• Nie Znaleziono Wyników

Note on isomorphism problem for weighted unitary operators associated with a nonsingular automorphism

N/A
N/A
Protected

Academic year: 2021

Share "Note on isomorphism problem for weighted unitary operators associated with a nonsingular automorphism"

Copied!
4
0
0

Pełen tekst

(1)

C O L L O Q U I U M

M A T H E M A T I C U M

VOL.110 2008 NO.1

NOTE ON THEISOMORPHISM PROBLEM FOR WEIGHTED UNITARY OPERATORS ASSOCIATEDWITH A

NONSINGULARAUTOMORPHISM

BY

K.FRCZEK(Toru«andWarszawa)andM.WYSOKI‹SKA(Toru«)

Abstra t. Wegivea negativeanswerto aquestion putby Nadkarni: Let

S

be an ergodi , onservativeandnonsingularautomorphismon

( e

X, B

e

X

, m)

.Considerthe asso i-atedunitaryoperatorson

L

2

( e

X, B

X

e

, m)

givenby

U

e

S

f =

p

d(m ◦ S)/dm·(f ◦S)

and

ϕ· e

U

S

, where

ϕ

isa o y leofmodulus one.Doesspe tralisomorphismof thesetwooperators implythat

ϕ

isa oboundary?Toansweritnegatively,wegiveanexamplewhi harises fromaninnitemeasure-preservingtransformationwith ountableLebesguespe trum.

1.Question. Let

( e

X, B

e

X

, m)

beastandardprobabilityBorelspa eand let

S : ( e

X, B

e

X

, m) → ( e

X, B

X

e

, m)

be an automorphism nonsingular with respe t to themeasure

m

(i.e.

m ◦ S ≡ m

).Given a o y le

ϕ : e

X → S

1

we

dene two unitaryoperatorsa ting on

L

2

( e

X, B

e

X

, m)

:

e

U

S

f =

p

d(m ◦ S)/dm · (f ◦ S),

V

e

ϕ,S

f = ϕ · e

U

S

f.

If

ϕ

is a oboundary then

U

e

S

and

V

e

ϕ,S

are spe trally isomorphi . Con-versely,if

S

isadditionallyergodi andpreservesthemeasure

m

thenspe tral isomorphismof

U

e

S

and

V

e

ϕ,S

impliesthat

ϕ

isa oboundary.

ThefollowingquestionwasputbyM.G.Nadkarniin[4 ℄:Let

S

bean er-godi and onservativetransformation,nonsingularwithrespe tto

m

.Does spe tralisomorphismof

U

e

S

and

V

e

ϕ,S

imply that

ϕ

isa oboundary?

Theanswertothisquestionisnegative.Firstnoti ethatitissu ientto givea ounterexampleinthefamilyofinnitemeasure-preserving automor-phisms. Namely, take an ergodi onservative innite measure-preserving automorphism

S : ( e

X, B

e

X

, ̺) → ( e

X, B

X

e

, ̺)

(

̺

is

σ

-nite) with ountable Lebesguespe trumanda o y le

ϕ : e

X → S

1

whi hisnota oboundaryand forwhi htheKoopmanoperator

U

S

f = f ◦S

,

f ∈ L

2

( e

X, B

e

X

, ̺)

,andthe

or-2000Mathemati sSubje tClassi ation:37A40,37A30.

Keywords and phrases:weighted unitary operators, ountable Lebesgue spe trum, ylindri altransformations.

Resear h partially supported by Marie Curie Transfer of Knowledge program, proje tMTKD-CT-2005-030042(TODEQ).

[201℄

(2)

202

K.FRCZEKANDM.WYSOKI‹SKA

respondingweightedoperator

V

ϕ,S

= ϕ · U

S

arespe trallyisomorphi .Then takeanarbitrarynitemeasure

m

on

B

e

X

equivalentto

̺

,i.e.

dm = F d̺

fora positivefun tion

F ∈ L

1

( e

X, B

e

X

, ̺)

.Then

S

isergodi , onservativeand non-singularwith respe tto

m

andobviously

ϕ

isstill not a oboundary. More-over, spe tral isomorphismof

U

S

and

V

ϕ,S

implies spe tralisomorphism of

e

U

S

and

V

e

ϕ,S

.Indeed,the operator

W : L

2

( e

X, B

e

X

, m) → L

2

( e

X, B

e

X

, ̺)

given by

W f =

F · f

establishes spe tralisomorphism between

U

e

S

and

U

S

, as well as between

V

e

ϕ,S

and

V

ϕ,S

. Hen e, any

S

and

ϕ

satisfying the above assumptions give anegative answer tothequestion onsidered.

Re allthatsomeexamplesofergodi , onservative andinnite measure-preservingtransformations with ountable Lebesguespe trum areprovided byinnite

K

-automorphisms(see[5 ℄).Anexampleofsu hanautomorphism was given in [1 ℄ (see Example 1). We next show that for any ergodi and onservative

S

with ountable Lebesgue spe trum we an nd a o y le

ϕ

withtherequired properties.

Wewillneedsomefa tsabout

L

-eigenvaluesofanonsingular automor-phism. Re all that a omplex number

γ

is said to be an

L

-eigenvalue of an ergodi and nonsingular automorphism

S

if there exists a nonzero fun -tion

g ∈ L

( e

X, B

e

X

, m)

su h that

g(Sx) = γg(x) m

-a.e. The group of all

L

-eigenvalues,denotedby

e(S)

,isasubgroupofthe ir legroup

S

1

. More-over,itwasprovedin[2℄thatif

S

is onservativeandergodi then

e(S) ( S

1

.

Therefore if

S : ( e

X, B

e

X

, m) → ( e

X, B

X

e

, m)

is onservative and ergodi then the onstant o y le

ϕ : e

X → S

1

given by

ϕ ≡ a ∈ S

1

\ e(S)

is not a

oboundary.Indeed,if

a = ξ(Sx)/ξ(x)

forameasurablefun tion

ξ : e

X → S

1

then

a ∈ e(S)

(sin e

ξ ∈ L

( e

X, B

e

X

, m)

).Moreover, if the operator

U

S

has ountable Lebesgue spe trum then the spe trum of

V

a,S

is also ountable Lebesgue, hen e

U

S

and

V

a,S

arespe trallyisomorphi . Indeed, foran arbi-trary

g ∈ L

2

( e

X, B

e

X

, m)

wegetthefollowing onne tionbetween itsspe tral measures withrespe tto both operators onsidered:

σ

g,V

a,S

= δ

a

∗ σ

g,S

,and the y li subspa esgeneratedby

g

withrespe ttobothoperators oin ide. Now the question is whether it is possible to nd a non onstant, for instan ewithintegral zero, o y le

ϕ

withtherequiredproperties.

2. Remarks on examples arising from ylindri al transforma-tions. We now show another way of nding innite measure-preserving transformations with ountable Lebesgue spe trum. This approa h gives some examples of su h systems whi h have zero entropy, unlike

K

-auto-morphisms.Namely,wewill studythe so- alled ylindri al transformations. For agivenautomorphism

T

ofastandard probabilityBorelspa e

(X, B, µ)

and a real o y le

f : X → R

we dene a ylindri al automorphism of

(3)

ISOMORPHISMPROBLEMFORWEIGHTEDOPERATORS

203

(X × R, B ⊗ B

R

, µ ⊗ λ

R

)

(

λ

R

stands for Lebesguemeasure) by

T

f

(x, r) = (T x, r + f (x)).

Su h an automorphism preserves the (innite) measure

µ ⊗ λ

R

. Moreover, sin e

µ⊗λ

R

isnonatomi ,theergodi ityof

T

f

impliesits onservativity.The maximalspe traltypeof

T

f

isstri tly onne ted withthemaximalspe tral types

σ

V

e

2

πicf ,T

ofthe operators

V

e

2

πicf

,T

: L

2

(X, B, µ) → L

2

(X, B, µ)

,

c 6= 0

, and with the maximal spe tral type

σ

Σ

of the translation

Σ = (Σ

t

)

t∈R

on

(R, B

R

, λ

R

)

given by

Σ

t

r = r + t

.Re all that the

R

-a tion

Σ

has Lebesgue spe trum on

L

2

(R, B

R

, λ

R

)

. Moreover, similarly to [3 ℄ (see also Lemmas 1 and 2in[6 ℄), thefollowing result holds.

Lemma1. Themaximalspe traltypeof

T

f

on

L

2

(X ×R, B⊗B

R

, µ⊗λ

R

)

isgiven by

σ

T

f

\

R

σ

V

e

2

πicf ,T

Σ

(c),

and for an arbitrary

h ∈ L

2

(R, λ

R

)

the maximal spe tral type of

T

f

on

L

2

(X, µ) ⊗ Z(h)

,where

Z(h) = span{h ◦ Σ

t

: t ∈ R}

, isgiven by

σ

T

f

|L

2

(X,µ)⊗Z(h)

\

R

σ

V

e

2

πicf ,T

h,Σ

(c).

Now,ifwe ouldnd

f

and

T

su hthatea h

V

e

2πicf

,T

,

c 6= 0

,hasLebesgue spe trumon

L

2

(X, B, µ)

thenbyLemma1,

T

f

has ountableLebesgue spe -trum on

L

2

(X × R, B ⊗ B

R

, µ ⊗ λ

R

)

.

Suppose that

T x = x + α

is an irrational rotation on

(R/Z, µ)

, where

µ

stands for Lebesgue measure on

R/Z

and the sequen e of arithmeti al means of partialquotients of

α

isbounded.Consider o y les

f : R/Z → R

with pie ewise ontinuous se ond derivative su h that

f

has nitely many dis ontinuity points for whi h the one-sided limits exist with at least one equal to innity and

f

(x) > 0

for all

x ∈ R/Z

. It was shown in [6 ℄ that for su hfun tions

f

the operators

V

e

2

πicf

,T

,

c 6= 0

,have Lebesguespe trum. However,we do not knowif

T

f

isergodi for this lassof o y les.

Nevertheless,weareabletogiveanexampleofergodi ylindri al trans-formationwith ountableLebesguespe trum.Namely,takeas

T

aGaussian automorphismon

(R

Z

, B

R

Z

, µ

G

)

.Assumethatthepro ess

n

)

n∈Z

of proje -tionson the

n

th oordinateisindependentand thedistribution

ν

of

Π

0

isa enteredGaussiandistributionon

R

(soinfa t

T

isaBernoullisystem).Put

f = Π

0

: R

Z

→ R

.Then

T

Π

0

preservesthemeasure

µ

G

⊗ λ

R

andis ergodi , be ause

T

Π

0

is a random walk on

R

with transition probability determined by

ν

.Moreover,forea h

c 6= 0

theoperator

V

e

2

πicΠ0

,T

hasLebesguespe trum on

L

2

(R

Z

, B

(4)

204

K.FRCZEKANDM.WYSOKI‹SKA

WethankProfessorM.Lema« zykfor manyremarksanddis ussionson thesubje t.

REFERENCES

[1℄ D.Bla kwellandD.Freedman,Thetail

σ

-eldofaMarkov hainandatheoremof Orey,Ann.Math.Statist.35(1964),12911295.

[2℄ B.Host,J.-F.MélaandF.Parreau,Nonsingulartransformationsandspe tral anal-ysis ofmeasures,Bull.So .Math.Fran e119(1991),3390.

[3℄ M. Lema« zykand F.Parreau, Lifting mixing properties by Rokhlin o y les, pre-print.

[4℄ M.G.Nadkarni,Spe tralTheoryofDynami alSystems,Birkhäuser,Basel,1998. [5℄ W.Parry,Ergodi andspe tralanalysisof ertaininnitemeasurepreserving

trans-formations,Pro .Amer.Math.So .16(1965),960966.

[6℄ M.Wysoki«ska,A lassofreal o y lesoveranirrationalrotationforwhi hRokhlin o y le extensionshaveLebesgue omponent inthe spe trum,Topol.Methods Non-linearAnal.24(2004),387407.

Fa ultyofMathemati sandComputerS ien e Ni olausCoperni usUniversity

Chopina12/18 87-100Toru«,Poland

E-mail:fra zekmat.uni.torun.pl mwysokinmat.uni.torun.pl

InstituteofMathemati s PolishA ademyofS ien es ‘niade ki h8 00-956Warszawa,Poland

Cytaty

Powiązane dokumenty

Com- parison between patients with and without AF at study entry revealed higher levels of serum resistin, adipo- nectin, and N-terminal pro-B-type natriuretic peptide (NT-proBNP)

Key words and phrases: Berezin transform, Bergman spaces, Carleson measure, com- pact operators, Hardy spaces, unit polydisc, weighted compositon operators.. The weighted

In this paper, we give some sufficient conditions in order to have the weak and strong type inequalities (1.8) and (1.10) for this case, and we shall show that, under

Our main results improve substantially, in a sense, results of Edwards and Price [EP] (for connections with existing results see Section II). Moreover, our main results completely

similarly as before for L*q>(Q).. Let T denote the set of positive rational numbers. All such norms are equivalent. The successive application of the

It turns out that in general two weakly non-singularly isomorphic dynamical systems with discrete spectra are not non-singularly isomorphic.. Notation, definitions

The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite

Using the class of ` 1 -valued measures constructed in Section 3 it is possi- ble to exhibit non-reflexive spaces X and X-valued measures whose associ- ated integration map is