysonoreactors.Ultrason.Sonochem.56,105–113,http://dx.doi. org/10.1016/j.ultsonch.2019.03.013.

Noel,T.,2019.AChangeofArt[WWWDocument](Accessed2.10.20)https://www. chemistryworld.com/opinion/flow-into-the-chemistry-curriculum/4010382. article#/.

Patience,G.S.,Boffito,D.C.,2020.Distributedproduction:scale-upversus experi-ence.J.Adv.Manuf.Process.,http://dx.doi.org/10.1002/amp2.10039. Petsagkourakis,P.,Sandoval,I.O.,Bradford,E.,Zhang,D.,delRio-Chanona,E.A.,2020.

Reinforcementlearningforbatchbioprocessoptimization.Comput.Chem.Eng. 133,106649,http://dx.doi.org/10.1016/j.compchemeng.2019.106649. RAPID,n.d.Training&Education[WWWDocument].

Reay,D.,1991.Heattransferenhancement—areviewoftechniquesandtheir pos-sibleimpactonenergyefficiencyintheU.K.HeatRecoverySyst.CHP11,1–40,

http://dx.doi.org/10.1016/0890-4332(91)90185-7.

Reay,D.,Ramshaw,C.,Harvey,A.,2013.ProcessIntensification,2ndedition.Elsevier.

Resnick,L.B.,1987.EducationandLearningtoThink.NationalAcademiesPress.

Rio-Chanona,E.A.,Wagner,J.L.,Ali,H.,Fiorelli,F.,Zhang,D.,Hellgardt,K.,2019.Deep learning-basedsurrogatemodelingandoptimizationformicroalgalbiofuel pro-ductionandphotobioreactordesign.AIChEJ.65,915–923,http://dx.doi.org/10. 1002/aic.16473.

Rivas,D.F.,Castro-Hernández,E.,VillanuevaPerales,A.L.,vanderMeer,W.,2018. Evaluationmethodforprocessintensificationalternatives.Chem.Eng.Process. -ProcessIntensif.123,221–232,http://dx.doi.org/10.1016/j.cep.2017.08.013. Rivas,D.F.,Boffito,D.C.,Faria-Albanese,J.,Glassey,J.,Afraz,N.,Henk,A.,Boodhoo,

K.V.K.,Bos,R.,Cantin,J.,Chiang,Y.W.(Emily),Commenge,J.-M.,Dubois,J.-L., Galli,F.,GueneaudeMussy,J.P.,Harmsen,J.,Kalra,S.,Keil,F.,Morales-Mendenez, R.,Navarro-Brull,F.J.,Noël,T.,Ogden,K.,Patience,G.,Reay,D.,Santos,R.M., Smith-Schoettker,A.,Stankiewicz,A.I.,Berg,H.vanden,Gerven,T.van,Gestel, J.van,Stelt,M.vander,Ve,M.vande,Weber,R.S.,2020.Processintensification educationcontributestosustainabledevelopmentgoals.Part1.Educ.Chem. Eng.

Rosjorde,A.,Kjelstrup,S.,Johannessen,E.,Hansen,R.,2007.Minimizingtheentropy productioninachemicalprocessfordehydrogenationofpropane.Energy32, 335–343,http://dx.doi.org/10.1016/j.energy.2006.07.013.

Ruiz-Ortega,A.M.,Gallardo-Rodríguez,J.J.,Navarro-López,E.,Cerón-García,M.,del, C.,2019.Project-led-educationexperienceasapartialstrategyinfirstyearsof engineeringcourses.Educ.Chem.Eng.29,1–8,http://dx.doi.org/10.1016/j.ece. 2019.05.004.

Santos,R.M.,VanGerven,T.,2011.Processintensificationroutesformineral car-bonation*.Greenh.GasesSci.Technol.1,287–293,http://dx.doi.org/10.1002/ ghg.36.

Santos,R.M.,Ling,D.,Sarvaramini,A.,Guo,M.,Elsen,J.,Larachi,F.,Beaudoin,G., Blanpain,B.,VanGerven,T.,2012.Stabilizationofbasicoxygenfurnaceslagby hot-stagecarbonationtreatment.Chem.Eng.J.203,239–250,http://dx.doi.org/ 10.1016/j.cej.2012.06.155.

Shen,Q.,Zhang,C.,Tahir,M.F.,Jiang,S.,Zhu,C.,Ma,Y.,Fu,T.,2018.Numbering-up strategiesofmicro-chemicalprocess:uniformityofdistributionofmultiphase flowinparallelmicrochannels.Chem.Eng.Process.-ProcessIntensif.132, 148–159,http://dx.doi.org/10.1016/j.cep.2018.09.002.

Singh,D.,Gupta,R.K.,Kumar,V.,2014.Experimentalstudiesofindustrial-scale reac-tivedistillationfinishingcolumnproducingethylacetate.Ind.Eng.Chem.Res. 53,10448–10456,http://dx.doi.org/10.1021/ie404443g.

Stankiewicz,A.,Moulijn,J.A.,2002.Processintensification.Ind.Eng.Chem.Res.41, 1920–1924,http://dx.doi.org/10.1021/ie011025p.

Stankiewicz,A.I.,Yan,P.,2019.110thanniversary:themissinglinkunearthed: mate-rialsandprocessintensification.Ind.Eng.Chem.Res.58,9212–9222,http://dx. doi.org/10.1021/acs.iecr.9b01479.

Stork,M.,deBeer,J.,Lintmeijer,N.,den,O.B.,2018.RoadmapfortheDutchchemical industrytowards2050[WWWdocument].Chem.Clim.

UnitedNationsSustainableDevelopment,https://sustainabledevelopment.un.org. Dateaccessed:2020-03-31.

Thompson,T.,2008.Mathematicsteachers’interpretationofHIGHER-ORDER think-inginBLOOM’Staxonomy.Int.Electron.J.Math.Educ.3,96–109.

Torabi,M.,Karimi,N.,Ghiaasiaan,M.,Wongwises,S.,2019.Non-equilibrium ther-modynamicsofMicrotechnologies.Entropy21,501,http://dx.doi.org/10.3390/ e21050501.

Towler,G.,Sinnott,R.,2013.Designofreactorsandmixers.In:ChemicalEngineering Design.Elsevier,pp.631–751,http://dx.doi.org/10.1016/B978-0-08-096659-5. 00015-8.

Tribe,M.A.,Alpine,R.L.W.,1986.Scaleeconomiesandthe“0.6rule”.Eng.CostsProd. Econ.10,271–278,http://dx.doi.org/10.1016/0167-188X(86)90053-4. Ucar,E.,Ustunel,H.,Civelek,T.,Umut,I.,2017.Effectsofusingaforcefeedbackhaptic

augmentedsimulationontheattitudesofthegiftedstudentstowardsstudying chemicalbondsinvirtualrealityenvironment.Behav.Inf.Technol.36,540–547,

http://dx.doi.org/10.1080/0144929X.2016.1264483.

VanGerven,T.,Stankiewicz,A.,2009.Structure,energy,synergy,time-the funda-mentalsofprocessintensification.Ind.Eng.Chem.Res.48,2465–2474,http:// dx.doi.org/10.1021/ie801501y.

Vega,F.,Navarrete,B.,2019. Professionaldesignofchemicalplants basedon problem-basedlearningonapilotplant.Educ.Chem.Eng.26,30–34,http:// dx.doi.org/10.1016/j.ece.2018.08.001.

Weber,R.S.,Snowden-Swan,L.J.,2019.Theeconomicsofnumberingupachemical processenterprise.J.Adv.Manuf.Process.1,e10011,http://dx.doi.org/10.1002/ amp2.10011.

Wright,T.P.,1936.Factorsaffectingthecostofairplanes.J.Aeronaut.Sci.3,122–128,

http://dx.doi.org/10.2514/8.155.

Zhang,J.,Wang,K.,Teixeira,A.R.,Jensen,K.F.,Luo,G.,2017.Designandscalingup ofmicrochemicalsystems:areview.Annu.Rev.Chem.Biomol.Eng.8,285–305,

http://dx.doi.org/10.1146/annurev-chembioeng-060816-101443.

Zhang,L.,Fung,K.Y.,Wibowo,C.,Gani,R.,2018.Advancesinchemicalproductdesign. Rev.Chem.Eng.34,319–340,http://dx.doi.org/10.1515/revce-2016-0067. Zhang,D.,DelRio-Chanona,E.A., Petsagkourakis,P.,Wagner,J.,2019a.Hybrid

physics-basedanddata-drivenmodelingforbioprocessonlinesimulationand optimization.Biotechnol.Bioeng.116,2919–2930,http://dx.doi.org/10.1002/ bit.27120.

Zhang,N.,Santos,R.M.,Smith,S.M., ˇSiller,L.,2019b.AccelerationofCO2 mineralisa-tionofalkalinebrineswithnickelnanoparticlescatalystsincontinuoustubular reactor.Chem.Eng.J.377,120479,http://dx.doi.org/10.1016/j.cej.2018.11.177.

Cytaty

Powiązane dokumenty

In this paper we complete the characterization of (K m,n ; 1)- vertex stable graphs with minimum

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

a b.. The addition of 0.05 mol L -1 of LiI decreases the potential limit of positive electrode to be inferior to the water oxidation limit. The addition of iodides into the

Jesionowski, Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation, Open Chemistry 2016, 14, 243-254 Małgorzata

Metallic lithium is not directly applied as anode material, as dendrites would be formed during cycling, leading to short-circuit of the cell and even thermal

It is possible to develop the competence of education for sustainable development at school, when the implementation of teaching content makes students aware of how the process

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from

One of the most important challenges for the readout electronics designers from the analog electronics point of view, is the noise level reduction (stemming from the