• Nie Znaleziono Wyników

Measures, densisties and some compactifications of ω

N/A
N/A
Protected

Academic year: 2021

Share "Measures, densisties and some compactifications of ω"

Copied!
15
0
0

Pełen tekst

(1)

Measures, densisties and some compactifications of ω

Grzegorz Plebanek

joint work with Piotr Borodulin-Nadzieja Hejnice 2008

(2)

Basic motivation

Is there a Banach space E , possibly in the form E = C (K ), which has the Mazur property but does not have the Gelfand–Phillips property?

A problem

Is there a compactification K of ω such that no subsequence of ω is convergent in K ;

every measure on K can be approached sequentially by measures concentrated on ω?

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(3)

Basic motivation

Is there a Banach space E , possibly in the form E = C (K ), which has the Mazur property but does not have the Gelfand–Phillips property?

A problem

Is there a compactification K of ω such that no subsequence of ω is convergent in K ;

every measure on K can be approached sequentially by measures concentrated on ω?

(4)

Basic terminology & notation

If A is a Boolean algebra then P(A) denotes the set of all finitely additive probability measures on A.

For K compact zerodim., P(K ) = P(Clopen(K)).

Consider a topology on P(A) generated by the mappings µ → µ(a) for a ∈ A; for instance µn→ µ means that µn(a) → µ(a) for every a ∈ A. Then P(A) is a compact space.

Sequential closure

If K is compact and zerodim., and X ⊆ K then write

conv(X ) for all µ ∈ P(K ) which are finite combinations of Dirac measures δx, x ∈ X ;

S1(X ) for all the limit of converging sequences from conv(X ); S (X ) =S

ξ<ω1Sξ(X ) for the least sequentially closed set of measures containing conv(X ).

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(5)

Basic terminology & notation

If A is a Boolean algebra then P(A) denotes the set of all finitely additive probability measures on A.

For K compact zerodim., P(K ) = P(Clopen(K)).

Consider a topology on P(A) generated by the mappings µ → µ(a) for a ∈ A; for instance µn→ µ means that µn(a) → µ(a) for every a ∈ A. Then P(A) is a compact space.

Sequential closure

If K is compact and zerodim., and X ⊆ K then write

conv(X ) for all µ ∈ P(K ) which are finite combinations of Dirac measures δx, x ∈ X ;

S1(X ) for all the limit of converging sequences from conv(X );

S (X ) =S

ξ<ω1Sξ(X ) for the least sequentially closed set of measures containing conv(X ).

(6)

A problem

Is there a compactification K of ω such that no subsequence of ω is convergent in K ; S (ω) = P(K )?

Remark

Checking S (ω) = P(K ) may be done in two steps: δt∈ S(ω) for t ∈ K \ ω;

S (K ) = P(K )?

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(7)

A problem

Is there a compactification K of ω such that no subsequence of ω is convergent in K ; S (ω) = P(K )?

Remark

Checking S (ω) = P(K ) may be done in two steps:

δt∈ S(ω) for t ∈ K \ ω;

S (K ) = P(K )?

(8)

Minimally generated algebras Ais minimally generated if A =S

ξ<αAξ, where Aξ form an increasing continuous chain, A0= {0, 1}, Aξ+1 is a minimal extension of Aξ for ξ < α.

Introduced by Koppelberg; investigated by Fedorˇcuk, Shelah, Dow, Koszmider. Related papers: Borodulin-Nadzieja [2007], Dˇzamonja

& GP [2007]

When S (K ) = P(K )

Let A = Clopen(K) be minimally generated. If α = ω1 then S1(K ) = P(K ); moreover

under ♦, there is K such that K contains no converging sequences but every nonatomic µ ∈ P(K ) is Gδ (Dˇzamonja

& GP).

S (K ) = P(K ); cf. Borodulin-Nadzieja [2007].

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(9)

Minimally generated algebras Ais minimally generated if A =S

ξ<αAξ, where Aξ form an increasing continuous chain, A0= {0, 1}, Aξ+1 is a minimal extension of Aξ for ξ < α.

Introduced by Koppelberg; investigated by Fedorˇcuk, Shelah, Dow, Koszmider. Related papers: Borodulin-Nadzieja [2007], Dˇzamonja

& GP [2007]

When S (K ) = P(K )

Let A = Clopen(K) be minimally generated.

If α = ω1 then S1(K ) = P(K ); moreover

under ♦, there is K such that K contains no converging sequences but every nonatomic µ ∈ P(K ) is Gδ (Dˇzamonja

& GP).

S (K ) = P(K ); cf. Borodulin-Nadzieja [2007].

(10)

More on S (K ) = P(K )

If K = {0, 1}c then S1(K ) = P(K ), see Losert [1979] under CH;

Frankiewicz & GP [1995] under MA;

Fremlin [20??] in ZFC.

More on S (K ) = P(K )

It is rel. consistent that S1(K ) = P(K ) for ever compact space K such that χ(x , K ) < c for every x ∈ K (GP [2000]); cf.

Mercourakis [1996].

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(11)

More on S (K ) = P(K )

If K = {0, 1}c then S1(K ) = P(K ), see Losert [1979] under CH;

Frankiewicz & GP [1995] under MA;

Fremlin [20??] in ZFC.

More on S (K ) = P(K )

It is rel. consistent that S1(K ) = P(K ) for ever compact space K such that χ(x , K ) < c for every x ∈ K (GP [2000]); cf.

Mercourakis [1996].

(12)

Back to our problem

Recall that we look for a compactification ω ⊆ K , such that ω has no converging subsequences, and S (ω) = P(K ). Suppose that we construct K as ULT(A) for some minimally generated A on ω.

We shall get S (ω) = P(K ) if we ensure that δx ∈ S(ω) for x ∈ K \ ω.

A partial example

For A ⊆ ω write d (A) = limn→∞|A ∩ n|/n.

Suppose that the ideal of sets of density zero contains base Aξ, ξ < ω1, where AξAξ+1 for every ξ. Let A be generated by all Aξ and finite sets, and let K = ULT(A).

Consider p ∈ K containing all ω \ Aξ. Then no sequence of ω converges to p. But S1(ω) = P(ω), in particular

δp= lim

n→∞1/nX

i <n

δi.

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(13)

Back to our problem

Recall that we look for a compactification ω ⊆ K , such that ω has no converging subsequences, and S (ω) = P(K ). Suppose that we construct K as ULT(A) for some minimally generated A on ω.

We shall get S (ω) = P(K ) if we ensure that δx ∈ S(ω) for x ∈ K \ ω.

A partial example

For A ⊆ ω write d (A) = limn→∞|A ∩ n|/n.

Suppose that the ideal of sets of density zero contains base Aξ, ξ < ω1, where AξAξ+1 for every ξ. Let A be generated by all Aξ and finite sets, and let K = ULT(A).

Consider p ∈ K containing all ω \ Aξ. Then no sequence of ω converges to p. But S1(ω) = P(ω), in particular

δp= lim

n→∞1/nX

i <n

δi.

(14)

Can we use Balcar-Pelant-Simon tree?

If T is a π–base of infinite subsets of ω, such that T is a ⊆ tree of height h, then T generates a minimally generated algebra.

A question

Is it consistent, that for every ⊆–decreasing sequence Aξ⊆ ω, ξ < h there is some density d such that d (Aξ) = 1 for ξ < h? Here a density may be defined as

dX(A) = lim

n

|A ∩ X ∩ n|

|X ∩ n| for some X ⊆ ω, or dg(A) = lim

n

P

i ∈n∩Ag (i ) P

i <ng (i ) for some g : ω → R+, or limits (of limits of limits...) of such.

Grzegorz Plebanek Measures, densisties and some compactifications of ω

(15)

Can we use Balcar-Pelant-Simon tree?

If T is a π–base of infinite subsets of ω, such that T is a ⊆ tree of height h, then T generates a minimally generated algebra.

A question

Is it consistent, that for every ⊆–decreasing sequence Aξ⊆ ω, ξ < h there is some density d such that d (Aξ) = 1 for ξ < h?

Here a density may be defined as dX(A) = lim

n

|A ∩ X ∩ n|

|X ∩ n| for some X ⊆ ω, or dg(A) = lim

n

P

i ∈n∩Ag (i ) P

i <ng (i ) for some g : ω → R+, or limits (of limits of limits...) of such.

Cytaty

Powiązane dokumenty

Wynikiem reformy liturgicznej w Mszale Rzymskim znalazła się Msza pogrzebowa dla dzieci, które umierają bez chrztu, a Obrzędy pogrzebu wzbogacono o modlitwy

Z prawdziwą boleścią serca przychodzi nam t raz mówić o dotych- czasowem zjednoczeniu. Patrząc się na liczne jego szeregi, ktoby w nim nie widział gotowości poświęcenia

State Hope Scale (nadzieja jako stan)Wyniki w skali oceny nadziei przed leczeniem i zmiana nasilenianadziei między okresem przed leczeniem a okresem po leczeniu były

Ksi¹¿ka promowana przez autorów oraz szefa wydawnictwa (na zdjêciu od lewej Dariusz Dudek, Krzysztof J. Filipiak, Janina Stêpiñska oraz Janusz Mi- chalak) jest pierwsz¹ pozycj¹

czyła analiza regresji metodą eliminacji wstecznej, z której wynika, że spośród trzech mierzonych zmiennych wyjaśniających tylko poziom nadziei podstawowej

Opowiemy o tym, jak niezwykle ważna jest rola oraz misja współczesnych ogrodów zoologicznych, a szczególnie jak ogrody przyczyniają się do ochrony i ratowania gi- nących

Czy była represjonowana po wojnie / sama autorka lub jej rodzina, aresztowania, śledztwo, okoliczności, data,

Dzieje miasta Bychawy toczyły się wedle woli króla Zygmunta Starego, który w 1537 roku nadał mu prawa miejskie, zezwolił na targi i jarmark.. Ale przewalały się przez nią