• Nie Znaleziono Wyników

On some geometrical characterization of singular normed measures

N/A
N/A
Protected

Academic year: 2021

Share "On some geometrical characterization of singular normed measures"

Copied!
2
0
0

Pełen tekst

(1)

Z E S Z Y T Y N A U K O W E W Y Ż S Z E J S Z K O Ł Y P E D A G O G I C Z N E J w B Y D G O S Z C Z Y P r o b l e m y M a t e m a t y o z n e 1985 z. 7 W A C Ł A W A T E M P C Z Y K W Ł A D Y S Ł A W W I L C Z Y Ń S K I U n i w e r s y t e t Łó d z k i O N S O M E G E O M E T R I C A L C H A R A C T E R I Z A T I O N O F S I N G U L A R N O R M E D M E A S U R E S \

Let X b e a v e c t o r a p a o e ( r e a l o r c o m p l e x ) and let К be a s u b s e t o f X h a v i n g at l e a s t two p o i nts. W e s h a l l s a y that two d i f f e r e n t p o i n t s p < , P 2 в K are a n t i p o d a l in К ( o r s i m p l y a n t i p o d a l ) if a n d o n l y i f f o r e v e r y ” « x,, é. К and f o r e v e r y r e a l n u m b e r t the e q u a l i t y t < p 1 - P 2 ) = 3t1 ~ X 2 i m p l i e s jt|£1 . It is e a s y to p r o v e that f o r e v e r y p a i r x^ , x 2 o f d i f ­ f e r e n t p o i n t s b e l o n g i n g to the c o m p a c t set К i n H a u s d o r f f t o p o l o g i o a l vector^ s p a c e X t h e r e e x i s t s a p a i r o f a n t i p o d a l p o i n t s p ^ P j j f e K a n d a r e a l n u m b e r t, Itlźi s u c h that t ( P t - P 2) = x, - x 2 . L e t (X, Д ) be a n y m e a s u r a b l e s p a c e a n d ji,\J n o n n e g a t i v e m e a s u r e s d e f i n e d o n this s p a c e a n d n o r m e d b y the c o n d i t i o n yi(X)= ^(Х)я 1. U s i n g the J o r d a n d e c o m p o s i t i o n t h e o r e m w e c a n p r o v e the n e x t T H E O R E M 1. T w o n o r m e d m e a s u r e s yi,V d e f i n e d on X are a n t i p o d a l i f a n d o n l y if | yi - V | (X)= 2, w h e n j yi - V | ( X ) m e a n s the t o tal v a r i a t i o n of a s i g n e d m e a s u r e s yi - on X. F r o m this t h e o r e m a n d H a h n d e c o m p o s i t i o n t h e o r e m we c a n o b t a i n a s i m p l e g e o m e t r i c a l c h a r a c t e r i z a t i o n o f a n t i p o d a l m e a s u r e s o n X. T H E O R E M 2. T w o n o r m e d m e a s u r e s }>»V? d e f i n e d o n X are a n t i p o d a l i f a n d o n l y i f t h e y a r e s i n g u l a r . Let u s o o n s l d e r th e c l a s s K X » А ЛТг of m e a s u r a b l e г f 4 t r

sp a c e s a n d the f a m i l i e s ^yi } I o f n o r m e d m e a s u r e s Г r t r ^ f

d e f i n e d o n X. Put u = (?) P » = ® V • U s i n g t h e o r e m 2

(2)

154

it is easy to prove

THEOREM 3. If there exists

f Qt Г

such that

, о

О

Jo

are antipodal then the product measures

p,i> are antipodal.

If /"* is a finite set then the above theorem can be

reversed. Using the Lebesgue-Radon-Nikodym theorem we can prove

n

n

THEOREM

The measures p

= ® p. ,

yj, ф

defined on

k

=1

k

=1

n

n

a product(P

measurable spaces and normed by the

c o n d i t i o n ~ = 1 * lc=1»2 »***n * a r ® a n t i p o d » 1 a n d o n l y if t h ere e x i s t s a n a t u r a l n u m b e r к , 1 ^ к £ n s u c h

о

о

that the measures

p^

,

are antipodal.

о

о

W e s h a l l c o n s t r u c t the e x a m p l e s h o w i n g that th e t h e o r e m 3

can not be reversed if p , a r e the product measures on the

product of infinitely many measurable spaces. Suppose that

X = < 0, 1 > ,

are Borel subsets of X . Put for all n « N

n

n

n

and for each Borel subset

EC< 0,1>

(1

i fcE

(|a °»rd En^i

2

’ j? ’ •••'}' k

v 'E b 'o 1 * . I ^ - j o } = 0

•oo

It easy to see that \? « u

. Let u = <25 u ,

Q

- Cap

J

n " in

I

n

<n

r\

„ ,

n

= 1

n

- 1

Sign by

В an arbitrary measurable subset of the product

(T-algebra

(P

iA_ • Then we have

n

=1

П

V (B ) =

and

В no

С

1

» <r* *

• • • ) Ф

rCftbł. ł . ~ o i ) - Д л .

(lk\)-

n , à . »

-So if we put A = {(.1 »

3

-

»

•••)^

then /U,(A)=

|F^

1

Xn \ A^=0,

what means that p , ^ are antipodal.

Cytaty

Powiązane dokumenty

6 Brandsma &amp; van Mill ’98: contains monotonically normal compact spaces (this follows from (2), (5) and M.E. Rudin result, that every monotonically normal compact space is

joint work with Piotr Borodulin-Nadzieja Hejnice 2008..

Using a more general point of view, [3], [7], the liftings from [2] are in fact natural differential operators T(r's) T(r,»)T* In some particular cases it is possible to classify all

We also prove that in a CLUR Banach space, proximinality, strong proximinality, weak approxima- tive compactness and approximative compactness are equivalent for closed convex

We present a stochastic model which yields a stationary Markov process whose invariant distribution is maximum stable with respect to the geometrically distributed sample size..

ROCZNIKI POL.SKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PR АСЕ МЛТЕМА TYCZNE XXVI (1986).. S tanfseaw S iudut

It suffices namely that the distributions of the random variables X k belong to the • same class differing (if they do) in some

Summary: In the article the author checked the properties of coherent measures of risk for Expected Value, Expected Shortfall, Maximum Loss (for losses weighted with probability),