• Nie Znaleziono Wyników

Spectral spaces and radicals in systems of ideals

N/A
N/A
Protected

Academic year: 2021

Share "Spectral spaces and radicals in systems of ideals"

Copied!
13
0
0

Pełen tekst

(1)

Z E S Z Y T Y N A U K O W E W Y Ż S Z E J S Z K O Ł Y P E D A G O G IC Z N E J W B Y D G O S Z C Z Y P r o b le m y M a te m a ty c zn e 1982 z.4 A n d r z e j N o w ic k i U M K T o urń R y s z a r d Ż u c h o w s k i W S P B y d g o s z c z S P E C T R A L S P A C E S A N D R A D IC A L S IN S Y S T E M S O P ID E A L S 1. In tro d u ction . In th is p a p e r , w e s tu d y s e t s o f id e a ls o f a com m utative rin g R with id en tity, w h ic h a r e c lo s e d u n d or a n y In t e r s e - c tio n s a n d c o n ta in in g R . If E s a t is fie s th e s e c o n d itio n s , then b y E w e d e n o te the s e t o f a ll E -p rim e id e a ls l . e j d e a l s P in E , fo r w h ic h the co n d itio n A B С P , w h e r e A , В b e lo n g to E , im p lies A c . P o r В С P . W e In tro d u c e in E a t o p o lo g y a n d w e p r o v e , that i f E s a t is fie s an a d d itio n a l co n d itio n , then th e re e x is t s a rin g S , s u c h that the s p a c e s S p e c S a n d E a r e h om eom orph ie.

S im u lta n eo u sly, w e g e t s o m e p r o p e r tie s s e - c a lle d r£ - r a d ic a l id e a ls i.e . id e a ls o f E , w h ich a r e in te r s e c tio n s o f E -p rim e id a ls . F u rth er, w e ex a m in e s y s te m s o f id e a ls In the s e n s e [ 8 ] , [9] , and w e g iv e a n a p p lic a tio n o f th is t h e o r y fo r a d e s c r ip tio n o f so m e

d istin g u ish s u b s e ts o f th e s e s y s te m s a n d fo r a d e s c r ip tio n o f r a d ic a ls , w h ic h a r e c o n n e c t e d with th e s e s u b s e ts .

T h e s e s u b s e ts : A ( R , M ) , B ( R , M ) , C ( R , M ) w e r e in tro d u c e d in [ 8] , [9 ] . W e s h a ll p r o v e , that if w e g iv e an a d d itio n a l assu m ption , e v e r y o f th e s e c la s s is a s p e c t r a l s p a c e .

T h ro u g h o u t th is p a p e r, a ll r in g s a r e com m utative w ith unity. L e t R b e a r in g . B y i( R ) w e d e n o te the s e t o f a ll id e a ls in R . If T is a n y s u b s e t o f R , then b y r ( T ) w e d e n o te a r a d ic a l o f T i.e . an in te r s e c tio n o f a ll prim e id e a ls c o n ta in in g T . A n id e a l A o f R is r a d ic a l iff r ( A ) - A . If A Is an id e a l o f OO R , a n d x £ R , then b y A w e d e n o te the id e a l ( A t x n ) w h e re X n - o

(2)

A lB . I r g R i

Л

r * ь е А . It i s e a s y to v e r i f y that r ( A )=

b Ê В J

» ( r ( A ) : x ) . b e t ( R , M ) b e a s y s te m o f id e a ls in the s e n s e 1 7 ] , H . [ » ] . I d e a l e o f M w ill b e ca U ed M -id e a ls .

A n M - id e a l P is prim itive, if th e re e x is t s a multi p lic a t iv e ly c lo s e d s u b s e t S o f R s u c h that P n S •» <p, and P is m axim al a m o n g

M -Id e a ls o f R , d is jo in t from S . T h e s e t o f prim itive M - id e a ls w ill b e d e n o te d b y B ( R , M )

A n M -id e a l P is c a lle d M -p rim e, If fo r M - id e a ls A , В the co n d itio n А .В С P , im p lies A С P o r В с:' P , T h e s e t o f a ll M -p rim e id e a ls o f ( R , M ) w ill b e d e n o te d b y C ( R , M ) . M o r e o v e r , b y a (R , m) w ill b e d e n o te d the s e t o f a ll prim e id e a ls o f R, w h ic h b e lo n g to M .

B y so m e m o d ificatio n s o f the p r o o f o f the th eorem at [5] ,

fo r d ifferen tia l rin g s , o n e c a n p r o v e , that A ( R , M )c H (R , m) С C (R , M j.

If T is a n y s u b s e t o f R , then b y ^t] w e d e n o te the s m a lle s t M -id e a l co n ta in in g T . If A is a n id e a l o f R , then b y A w e d e n o te the

w g r e a te s t M -id e a l co n ta in ed in A .

2. E -p rim e id e a ls . b et R b e a rin g, l ( R ) - the s e t o f a ll id e a ls o f R , and le t £ b e a s u b s e t o f l ( R ) s u c h that R £ E . I d e a ls o f E a r e c a lle d E - id e a ls . A n E - id e a l P f R is c a lle d E -p rim e, i f fo r E - id e a ls A , B , the co n d itio n A .B С P , im p lies A C P o r В С P .

*

T h e s e t o f a ll E -p rim e id e a ls w ill b e d e n o te d b y E . If T is a n y s u b s e t o f R , then the in te r s e c tio n o f a ll E -p rim e id e a ls , w h ich contain s T , w ill b e d e n o te d b y rE ( T ) , and w ill b e c a lle d an E - r a d ic a l

o f T . f l f th e re is n o E -p r im e id e a ls c o n ta in in g T , then w e s e t : rE ( T ) - R.

A n E - id e a l A w ill b e c a lle d E - r a d lc a l iff rE ( A ) - A .

P R O P O S IT IO N 2.1. If T , S a r e s u b s e ts o f R , A , В a r e E *4 d ea ls a n d P £ E * then ( 1 ) T С rE ( T ) ( 2 ) T С P if and o n ly if r£ ( T ) C . P ( 3 ) U T С S , then rE ( T ) c . rE ( s ) ( 4 ) ГЕ ( rE ^ ^ ^ " rE ^ T ^

(3)

( 5 ) rE ( P ) - P ( 6 ) i*E ( A ♦ В ) - r E ( r E ( A ) ♦ гЕ ( в ) ) ( 7 ) ге ( А В ) - ге ( А п В ) - г Е ( А ) Г. rE ( B ) PROOF4. . ( l ) , ( 2 ) , ( З ) , ( 5 ) a re ob v iou s. ( 4 ) . S in ce ( 2 ) , w e h ave [ p £ E * P О т ] - [ р £ E * Р Э rE ( T ) j , • ° ге ^ге ^т ^ “ [ p é е! p d г е ( т ) } “ / | { Р ^ Е* Р ^ 5 Т \ " гЕ ( Т ) .

( 6 ) . S in ce ( з ) , w e h ave the inclusion Ç_ . Now , if P Э A + В, then P D A and P D В , thus P 3 r E ( A ) and P D «*Е ( В ) . F in ally, we

get Р Э rE ( a ) , ♦ r £ ( B ) .

( 7 ) . B y ( 3 ) , w e get rE ( A B ) c rE ( A ^ B ) c гЕ (a )>*\ rE ( В ) , It su ffic e s to sh ow , that i-£ ( a b ) - ге ( а ) n гЕ ( в ) . Łet I - £ P £ E ^ P D A B I , J - | p £ ET PZ5 a | , К - I P f Е ^ Р Э в ] . S in ce I - J U K , w e h a ve r _ ( A B ) - 1 n P L- n p .

P 6 I P € J U К

= Г Л р - П О р - r (a ) n г ( в ) .

P e u р е к E E

If T is an y s u b s e t of R, then b y VE ( T ) w e sh a ll denote the s e t of all E -prim e id e a ls containing T . T h e condition ( 2 ) o f P roposition 2.1 implies VE ( T ) - VE ( ( T ) ) - VE ( r E ( T ) ) .

P R O P O S IT IO N 2.2. If E is a se t of id e a ls in R, R (= E and E is c lo s e d under an y intersections, then

( 1 ) VE ( 0 ) - E , VE ( l ) - ^ ( 2 ) If i f i I » * family of s u b s e t s of R then n v E ( T , ) * VE ( ^ T i 5 i £ i I « ; i ( 3 ) If T Jt T 2 a r e s u b s e ts o f R, then U VE ( T 2 ) “ “ V rE < T l> Ге ( Т 2 )> L e t E d I ( R ) b e a s e t c lo s e d u n d er a n y in te r s e c tio n s and

(4)

containing R. B y the a b o v e Proposition, В i s a topological s p a c e with the c lo s e d s e t s VE ( T ) . T h e op en s e t s ln E h av e the form

( T ) ■ ^ P e E ? P ^ > T ] , w h e re T Is a s u b s e t of R. If У С E? w e denote J£ (y ) - f l j p , P É y ] , If Y i* ^ and Je ( Y ) = - R, If Y - It is c le a r, that JE ( v ) £ Б . P R O P O S IT IO N 2.3. ( a ) If T с R. then Je Ve ( t ) . rE ( T ) it . . ( b ) If Y C E , then VeJe ( Y ) - Y , w h e re Y is the c lo s u re of Y ln E . P R O O F . ( a ) Je Ve ( T ) - n { P . p

e

VE ( T )

J

- p i [ p €• E ,^ P 3 t } - rE ( T ) . ( b ) S in c e Y С Ve (Je (y ) ) , w e h a v e Y с VeJe (y) . C o n v e rse ly , If P G E * an d P О Je(y) , an d w e a ssu m e that P ^ Y , then there e x is ts a n d E -Id e a l A such, that D £ (a ) n Y - P G- DE (/0

T h e n w e h a v e Y C v E ( A )t h en ce P 3 Je ( Y ) ;o A an d P £- VE (,A ) It contradicts with the fact that P £ De (a ) .

C O R O L L A R Y 2.4. If P G E ? then VE ( P ) - -[p] .

C O R O L L A R Y 2.5. T h e re is a bijection betw een the se t of

~*r

c lo s e d s u b s e ts of E an d the se t of E -r a d lc a l E -id e a ls in R. T h e m appings VE , J£ a re o r d e r -r e v e r s in g bijections.

P R O P O S IT IO N 2.6. И PC- E ^ t h e n V£ (p) i s a non -empty irred u cib le c lo s e d s u b s e t of E . E v e r y non-em pty Irred u cible c lo s e d s u b s e t o f E h a s the form VE ( P ) , w h ere P G еЛ

P R O O F . Let P É E r a n d let VE ( P ) С v E ( rE ( A ) ) О v E ( rE ( B ) ) -

T h e n P 3 rE ( A ) rE ( B ) . w h ence P 3 ге ( а ) o r P 3 rE ( B ) s o we h a v e V£ ( P ) c: v E ( rE ( A ) ) o r v E ( p )<C v E ( rE ( B ) ) - S u p p o s e now, that

A-V is a non-empty c lo s e d irre d u cib le s u b s e t in E , and A-V - A-Ve ( q ) , w h ere Q £ E an d te ( q ) - Q. W e show, that Q £ E Г If Q 3 A B , w h ere А , В 6 E , then V£ ( q ) C Ve ( A B ) - Ve ( a ) u Ve ( B ) . S in ce

^1»

(5)

V (q) is irred u cible, Ve (q) c Vg. (a ) o r Ve (q) q Ve ( B ) , H e n c e w e h ave Q ^ A o r Q ^ B ,

A set E is s a id to b e rE -N o eth erian , if E sa tisfie s the a sc e n d in g chain condition on E -r a d ic a l id e a ls .

T h e follow ing lemma la o b v io u s.

L E M M A 2.7. Let E be a n rE -N o e th e ria n aet. И T la a aubaet of R , then there e x is ts a finite a e t T Q , au ch that T Q С T an d rE ( T )

“ r E ^ T 0 ^ *

P R O P O S IT IO N 2.8. If E la a n r„ -N o e th e ria n , then e v e r y op en

*• Ł

aet in E la quasi-com pact.

P R O O F , ^ i r a t w e prove, that if x £ R, then D E ( x ) la a n open qu asi-com pact se t In E . B e c a u s e for T C R, w e h a v e D r ( T ) -

D ft)

t £ T E it su ffic e s to sh ow , that If D _ ( x ) - DE ( x . ) , w h e re x. £ R

1 fc I

for e a c h I £ I, then I>E ( x ) - D E ( x £ ) и . . . u DE (*| )

B y the Lemma 2.7., w e h av e 1 n DE ( X ) - i V l ° E ( x i> - DE (^ Xi S i £ I } > “ DE ( r E ({ Xl » i € I } ^ “ " D E ^ r E ^ X i . ’ X i 3 r ) ) " D E ^ x i » • • • . x i

}

) ” D E ^ X i . ^ U " * I n 1 IT 1 , U D _ ( x . ) • N o w , if D ( A ) is a n y o p e n s e t in В 0 then В 1 в n DE < A > - DE ( r E ( A ) ) - DE < rE ( £ l ...a r i > ~ ° Е * * « $ -= DE ( a 1 )u . . . U D E ( a n ) , w h e r e a ^ a 2...a n€ ' A *

Dj (a' ,a s a fin ite u nion o f q u a s i-c o m p a c t o p e n s e t s , is q u a s i-c o m p a c t.

*

C O R O L L A R Y 2.9. If E is an r _ N o e th e ria n s e t , then E is В

a q u a s i-c o m p a c t s p a c e .

T H E O R E M 2.10. L e t E b e a s e t o f id e a ls o f R , c lo s e d u n d er a n y in te r s e c tio n s and R £ E . If E is an r _ - N o e th e ria n s e t , then th e re

E

e x is t s a rin g S su ch , that the s p a c e s S p e c g and E * a re h om eom orph ic.

(6)

P R O O F . A p p ly in g the re su lts of [ Ź ] , it su ffic e s to sh o w , that £ h a s the follow ing prop erties

a ) E * Is T Q - s p a c e . b ) E is qu asi-com pact,

. *r

c ) T h e q u asi-com p act op en s u b s e t s of E a re d o s e d u nder finite intersections.

\ *

d ; T h e qu a si-c o m p a c t op en s e t s in E form an op en b a s is . e ) E v e r y non-em pty ir r e d u d b le d o s e d s u b s e t h a s a g e n e ric

point.

T h e property a ) is o b v io u s an d i s satisfied b y a n y set E of id e a ls o f R, d o s e d u n d er intersections and w hich p o s s e s s e s R.

b ) - C o ro lla r y 2.9. c ) , d ) - P rop osition 2.8. e ) - P roposition 2.6.

N o w , w e g iv e som e applications o f the a b o v e theory for the s e ts : A ( R , M ) , B ( R , M ) , C ( R , M ) , w h ere (R , M ) i s a system of id e a ls in the s e n s L & ], [VJ .

3. T h e s p a c e a (R . M ) . bet (R , M ) b e a system o f id e a ls, an d let A ( R , M ) b e the se t of a ll prime id e a ls, w hich b e lo n g to M. M o re o v e r, let E • | G É M; r ( G ) » • T h e s e t E i s c lo s e d u nder a n y intersections an d R € E , s o E sa tisfie s the conditions o f the P a rt 2. W e sh all p ro v e , that E ^ - A ( R , M ) .

If T Is a n y s u b s e t o f R, then b y rA ( T ) w e denote the sm allest ra d ic a l M -id e a l in (R , M ) containing T .

L E M M A 3.1. К G 6 E , then ( GsT ) £• E , for e v e r y s u b s e t T of R.

P R O O F . Let x £ R. T h e n G x ( G : x ) an d r ( G s x ) f < G x ) -( r -( G ) : x )m -( G : x ) , s o -(G a c ) £ E . N o w , if T is a n y s u b s e t of R, then ( G : T ) ( G : x ) , and h en ce w e h ave ( G : T ) £ E .

X g T

P R O P O S IT IO N 3.2. If S , T a re s u b s e ts of R, then rA ( s ) n rA ( T ) * - rA ( S T ) .

(7)

P R O O F 4, (th is method is sim ila r to the method o f R.M . C oh n QQ ) . F ir s t, w e p r o v e that гд ( S ) r A ( T ) C гд ( S T ) . S in c e Т С ( г д ( 5 Т ) : S ) and ( г д ( S T ) : S ) e . E (L em m a 3 ,1 .), w e h a v e гд ( Т ) с ( г д ( S T ) : s ) , that m ean s S C ( r ( S T ) : r . ( T ) ) and h e n c e r . ( s ) C ( r . ( S T ) : r . ( T ) )

ie . rA ( Т ) г д ( S ) C r A ( S T ) F u rth er, w e h a v e ( r ( s ) O r ( T ) ) 2 - ( r ( s ) O r ( T ) ) ( r ( s ) O r (t ) ) A ' " ' A A ' 1 rA ( S ) 0 r A T h e in v e r s e in c lu s io n is o b v io u s . C r A ( S ) r A ( T ) C r A ( S T ) . that im pU es гд ( Б ) П гд ( т ) с г д ( S T ) T H E O R E M 3.3. If ( R . M ) is a s y s te m and E - -^ G C M ; r ( G ) - G ^ , then E * - A ( R , M ) . P R O O F . It s u ffc e s to p r o v e , that e v e r y id e a l in E is prim e, L e t P £ E * . а д е р , x y £ P . T h e n гд ( х ) г д ( у ) С г д ( х у ) С г д ( Р ) - P , and h e n c e гд ( x ) C P o r гд ( у ) С Р , that m ean s x £ P o r y £ P .

T H E O R E M 3.4. if (R .W l) is a s y s te m o f id e a ls and E - - [g € M , r ( G ) - g} then гд ( T ) - rE ( T ) , fo r e v e r y s u b s e t T o f R.

P R O O F . It s u ffic e s to v e r i f y ( b y T h e o re m 3 .3 .) that гд ( T ) - - П | р £ А ( R . M ) ; P D l j L e t G - гд ( Т ) . If G - R , then the th e s is is triv ia l. S u p p o s e n ow that G ^ R an d x R \ G . C o n s id e r an in d u c itiv e fa m ily 2 jx ” | h £ E ; G C H , x ^ H ^ J . L e t P b e a m axim al elem en t in ^ x * W e p r o v e , that P £ A ( R . M ) . T h e r e fo r e it s u ffic e s to d em on stra te, that P is a prim e id e a l in R. S u p p o s e , that u v £ P , ифр, v ^ P .

T h e n Р ^ г д ( P . u ) , ( P . v ) , s o

s < £ r A ( Р , и ) П г д ( P , v ) - гд ( ( Р , и ) ( P , v ) ) C r A ( P ) - P , it g iv e s a c o n tra d ic tio n with x ^ P . S o P i s a prim e id e a l, and w e p r o v e d that fo r e v e r y x £ R \ G th e re e x is ts a prim e id e a l P ^ Ê A f R . M ) s u c h that

x G C P X • F in a lly , w e h a v e G ■■ О *

B y the T h e o r e m s 2.10., 3.3 w e h a v e

C O R O L L A R Y 3.5. If ( R , M ) is a s y s te m w h ich s a t is fie s the a s c e n d in g ch a in co n d itio n on гд - r a d ic a l M -id e a ls , than th ere e x is t s *

(8)

a ring S au ch that a p a c a s A ( R , M ) an d S p « c S a re homeomorphlc. Other p r o o f» of C o ro lla ry 3.5, w e can find In the p a p e r [вД (f o r a p e c ia l ayatem a ) an d ["бД.

N o w , w e g iv e another description of the Id e a l гд ( т ) . If T la a n y a u baet of R, then we denote: { ^ [q “ T

W n + l - г < [ И n l ter n > O.

T H E O R E M 3 .« ^ Let (R , M ) b e a ayatem. If T la a a u b a e t of R, then rA ( T ) - U f r } n.

n—О

P R O O P . Let H - It la obvloua, that r ( H ) - H. If x e H. then x e ( т ] п d [ { T l nl . f®r aome n, therefore [x j С

с Г Ы „ ] с С' H. B y Induction, it la e a a y to prove, that { т 1 С

С гд ( ' 1') « tor e v e r y n <= N , h en ce H С rA ( T K

T H E O R E M 3.7. If (R , m ) la a ayatem, then fo r an y au baeta S , T of R, and for e v e r y n, m Ł N holda: { s } n f r l m C” ^ S T ^n+m

P R O O P . W e p ro v e thia theorem In s e v e r a l parte. a ) Pirat, w e pro v e that. If x e. R, then x [тД с г ( [ х Д ) .

S in c e T С ( [ х т ] : x ) <С ( [>тД : х П) £ М, во w e h a v e [тД С

1C*, п -о

с ! s Ł < M г хП) с r ( «so ^

s хП) ) ■ г ( [ х^

1

х )*

b ) W e demie na träte, that r ( s ) r ( £тД ) C r ( [s t | ) . B y the part a ) , w e h ave s j V J c г ( [ s i ] ) . H e n c e, It fo llo w » that r ( S ) r ( И ) с r ( s ) n л г ( [ т Д ) - r ( s [ T ] ) c r ( r ( L S T ] ) ) - r ( [ S T ] ) .

c ) B y induction, w e ah all pro ve , that ( s ) C.

j

S t | ^

P o r n - O, the in c lu s io n is trivia l. S u p p o s e , that this in c lu s io n is s a tis fie d fo r so m e n. T h e n ( s ) \ T}n + l “ ( s ) r ( [ { T } n l > C

с r ( s ) r ( Ц т } п] ) С Г( [ s Щ ) С Г ( [ { з т } п] ) - { s T} n+1

d ) W e s e t o n e m. B y in du ction with r e s p e c t to n, w e p r o v e that { 4 A c { s 4 n . . n. F o r n - O, the In c lu s io n fo llo w s from c ) .

(9)

F-urth.r, w . h » v . { s l n ł l { т| m- г ( Г { з ' !п1 ) { т } т С r ( [ { s ] n M j ) C

С '• < Г Ы П, ПЛ ) - { s T } n łn itl

4. T h e s p a c e C ( R , M ) . Let ( R , M ) b e a system of Id e a ls and let C ( R t M ) b e the set of a ll M -prim e id e a ls in M . If T is a n y su b se t o f R, then b y r c ( T ) , we denote the intersection of all prime Id e a ls containing T . Let E ■» M . the se t E is c lo s e d u nder a n y intersections an d contains R, s o it sa tisfie s the assum ption of the part 2. U s in g e a rlie r notations, w e h a v e E » C ( R , M ) , rE ( T ) - r ^ ( T ) ,

B y the Th eorem 2.10. we h ave

C O R O L L A R Y 4.1. If (jR, m) is a system satisfyin g the a s c e n d in g chain condition on r _ -r a d i c a l M -id e a ls , then there e x ists a rin g S

%

s u c h that the s p a c e s C ( R , m) an d S p e c S a re homeomorphic. N o w , we give som e properties r ^ r a d ic a l id e a ls , that m eans s u c h M ld e a ls G , for w hich G r _ ( G ) . W e s a y , that an M id e a l is M irre d u

-/

c ib le , if it iant an intersection of two M -id e a ls , which p ro p erly contains Its.

P R O P O S IT IO N 4.2. E v e r y M -ir r e d u d b le r^ ,-rad ical Id e a l is M-prim e.

P R O O F . Let P b e an M -irre d u c lb le r^.—rad ic a l id e a l and let A , В be M -id e a ls su c h that A B C P . T h e n ( A + P ) ( В + P ) с P and

w e h a v e P - i"c(a + Р ) О г с ( в + P ) . In d e e d , P . rc ( P ) 3 rc Э г с ( А + P ) ( В + P ) ) - rc ( A + P ) О r c ( B + P ) o rc ( p ) . P. B e c a u s e P is M -irre d u c lb le , s o P m r ( a + P ) or p - r ( b + P ) .

c o

F in a lly A C P o r В О p .

P R O P O S IT IO N 4.3. If (R , M ) is a system satisfyin g the a s c e n ­ ding chain condition on r ^ -r a d ic a l id e a ls, then e v e r y -r a d ic a l id e a l is a finite intersection of M -id e a ls .

P R O O F . S u p p o s e , that the se t 21 of a ll r ^ -r a d ic a l id e a ls which a re not finite intersections of M -id e a ls , i s non-empty. Let P be a

(10)

maximal element ot X • ВУ the P rop osition 4.2, P i s not M -irre d u cib ie. T h e re fo re , there e x ist M -id e a ls A , В su c h that P Ç A , P ç В an d A r> В ■ P. S in c e r ^ ( A ) , rc ( B ) d o n 't b e lon g to Z , then r^. ( a ) - Aj^ n А ^ л . . Aj^ rc ( B ) - В x г, В 2 r> . . . r>Bj w h e re A , . . . . A fc, B ^ . . . . Bj £ C ( R , M ) . N o w , w e h ave P - rc ( p ) “ rc ^ A n B ) “ rc ^ A ^ n rC ^ B ) " A l ° * * ° A krt r\ B 1 n . . . r\ Bj

this contradicts with the fact that P £ Z. .

C O R O L L A R Y 4.4. If (R , M ) is a system of id e a ls satisfyin g the a sc e n d in g chain condition on r ^ -r a d lc a l id e a ls then for e v e r y M -ld e a l A there e x ist only a finite s e t o f minimal M -prim e Id e a ls

w h ich c o n ta in A

5. T h e s p a c e B ( R , m) . Let ( R , M ) be a system of id e a ls and let B ( R , M ) b e the s e t of all primitive M -id e a ls .

P R O P O S IT IO N 5.1. T h e follow ing conditions a re equivalent ( 1 ) A £ B ( R , M )

( 2 ) A i s a prime id e a l a n d A - r ( A ) £-( 3 ) r ( A ) i s a prime id e a l an d A - r(A)^|_

( 4 ) T h e re e x is ts a prime id e a l P in R, s u c h that A

-P R O O -P . Is sim ilar to the proof

01

the a n a lo g o u s theorem for differential rin gs ( [

4

] P ro p . 2 .2 ).

If T is a n y s u b s e t of R, then b y rß ( т ) w e denote the intersection of all primitive M -id e a ls containing T.

T H E O R E M 5.2. If T i s a s u b s e t o f R, then rß ( T ) - г ( | т ] ) ^ P R O O P . If P i s a prime id e a l containing T , then by P rop osition 5.1. , P^j. is primitive and P ^ Z> И Z> T . T h e n r B ( T ) с г( И ) , an d w h en ce w e h ave r ß ( T ) С r ( [ t J ) ^ .

(11)

-If Q Is a primitive id e a l containing T , then by Proposition 5.2, w e h ave that r ( Q ) is a prime id e a l containing r ( [tT ) and - Q. T h e re fo re Q - t ( q ) #

3

г ( ( т ] ) г and finally r B ( T )

3

r ( JtJ ) "•* s' ' C O R O L L A R Y 5.3. If G a n d H a re M -id e a ls , then r g ( G H ) — rB ( G H H ) - rB ( G ) O r B ( H ) . P R O O F . r0 ( G H ) - r ( [ g • h ] ) # - r ( G H ) ^ - ( g O H ) # - r(|GrnH] )^-- rB ( G n H ) . rB ( G H ) - г ( [ Ь н З ) ^ » r ( G H ) t t - ( r ( G ) n r (h) ) ^ -- r ( G ) # П r ( H ) # -- r ( [ G ] )# 0 r ( [ H ] ) # - r B ( G ) n rB ( H ) . A n M - id e a l G Is c a lle d r - r a d ic a l, if r (g ) - G . В в

P R O P O S IT IO N 5.4. If ( R , M ) is a system s a tis fy in g the a s c e n ­ d in g ch a in co n d itio n o n r - r a d ic a l id e a ls , then th e re e x is t s a rin g

В

S s u ch that the s p a c e s b ( R ,m ) and S p e c S h om eom orp h lc. T h e p r o o f is sim ila r to the a n a lo g o u s p r o o f o f the theorem fo r d iffe re n tia l rin gs .

(12)

R E F E R E N C E S

[1 ] R .M .C o h n , S y s te m s o f id e a ls , C a n a d . J. o f M ath. 2 l ( l 9 6 9 ) .

[2 ] M .H o c h s ter, P rim e id e a l stru ctu re in com m u tative r in g s , T r a n s ,

o f the A m e r ic a n M ath. S o c ie t y 1 4 2 (1 9 6 9 ) p. 43-60.

[3] W .F .K e ig h e r , On the q u a s i a ffin e s c h e m e o f a d iffe re n tia l rin g (t o a p p e a r ).

[4] W .F .K e ig h e r , Q u a si-p rim e id e a ls In d iffe re n tia l rin g s , H o u s to n J.

o f M ath. 4 (1 9 7 9 ) p. 379 -388.

[5] A .N o w ic k i, Q u a si-p rim e and d-prim e id e a ls in com m utative d iffe r e ­ n tial r in g s (t o a p p e a r ).

[6] A .N o w ic k i, P rim e id e a ls s tru ctu re in , a d d itiv e c o n s e r v a t iv e s y s te m s (t o a p p e a r ).

[7] A .N o w ic k i, R .Ż u c h o w s k i, S o m e re m a rk s o n s y s te m s o f id e a ls (t o a p p e a r in P r o b le m y M a te m a ty c zn e , W S P B y d g o s z c z ) .

[8 ] A .N o w ic k i, R .Ż u c h o w s k i, S p e c ia l s y s te m s o f id e a ls in com m utative rin g s (t o a p p e a r in C om m en ta tion es M a th e m a tic a e ).

[9] R .Ż u c h o w s k i, S y s te m s o f id e a ls in com m utative rin g s , (t o a p p e a r in C om m en ta tio n es M a th e m a tic a e ).

(13)

P R Z E S T R Z E N I E S P E K T R A L N E O R A Z R A D Y K A Ł Y W S Y S T E M A C H ID E A Ł Ó W

S T R E S Z C Z E N IE

W n in ie js z e j p r a c y za jm u jem y s ię ro d zin a m i id e a łó w p ie r ś c ie ­ n ia p r z e m ie n n e g o R z je d y n k ą , zam kn iętym i z e w z g lę d u n a d o w o ln e p r z e k r o je i z a w ie r a ją c y m i R. J e ż e li E je s t ta k ą r o d z in ą , to p r z e z E *

o z n a c z m y z b ió r w s z y s t k ic h id e a łó w E - p ie r w s z y c h . W p ro w a d z a m y w E * t o p o lo g ię i u dow adn iam y, ż e p r z y p ew n ym z a ło ż e n iu dodatkow ym is tn ie je p ie r ś c ie ń S taki, ż e p r z e s t r z e n ie S p e c S i E s ą h om eom orf- ic z n e .

J e d n o c z e ś n ie , o trzym u jem y s z e r e g w ła s n o ś c i tzw . id e a łó w rE - r a d y k a ln y c h , to z n a c z y ta k ich id e a łó w z E , k tó re s ą p r z e k ro ja m i id e a łó w E - p ie r w s z y c h . W d a ls z y m c ią g u k o n c en tru je m y s ię na s y s te m a c h id e a łó w w s e n s ie [ 8 ] , [ 9 ] i p o d a je m y z a s t o s o w a n ie p o w y ż s z e j te o rii d o o p is u p e w n y c h w y r ó ż n io n y c h p o d z b io r ó w ta k ich s y s te m ó w o r a z do o p is u ra d y k a łó w z w ią z a n y c h z tymi p o d zb io ra m i.

Cytaty

Powiązane dokumenty

We prove also theorem saying that if the set At(X) is finite, then every ideal of a pseudo-BCI-algebra X is a subalgebra.. Finally, we

In particular, in his extensive calculations of more than 100 class in- variants, he frequently needed to establish difficult radical equalities; see two papers [3], [5] by the

Since an invertible power-bounded operator on a Hilbert is similar to a unitary operator [16, Theorem 8.1], Theorem 5 shows that a vestige of this spectral structure remains

Similarly, a system of differential ideals with respect to a higher derivation is special... Notice at first that Theorem is satisfied for primary

In the literature, within the framework of general spectral theory in finite-dimensional unitary spaces, a similar formula occurs; however, the polynomial appearing

The spectral flow is a homotopy invariant for paths of selfadjoint Fredholm operators that was invented by Atiyah, Patodi and Singer in their study of spectral asymmetry and

We also characterised these notions in terms of minimal quasi-ideals and minimal bi-ideals in a ternary semigroup.. AMS Subject Classification:

Below we prove some results concerning uniform upper semi-continuity of the above mapping, as well as the mappings associating with x various prolongational limit sets, under