• Nie Znaleziono Wyników

Surface waves on water of variable depth

N/A
N/A
Protected

Academic year: 2021

Share "Surface waves on water of variable depth"

Copied!
75
0
0

Pełen tekst

(1)

UNIVERSITY OF CALIFORNIA >{ARINE PliYSIC/iL LA30R.\T0RY OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY

SURFACE WAVES ON WATER OF VARIABLE DEPTH Lecture Notes, F a l l Semester, 1950-51

Sponsored by the U.S. Navy O f f i c e o f Naval Research, P r o j e c t NR-083-005, C o n t r a c t N 6 o r i - l l l , Task Order V I ; and Ü. S. Army

Beach E r o s i o n Board, Contract W-499-055-eng 3. C a r l Eclcart

Wave Report No. 100 SIO Reference 51-12

Approved f o r d i s t r i b u t i o n :

August 1951 i

(2)

-L e c t u r e , F a l l Semester, 1950-51 SIO Ref. 51-12

CONTENTS

Page LIST OF SYl-lBOLS _

PREFACE v i 1 . THE GENERAL EQUATIONS, 1

2. THE SHALLOW WATER APPROXIMATION. 6

3. V/ATER OF CONSTANT DEPTH. H 4. C/tNONIC FOmA OF THE SHALLOW WATER EQUATION. 13

5. THE APPROXn-iATION OF RAY THEORY. 15 6. STRAIGHT, PARALLEL CONTOURS. 26 7. THE SOLUTIONS NEAR THE WATER'S EDGE. 29

8. THE SOLUTIONS NEAR THE WATER'S EDGE ( c o n ' t . ) . 44

9. THE SEICHES OF A CIRCULAR LAKE. 51A 10. GENERAL SURVEY OF THE INFLUENCE OF TOPOGRAPHY ON SURFACE V/AVES. 55A

1 1 . THE CASE h ^ {/ ~ c'^ ) . 59 .12. THE CASE (f'/ - e " ° " ( c o n ' t . ) 73

13. THE PROPAGATION OF ENERGY 3Y SURFACE WAVES. 77 14. THE PROPAGATION OF WAVES FROM DEEP TO SHALLOW WATER. 82

15. THE CASE h = ^ It^ . 93 APPENDIX: The Steady Motions. '96

(3)

L e c t u r e , F a l l Semester, 1950-51 SIO Ref. 51-12

LIST OF SYMBOLS

/A, E> wave amplitudes; constants o f i n t e g r a t i o n .

CZ,(S^ see pp. 66, 67.

OJX)t P ^ r ^ i ^ d i f f e r e n t a t i o n - ^ / ^ t + u ^ ^ V^y ^f^t ^ t o t a l energy per cm^.

E,^,Ey components of energy f l o w . F6i.,6,c,x) hypergeometric s e r i e s . Q.^ Jacobi's p o l y n o m i a l . d i f f e r e n t i a l o p e r a t o r , d e f i n e d p. 84. j2 angle o f incidence a f t e r r e f r a c t i o n , r Bessel's f u n c t i o n of order n . \^ k i n e t i c energy d e n s i t y . p. 73: s p r i n g - l e n g t h .

I Laguerre's polynomial of degree n .

L ^ M K d i f f e r e n t i a l o p e r a t o r s : p. 31; p. 48; p. 52; p. 12. |Sl^ Neumann's f u n c t i o n o f order n . p p. 13: P-/a.^ ^ '''^ ; p. 88: 'P- / > ju'^^ Q. wave amplitude,.?, 47; p. 61. r a d i u s . 3 phase f u n c t i o n .

•y p e r i o d o f waves = 2 TT /co ; k i n e t i c energy per cm^. X. see p. 26 f o r d e f i n i t i o n .

X,Y,Z- components of v e c t o r p o t e n t i a l : see p. 97.

a , b components o f wave number v e c t o r : •= c phase v e l o c i t y : cu/k

C„ group v e l o c i t y : cloo/dk a

(4)

-L e c t u r e , F a l l Semester, 1950-51 SIO Ref. 51-12

a c c e l e r a t i o n of g r a v i t y ; a u x i l i a r y f u n c t i o n d e f i n e d p. 83 water depth.

k l o c a l wave number, radians/cm; V. ^ Z -rr / X n , m i n t e g e r s . ^ excess pressure. ^ excess pressure a t * ^ <^ a u x i l i a r y v a r i a b l e : p. 31; p. 48; p. 52; p. 6 1 . A. J ^ p o l a r coordinates, ^ slope of bottom. i time. LL, (J^, uy components of v e l o c i t y . a u x i l i a r y v a r i a b l e , p. 33. A, Vj h o r i z o n t a l c o o r d i n a t e s . ^ v e r t i c a l c o o r d i n a t e ; p o s i t i v e upward, o c , ^ numerical parameters: p. 62; p. 93. Euler's constant => 0.577... © a u x i l i a r y v a r i a b l e , p. 27.

angle o f incidence i n deep water; a l s o , see p, 65.

<y6 phase constant; i n Appendix: s c a l a r p o t e n t i a l j p o l a r c o o r d i n a t e . ^ co^l <^ ; Z-n /:f< ° deep water wavelength.

A 1 O C £ L 1 wavelength.

y i n t e g e r .

^ d e n s i t y i n g e n e r a l ; p. 53 e t seq., a parameter, c r parameter i n h = C'- (f-cr A ) J •

(5)

L e c t u r e , F a l l Semester, 1950-51 SIO Ref. 51-12

^ p. 62: &^i'cr t) ; p. 93: ^ ^ (-Z^^x). ^ a u x i l i a r y depth c o o r d i n a t e ,

CO frequency, radians/^e^i ° Z-ir/T ~V gamma f u n c t i o n .

(6)

-L e c t u r e , F a l l Semester, 1950-51 SIO Ref. 51-12

PREFACE

These lectui^e notes a r e , i n one sense, systematic. I t was the i n t e n t i o n t o show t h a t , s t a r t i n g from the l i n e a r i z e d equations o f hydrodynamics, i t i s p o s s i b l e t o g i v e a l o g i c a l l y c o n s i s t e n t treatment o f the propagation of waves i n water o f v a r i a b l e depth. This t h e o r y does n o t , i n a l l r e s p e c t s , conform t o o b s e r v a t i o n ; i t was the i n t e n t i o n t o e x h i b i t the assumptions t h a t u n d e r ] i s the t h e o r y , so t h a t l a t e r . i n v e s t i g a t o r s might a l t e r them w i t h a view t o improving the t h e o r y . The l a t e r p a r t s o f S e c t i o n 7 show i n d e t a i l how the t h e o r y f a i l s when the water depth becomes very s m a l l .

I n another sense, the l e c t u r e s are e c l e c t i c : two phenomena are

emphasized a t the expense o f o t h e r s . The e a r l i e r l e c t u r e s are d i r e c t e d toward the study o f "edge waves," ( S e c t i o n 9 ) . These seem c l o s e l y r e l a t e d to the s u r f beat phenomena described by Munk* and t o recent speculations concerning t h e r e f l e c t i o n of surface waves by deep water**. I n the l a t e r l e c t u r e s , a new wave e q u a t i o n i s d e r i v e d ( S e c t i o n 1 4 ) , t h a t appears able t o account f o r the d i s p e r s i o n and r e f r a c t i o n t h a t occur simultaneously i n water o f moderate depth. This equation i s c o n s i s t e n t w i t h the "energy t h e o r y " p r e v i o u s l y used t o d e a l w i t h t h i s case, b u t appears t o have systèraatic-advantages over the

e a r l i e r t h e o r y .

^MunlCj^W. K., Trans, A.G.uT, 30,""849 (19497,""

•>«-Isaacs, J.D., W i l l i a i u s , E, A., and E c k a r t , C , Trans. ACU, 32, 37 (1951), Y i

(7)

-SURFACE WAVES ON WATER OF VAPJABIE DEPTH

1 , The General Equation.^.

Let t h e zaxis be v e r t i c a l l y upward, t h e x and yaxes i n t h e h o r i -z o n t a l plane; l e t , vr. viy be the t h r e e components o f v e l o c i t y and t h e pressure be - ^ cj p^.x^^^^ ' ^^'^ l i n e a r i s e d equations o f motion are

I C> <•«.>' . 1'

-V- -\- •i-dt •i-)

provided one neglects a l l d e n s i t y g r a d i e n t s .

D i f f e r e n t i a t i n g Eq. ( 1 ) w i t h respect t o t and s u b s t i t u t i n g from Eq. ( 2 ) , we o b t a i n Laplace's equation:

(8)

^i-Lecture, F a l l Semester, 1950-51

I f t h e atmospheric pressure i s c o n s t a n t (say z e r o ) , the equation of the f r e e surface i s

However, t h e f r e e surface must a l s o move w i t h t h e water: t h i s i s expressed by t h e equation

o r , since

(9)

Lefcture, F a l l Semester, 1950-51

and t h e t h i r d o f Eq. ( 2 ) :

The Eq, ( 4 ) and (S) must both be s a t i s f i e d a t the f r e e surface s i n c e p i s p m a l l , we may approximate Eqi ( 4 ) by

and consider Eq. ( 5 ) t o be imposed a t ^ ^ Ö , r a t h e r t h a n a t ^ =^

p

C <^ O t ) / f »

I f t h e bottom o f the body o f water i s impermeable and has t h e e q u a t i o n

(10)

Lecture, F a l l Semester, 1950-51

i t i s necessary t o f o r m u l a t e the c o n d i t i o n o f i m p e r m e a b i l i t y i n mathematical form. The vector

i s normal t o the bottom s u r f a c e , and hence t h e c o n d i t i o n t h a t no water f l o w s through i t i s

By d i f f e r e n t i a t i n g t h i s w i t h respect t o " t and c l i i n i n a t i n g U-^O-, u T hy moans o f Eq, ( 2 ) , we o b t a i n the equation

The mathematical problem i s now one o f a s i n g l e dependent v a r i a b l e 3 : t h a t s o l u t i o n o f Laplace's equation ( E q . ( 3 ) ) which s a t i s f i e s t h e boundary c o n d i t i o n s Eq, ( 5 ) and ( 7 ) i s r e q u i r e d .

(11)

L e c t u r e , F a l l Semester, 1950-^1 ~ 5

i n t i m e , so t h a t Eq. ( 5 ) becomes

S j i _ cO"^ p - O 5a.

(12)

L e c t u r e , F a l l Semester, 1950-51 " ^

2, The Shallow V/ater Approximation,

Since t h e f u n c t i o n p i s t o be w i t h o u t s i n g u l a r i t i e s , one may expand i t i n powers o f ^ :

I f t h i s s e r i e s i s s u b s t i t u t e d i n t d Laplace's equation, one can c o l l e c t tetmé having the same power o f y , and s e p a r a t e l y equate the c o e f f i c i e n t o f each power o f ^ t o zero. I n t h i s way one o b t a i n s the set o f

equations

A

-H O

<2 t c

where t h e a b b r e v i a t i o n

A =

(13)

Lecture, F a l l Semester, 1950-51

I f the series i s s u b s t i t u t e d i n t o Eq. (5a) and e v a l u a t e d f o r - Q , only the terms independent o f ^ remain, and these are

- Ub"- ^ o . l o ;

3 f ' f

With Eq. ( 9 ) and ( 1 0 ) , a l l the f u n c t i o n s can be expressed i n terras o f and i t s d e r i v a t i v e s : u s i h g the a b b r e v i a t i o n ^ ~

^^/g-(Note t h a t 2 TV/ It i s the deep water wave-length) we have

f . = ^ ( f

-1 -1 .

e t c

I n t h i s way, one o b t a i n s one s o l u t i o n o f Eq. ( 3 ) and ( 5 a ) f o r every choice o f the f u n c t i o n . I t remains t o determine i n such a way t h a t Eq. ( 7 ) i s also a t i s f i e d . P a r e n t h e t i c a l l y , i t may be

(14)

L e c t u r e , F a l l Semester, 1950-51 ^ 8

remarked t h a t Eq. (4fe) becomes

4c.

so t h a t , except f o r t h e f a c t o r ^ / ƒ ^ , i s t h e h e i g h t o f t h e d i s p l a c e d f r e e surface above i t s u n d i s t u r b e d l e v e l . The problem has thus been reduced t o t h a t o f f i n d i n g t h e shape o f t h e f r e e s u r f a c e ; once t h i s has been found, the d i s t r i b u t i o n o f pressure and v e l o c i t y can be c a l c u l a t e d from Eq, ( 1 1 ) , ( 8 ) and ( 2 ) .

S u b s t i t u t i n g Eq. ( 8 ) i n t o Eq. ( 7 ) , one f i n d s t h a t

I !

^

o x

^

'^^

^ / y

MA.

(15)

L e c t u r e , F a l l Semester, 1950-51

S e t t i n g ' ^ - _ K and u s i n g Eq, ( 1 1 ) , t h i s becomes

U Ö X O x ^ ^ 12.

Eq, ( 1 2 ) i s a p a r t i a l d i f f e r e n t i a l equation o f i n f i n i t e o r d e r , t o be solved f o r . While such equations have been discussed a t i n t e r v a l s since the time o f FJtxler, no systematic method o f s o l v i n g them has been developed. I n t h i s case, we suppose t h a t the dimensionless q u a l i t i e s

are s m a l l f o r a l l % and , I f we then n e g l e c t products o f these s m a l l q u a l i t i e s , we a r r i v e a t t h e approximate d i f f e r e n t i a l e q u a t i o n o f

(16)

L e c t u r e , F a l l Semester, 1950-51 - 10

second o r d e r :

O = -V- K,

(17)

L e c t u r e , F a l l Semester, 1950-51 - 11

3, Water o f Constant Depth.

I t i s w o r t h c o n s i d e r i n g t h e case o f constant k , since i n t h i s case, we know t h e r i g o r o u s s o l u t i o n .

I n t h i s case, Eq, ( 1 3 ) becomes

vhere 2 r / k - / ^ 2 | ^ i l 2 H water wave-length. Using t h i s r e s u l t i n Eq. ( 1 1 ) i t becomes

(18)

-L e c t u r e , F a l l Semester, 1950-51 - 12

so t h a t

15 =

Now the r i g o r o u s s o l u t i o n i s known t o be

Ocr^oX k ( ? + k ) 16.

where p i s any s o l u t i o n o f Eq. ( 1 4 ) . Since Eq. (15) may be w r i t t e n

^0 O e r J . k k ^ c L i c .2-<xl k k ] ^

i t i s seen t h a t t h e e r r o r s i n Eq. ( 1 5 ) are o f t h e order o f magnitude I ^ i . _ > as was t o be expected.

(19)

L e c t u r e , F a l l Semester, 1950-51 - 13

4, Canoni.c Form o f t h e Shallow Water Equation. The i n t r o d u c t i o n of t h e new v a r i a b l e

-r^ I '/^ .17.

reduces t h e Eq. (13) t o the f o r m

18.

where

19.

The expression f o r t h e wave number i n water o f constant depth i s U"^ ^- lO^/'uW K / k , Consequently, t h e second term o f Eq. ( 1 9 ) may be expected t o f u n c t i o n as a c o r r e c t i o n f a c t o r t o t h e u s u a l f o r m u l a . To estimate i t s magnitude, l e t - ^ •>^_j ^ being t h e constant slope o f t h e bottom; then Eq. (19) becomes

(20)

L e c t u r e , F a l l Semester, 1950-51

~ 14

Taking q-z^ 10 yO -/Ö a~/có ~ 10 sec, t h i s becomösX» t . (.7 ^ ^

Thus, we may n e g l e c t t h i s term everyi^here except v e r y close t o the water's edge. I t appears t h a t i t i s j u s t i f i a b l e t o use the o r d i n a r y formula i n almost a l l , i f not i n a l l , cases o f i n t e r e s t . The s m a l l r e g i o n near the water's edge i s i n t h e s u r f , and we cannot expect our l i n e a r i z e d t h e o r y t o give a good account o f t h i s phenomenon anyway.

I t i s p o s s i b l e t h a t the c o r r e c t i o n term may be i m p o r t a n t a t the edge o f the c o n t i n e n t a l s h e l f , i n the case o f the 3, 6, and 12 hr. components o f t h e t i d e . Moreover, i n some problems, the n e g l e c t o f the c o r r e c t i o n term complicates, r a t h e r than s i m p l i f i e s the a n a l y s i s .

(21)

L e c t u r e , F a l l Semester, 1950-51 _ X5

5. The Approyimatron o f Ray Theory.

A t r a d i t i o n a l way o f o b t a i n i n g an approximate s o l u t i o n o f Eq. (18) leads t o Huyghens» c o n s t r u c t i o n f o r the wave f r o n t s , and t o o t h e r well-known formulae. I t i s assumed t h a t t h e r e are s o l u t i o n s o f the equation t h a t have the forms

y> ^ A C 5 - c o t 3 ^ 20.

the f u n c t i o n s A and 5 being the same i n a l l these s o l u t i o n s and b e i n g r e a l . I f we s u b s t i t u t e the e x p o n e n t i a l form f o r T i n Eq. ( 1 8 ) , t h e r e s u l t i s

Since /A and 5" are b o t h r e a l , t h i s equation i s e q u i v a l e n t t o the two equations

and

(22)

L e c t u r e , F a l l Semester, 1950-51 ^ 16

which w i l l be considered successively.

I n Eq. ( 2 1 ) , t h e term A'' A A i s known as the d i f f r a c t i o n term. I t has t h e same dimensions as , and i s somewhat s i m i l a r t o t h e term

Vr''^ ^ k ' ' ^ - i " ( i ^ ) * However, i n s t e a d o f depending on t h e k n o m bottom topography, t h e former depends on t h e unknown amplitude f u n c t i o n . The method o f s o l u t i o n now vuider d i s c u s s i o n i s u s e f u l o n l y when t h e

d i f f r a c t i o n term i s n e g l i g i b l e compared t o k"" , t h e square of the wave nxml tinder these c o n d i t i o n s , we may w i t e

t h i s e q u a t i o n i s known as t h e geometric wave equation, because i t can be s o l v e d g r a p h i c a l l y by a simple method. This method w i l l f i r s t be described and t h e n proven.

Since Eq. (21a) i s a p a r t i a l d i f f e r e n t i a l equation, i t w i l l i n v o l v e an a r b i t r a r y f u n c t i o n o f i n t e g r a t i o n : t h i s may be taken as t h e curve C.^ i n t h e x-y plane on which iS takes on some constant n u m e r i c a l

v a l u e — say the curve 5 := Ck. • The c o n s t r u c t i o n f o r f i n d i n g the curve C : 5 = OL -V- So. (So. being s m a l l ) i s as f o l l o w s : a t p o i n t s o f , one e r e c t s the normals. On these normals, one l o c a t e s p o i n t s a t t h e d i s t a n c e S^^ So. / k(,x^) from . This i s p o s s i b l e

since |< i s a known f u n c t i o n o f ?<- , ^ and (5"a. i s g i v e n . The curve passes through these p o i n t s . Having obtained , one can repeat

(23)

Lecture, F a l l Semester, 1950-51 - 17

the contour Hnes o f the f u n c t i o n S i n succession. I n a d d i t i o n t o obtain¬ i n g the contours, one also o b t a i n s a f a m i l y o f curves t h a t i n t e r s e c t the contours a t r i g h t angles; these are t b e r a y s .

To prove t h i s , l e t X be a p o i n t on and ^6+ T x ^ ^ -t-the p o i n t on where t h e normal t o i n t e r s e c t s t h e l a t t e r . Then because S ( - ^ + SV, ^-v ^ ^C>^ ':J ^ ^ ^ ^ ^ " " ^

a. 21b,

Because the v e c t o r 5 x S h i s normal t o , we have

5

OS

vhere 6 i s a f a c t o r o f p r o p o r t i o n a l i t y . I t i s r e l a t e d t o ÓA by t h e

(24)

Lecture, F a l l Semester, 1950-51 " 18

s u b s t i t u t i n g i n t o Eq. ( 2 l b ) , we have

CL

or by Eq. (21a), S ^ S c^/k, which was t o be shown.

We can t h e r e f o r e consider the f u n c t i o n 5 , which i s Icnovm as the phase f u n c t i o n , or as t h e Hamilton-Jacobi f u n c t i o n , t o have been determined.

Turning t o Eq. ( 2 2 ) , i t may be w r i t t e n

a x

+

d

23.

= O

which has the form o f an e q u a t i o n o f c o n s e r v a t i o n , q u a n t i t i e s

I t suggests t h a t the

I 24.

may be i n t e r p r e t e d as t h e v e c t o r f l o w o f energy i n the w a v e - t r a i n . (The constant o f p r o p o r t i o n a l i t y , I / i j u3, w i l l be j u s t i f i e d beiow.)

To prove t h i s , we r e t u r n t o Eq. ( 1 ) and ( 2 ) ; m u l t i p l y i n g t h e f i r s t by 0 , t h e o t h e r s by u.^ cr and or r e s p e c t i v e l y , and then adding,

I \ one obtains

Ot

Ö 25, Since ^ ^ ( U . ' M - V ^ 3 i s t h e d e n s i t y o f k i n e t i c energy, we i d e n t i f y

(25)

Lecture, F a l l Semester, 1950-51 20

Hence

A

è s

and hence

V/e have had t o make many approximations t o o b t a i n t h i s i n t e r p r e t a t i o n o f F ' i t i s t i i e r e f o r e i m p o r t a n t t o n o t i c e t h a t Eq. ( 2 3 ) was d e r i v e d v a t h -out making these approximations, and has a h i g h e r degree o f v a l i d i t y t h a n our i n t e r p r e t a t i o n .

To summarize these r e s u l t s : i t has been shown t h a t a c e r t a i n approxim-mation, Huyghens» wave-front c o n s t r u c t i o n i s p a r t o f t h e approximate s o l u t i o n

o f the Eq, ( 1 8 ) . Then i t has been shown t h a t t h e "energy f l o w " i s normal t o the wave f r o n t s , and i s p r o p o r t i o n a l t o t h e square o f t h e amplitude f u n c t i o n , and t o the g r a d i e n t o f the phase f u n c t i o n .

This s e c t i o n has been e n t i t l e d "Ray Theory," b u t thus f a r , rays have s c a r c e l y been mentioned. They are d e f i n e d as those curves t h a t i n t e r s e c t a l l o f the curves S = const, a t r i g h t angles: t h e y are the orthogonals o f the f a m i l y o f curves S - const. They d e r i v e t h e i r importance from a v e r y elegant, though somewhat i n o b v i o u s , a n a l y t i c method f o r s o l v i n g Eq. ( 2 l a ) .

(26)

Lecture, F a l l Semester, 1950-51 21

Consider any curve, P , j o i n i n g two p o i n t s A and B i n the x-y plane, and l e t d A 'be i t s element o f l e n g t h . Then we can c a l c u l a t e

the i n t e g r a l

/A ^

I f we keep A and B f i x e d , b u t change the curve T > ^ p t

change i t s v a l u e . Among a l l the p o s s i b l e cuinres, t h e r e w i l l o f t e n be one f o r which X has a smaller v a l u e t h a n any o t h e r ; a l t e r n a t i v e l y , t h e r e may be one f o r which i t has a l a r g e r value than f o r any o t h e r ; these "extremals" w i l l be sho\m t o be the r a y s : t h i s i s Fermat's p r i n c i p l e o f l e a s t t i m e s .

The extreme value o f C= X ) i s r e l a t e d t o the phase f u n c t i o n i n a simple way.

F i r s t , we o b t a i n Euler's d i f f e r e n t i a l e q u a t i o n o f t h e r a y s . For t h i s purpose, suppose*l;hat the e q u a t i o n o f the r a y s i s

where T i s any parameter, such t h a t the p o i n t A corresponds t o T ~ -c and the p o i n t B t o r ^ T • Then

(27)

Lecture, F a l l Semester, 1950-51 - 22

and hence

X -

k

(A.

cUt: .

J

'A

I f we consider a n e i g h b o r i n g curve j o i n i n g /\ t o X5 ; we may w r i t e

provided t h a t

•^he value o f X. must be, t o a f i r s t approximation, u n a l t e r e d , since t h e curve i s an e x t r e m a l . But, value f o r t h e n e i g h b o r i n g p a t h i s

X

I f we i n t e g r a t e the l a s t ti/o terms by p a r t s , and remember t h a t the v a n i s h f o r z- C,,and , we g e t

A

-^6

•A

(28)

L e c t u r e , F a l l Semester, 1950-51 - 23

v a n i s h i n o r d e r t h a t the two expressions f o r X be equal: O

^ ~ Ar k a a t j

These are E u l e r ' s d i f f e r e n t i a l equations. By s o l v i n g them, we o b t a i n t h e r a y s ; t h r o u g h any p o i n t , t h e r e i s one r a y i n every d i r e c t i o n , since these equations a r e o f second o r d e r .

Having thus determined what we mean by " r a y s , " we now proceed t o determine t h e f u n c t i o n 5 • b e f o r e , we suppose the one contour 5 -t o be g i v e n , as -the a r b i -t r a r y elemen-t -t h a -t en-ters i n -t o -the s o l u -t i o n o f Eq. ( 2 1 a ) . Then through each p o i n t o f t h i s curve, we c o n s t r u c t t h a t r a y which i n t e r s e c t s t h e contour a t r i g h t angles. Then, i n g e n e r a l , i f yi^ i s any p o i n t , one o f these rays w i l l pass through i t , and w i l l i n t e r s e c t the surface S r o. i n the p o i n t <^ ^ > The r e q u i r e d f u n c t i o n i s now t o be c a l c u l a t e d by the formula

the i n t e g r a t i o n being along the r a y i n q u e s t i o n .

There are v a r i o u s ways o f p r o v i n g t h i s ; perhaps t h e s i m p l e s t i s t o t a k e X ^ v e r y near t o : then t h i s formula reduces t o t h e previous Huyghens' c o n s t r u c t i o n . Repeating t h e c o n s t r u c t i o n f o r successive elements d /) , smd adding, we o b t a i n the r e s u l t j u s t given. However, t h i s argument does n o t make i t c l e a r t h a t the rays must be determined by Euler's

(29)

Lcctüre, F a l l Semester, 1950-51 ^ 24

equations, and i t cannot be considered t o be e n t i r e l y s a t i s f a c t o r y f o r t h i s reason,

A :more s a t i s f a c t o r y p r o o f was given by W. R. Hamilton: c o n s i d e r two p o i n t s B- X'-^ and B'r-jc ^ 6 >t , 5 * These w i l l i n g e n e r a l

l i e on two d i f f e r e n t rays, w l i i c h i n t e r s e c t S - a_ p e r p e n d i c u l a r l y i n t h e points/i-.>: u and A ' - ' x + A ' ^ u -^-6 u • equations o f the two,rays be

and

Nov^, however, S..Y^ 8 ^ are n o t zero a t -c tr and . We can c a l c u l a t e

(30)

Lecture, F a l l Semester, 1950-51 - 25

O X

by t h e same method as was p r e v i o u s l y used i n d e r i v i n g E u l e r ' s equations:

u.

k-•^6

Because - Y (r ) > a s o l u t i o n o f Euler's e q u a t i o n , the i n t e g r a l J

v a n i s h e s j the- l a s t b r a c k e t also vanishes, since h-K.^

Su^is

a v e c t o r . p a r a l l e l t o S - cx, ,. w h i l e ( ^ \ ...is a v e c t o r normal t o the same curve; t h i s leaves

• i t being-understood t h a t T T C T : ^ on t h e r i g h t . Since- &V- • aiid. are a r b i t r a r y increments, we have

b u t , because o f t h e d e f i n i t i o n o f *u.. . t h i s l e a d s t o " ...

(31)

L e c t u r e , F a l l Semester, 1950-51 « 26

6. S t r a i g h t . P a r a l l e l Contours. (Ray Theory)

I f K and k are constants, the geometric wave equation can be

solved by i n s p e c t i o n : i f we set

t h e equation reduces t o

and

Moreover, one s o l u t i o n o f Eq. (23) i s then A =. constant. I n t h i s s o l u t i o n , the wave-fronts are s t r a i g h t l i n e s , and the amplitude o f t h e waves i s everywhere the same. However, even when k i s constant, Eq, (21a) has s o l u t i o n s t h a t are more complicated.

I f k and k are independent o f j ^ , , we have the case o f s t r a i g h t bottom c o n t o u r s , p a r a l l e l t o t h e y - a x i a . I n t h i s case, we t r y t o f i n d a

f u n c t i o n Y[7^) such t h a t

(32)

L e c t u r e , F a l l Semester, 1950-51 - 27

This leads t o the equation

a x \ ^

27.

o r

28.

A p a r t i c u l a r s o l u t i o n f o r the amplitude f u n c t i o n can a l s o be foiand: i f A i s a f u n c t i o n o f o n l y , Eq. (23) reduces t o

o r

29.

Now, the v e c t o r

0 £ I

i s normal t o the wave-fronts: consequently, i f X i s t h e angle these make w i t h the y-axis

(33)

Lecture, F a l l Semester, 1950-51 - 27

Hence

-and hence t h e wave h e i g h t i s p r o p o r t i o n a l t o

30.

Nearshore, c o r s X -^ 1 and we have proven t h e known r e s u l t t h a t the wave h e i g h t i s p r o p o r t i o n a l t o i ^ ' k ' ^ ^

To i l l u s t r a t e these c a l c u l a t i o n s i n more d e t a i l , l e t

where Ix and vT are constants. Then Oo

té'

. . „

(34)

Lecture, F a l l Semester, 1950-51 - 19

the v e c t o r , 0"^ , uy^ w i t h the energy f l o w i n t h r e e dioBensions. We then show t h a t , t o an adequate approximation.

f ^

% -~ _{

where t h e bar i n d i c a t e s a time average. Taking

we have, by Eq. ( 1 7 ) ,

^ (.,^'^2. A ' ^ S r i C S - c j t ) - (:> t o a rough approximation.

Hence, by Eq. ( 2 ) ,

ƒ a t - 2>x

where t h e dots i n d i c a t e terms i n d t . / i ) y and OA/ox. We have a l r e a d y supposed t h a t such terms are s m a l l , i n d e r i v i n g Eq. (13) and ( 2 1 a ) , so we are perhaps j u s t i f i e d i n n e g l e c t i n g them here. I n t h a t case,

(35)

Lecture, F a l l Semester, 1950-51 ^ 28

makes i t p o s s i b l e t o evaluate the i n t e g r a l :

•33.

v h i c h i s w e l l s u i t e d f o r numerical e v a l u a t i o n , and w i l l be u s e f u l below. The amplitude f u n c t i o n A i s p r o p o r t i o n a l t o \ / ( _ ^ ^ oh^ O) , and t h e height o f t h e waves t o ( 4^ / '-^^^ ^ ^

Note: I f = Ö , t h i s formula becomes i n d e t e r m i n a t e , b u t t h e r e s u l t X - ( / ( T ) iL^ [ ( i ) /O - ^ % ^ ]

e a s i l y obtained.

(36)
(37)

LO

O

• 5 1.0 1.5 2.0 25

Note-- For T = 15 min.,

For T- 20 sec,

s -- 0.02,

s -- 0.02 ,

s/4

k

s/4

k

I km.

50 cm.

FIGURE 2.

(38)
(39)

L e c t u r e , F a l l Semester, 1950-51

7. The S o l u t i o n s Near the Water's Edge

We r e t u r n t o Eq. (13) and consider the case-X'

h -

31*.

which represents a bottom w i t h constant slope A . This w i l l not be j u s t i f i e d f o r l a r g e values o f ^ , since the depth of water w i l l u l t i m a t e l y become g r e a t e r t h a n one wave-length. However, one can o b t a i n u s e f u l conclusions concerning t h e wave-motion near the water's edge, and r e s u l t s t h a t can be used l a t e r i n o t h e r connections.

S u b s t i t u t i n g Eq. (31'") i n t o Eq. ( 1 3 ) , and making the s i m p l i f y i n g assumption t h a t i s independent o f ^ (normal incidence o f the waves) the wave equation becomes D e f i n e the o p e r a t o r 33 ^ f . (V

^ d ^ d_

^ / ^ / x j a /

dx

and expand where C^± O .

This problem has been discussed by J. J. Stoker, Q u a r t e r l y o f A p p l i e d Mathe-m a t i c s 5 31 (1947).

(40)

L e c t u r e , F a l l Semester, 1950-51 ^ 30

Then, since

we o b t a i n

I n order t h a t t h i s equation s h a l l be v a l i d , t h e c o e f f i c i e n t o f each power o f X must v a n i s h , so t h a t

c , + c

^

o-3 ^ e ^ t - ( / < / ^ J c . - o

o r

(41)

Lecture, F a l l Semester, 1950-51 - 3 1

This i s an i n f i n i t e s e r i e s f o r ^ , and, as such would be r a t h e r d i f f i c u l t t o use f o r numerical computation. F o r t u n a t e l y , however, t h e f u n c t i o n

(known as Bessel's f u n c t i o n ) has been tabulated,-^f- and we may w r i t e Eq. ( 3 4 )

so t l i a t i s i s simple t o c o n s t r u c t a graph o f t h i s s o l u t i o n . ( F i g . 1 and 2.) U n f o r t u n a t e l y , t h i s i s n o t the most g e n e r a l s o l u t i o n o f t h e Eq. (3?*-), and i t i s r a t h e r d i f f i c u l t t o o b t a i n t h e most g e n e r a l one. I t i s much e a s i e r t o o b t a i n t h e g e n e r a l s o l u t i o n o f t h e e q u a t i o n

I t w i l l be i n s t r u c t i v e t o consider t h i s case; t o o b t a i n the r e s u l t , i t i s neces-s a r y t o neces-set

•«• References: Magnes &" O b e r h e t t i n g e r " S p e c i a l Functions o f Mathematical • Physics," p. 16 (Chelsea, 1949) ( h e r e a f t e r c i t e d as S.F.M.P.).

JahnJce & Ende, "Tables o f F u n c t i o n ^ " p. 128 e t seq. (Dover, 1943).

(42)

L e c t u r e , F a l l Semester, 1950-51

where m. i s a constant t h a t must be determined. Since

pr\ X'^ ^ (i^^- i^rx^) X""'^ (KfA)x^'"

we now g e t

whence

C. :r e>

(43)

L e c t u r e , F a l l Semester, 1950-51 " 33

The f i r s t equation could be s a t i s f i e d i f C o , b u t then a l l t h e c's

would vanish and t h e t r i v i a l s o l u t i o n - <^ would r e s u l t . Hence m =: 1 1 - a are t h e o n l y other p o s s i b i l i t i e s . Corresponding t o these, we can determine two

YL L o- f<. ö"C" o-u. t '^ t e e r ,

sets o f c's and get tv/o s o l u t i o n s ; which may be w r i t t e n

I' - J A

^ - J / ' )

36. where

Yi.

Tor systematic reasons t h e a r b i t r a r y constant C ' i s set equal t o

I t i s seen t h a t , when i l - G , these two s o l u t i o n s become i d e n t i c a l , thus ex-p l a i n i n g t h e ex-p e c u l i a r d i f f i c u l t y w i t h Eq. (32'i^). The g e n e r a l s o l u t i o n o f Eq.

(32-iw*-) i s = \ ^ "^T-^ > consequently t h e f u n c t i o n (ö") where

IT

a

38.

i s a l s o a s o l u t i o n o f t h i s equation;**- i t i s known as Neumann's f u n c t i o n . When p\ -> Q , both numerator and denominator become zero, b u t the f u n c t i o n

can be determined by e v a l u a t i n g the i n d e t e r m i n a t e form:

(44)

L e c t u r e , F a l l Semester, 1950-51 2. TT n Ï:. Ö From Eq. ( 3 7 ) , Ö

(

1 1 Hence

vr

-i 0 2-1 ^ ^ +• where \ ( I ) ~ ^ and

1 ^

L

r7 - o

(45)

L e c t u r e , F a l l Semester, 1 9 5 0 - 5 1 - 35

I t i s now c l e a r t h a t t h e two independent s o l u t i o n s o f Eq. (32-«-) are

1^

J (

and we proceed t o consider them i n more d e t a i l .

Figure 1 shows a graph o f these two f u n c t i o n s , p l o t t e d w i t h /-{K% / A as abscissa. I t i s seen t h a t both are o s c i l l a t o r y , and t h a t t h e i r wavelength d i m i n i s h e s w i t h d i m i n i s l i i n g -/} , % approaches zero, J"^ -> / > w h i l e

^4

-^j.'Ori> '

However, has i t s l a s t r o o t so close t o the o r i g i n t h a t i t i s d i f f i c u l t t o r e p r e s e n t t h i s f e a t u r e already on t h e scale o f F i g , 1 . F i g w e 2 i s p l o t t e d w i t h the ';-<-scale enlarged by a f a c t o r o f 100, and shows, among o t h e r s , a graph o f >- f \ l . This graph has i t s s m a l l e s t r o o t a t

o

'^H-Xf /> ~ 0y2'l i r i s e s t o i n f i n i t y between t h i s p o i n t and X = o . The f u n c t i o n 0 ^ , on t h i s sane s c a l e , i s represented by a s t r a i g h t l i n e t h a t has approximately t h e same slope as t h e graph o f |^ ^ f o r l a r g e r values o f

X •

The q u e s t i o n a r i s e s , whether t h e i n f i n i t y o f t h e f u n c t i o n K l can pos-o

s i b l y represent t h e breakers. This must be answered n e g a t i v e l y . This i s most simply seen by a nuiüorical example: l e t the p e r i o d o f the waves be 20 s e c , and the slope o f t h e bottom 2 %\ then K. •=• 5"ö cm. For t h i s example, t h e r e f o r e , the whole graph o f F i g , 2 represents o n l y 125 cm, the water's edge being a t the l e f t , '.he maximum depth o f water, a t t h e r i g h t hand edge, i s o n l y 2.5 cm. The smallcsc r o o t o f NQ occurs 40 cm from the water's edge, and t h e depth here i s o n l y 0.8 cm. I t i s obvious t h a t t h e r e i s l i t t l e p h y s i c a l s i g n i -f i c a n c e t o be a s c r i b e d t o t h e s o l u t i o n i n t h i s range o -f -values. I t i s

(46)

Lecture, F a l l Semester, 1950-51 - 36

s c a r c e l y necessary t o enter i n t o a l l the reasons: one i s t h a t the wave h e i g h t ? i n which we are i n t e r e s t e d are a l l v e r y much g r e a t e r than the water depths i n -volved. The c o n t r a r y has been assumed i n d e r i v i n g the boundary c o n d i t i o n a t the f r e e s u r f a c e ,

A second example i s o f i n t e r e s t : t h e p e r i o d s o f tsunamis are o f the o r d e r o f 15 minutes. For t h i s p e r i o d and A « 2^, '-^h^ - I k i u , T h u s , i n t h i s case, F i g . 2 covers 2.5 lan, and water depths up t o 50 meters. Even so, the f u n c t i o n -No does not exceed except f o r < 60 meters, where t h e water depth i s l e s s than 1.2 meters. Again, i t i s s c a r c e l y p o s s i b l e t o a s c r i b e any p h y s i c a l s i g n i f i c a n c e t o the d i f f e r e n t mathematical p r o p e r t i e s o f the two s o l u t i o n s a t

y. O . W e s h a l l r e t u r n t o t h i s m a t t e r below.

These examples make i t c l e a r t h a t , f o r waves o f l e s s t h a n 1 minute p e r i o d , on beaches t h a t do not slope v e r y s t e e p l y , we s h a l l be i n t e r e s t e d p r i m a r i l y i n values o f ^ f(_y t h a t are g r e a t e r t h a n 100. For such l a r g e values o f the argument, i t i s known that-^

These equations have been used t o c o n s t r u c t F i g , 3, which extends t h e graphs o f 40.

•Jf^ and "ro l a r g e r values o f X •

I t i s i n t e r e s t i n g t o note t h a t Eq. ( 4 0 ) i s e x a c t l y t h e r e s u l t we should have obtained from the r a y t h e o r y a p p r o x i m a t i o n : f o r , i f

(47)

L e c t u r e , F a l l Semester, 1950-51 - 37

Moreover, the h e i g h t o f the waves, from Eq. ( 4 0 ) , i s p r o p o r t i o n a l t o 1 / or \ I \\^^ , again i n complete agreement w i t h r a y t h e o r y .

The phase c o n s t a n t s , VUi- , i n Eq. (40) are r a t h e r t y p i c a l , and w i l l recur i n o t h e r a p p l i c a t i o n s . I t may he noted t h a t , f o r l a r g e ,

^ ^ „ ( V ^ J o ^"^^ I ' ^ ^ ^

/ + Jo \ - ^ ( ^ J

/ h ^ ^ These two combinations are p l o t t e d , f o r s m a l l , on F i g . 2.

The d i f f e r e n t behavior o f the two s o l u t i o n s and NQ cannot be dismissed w i t h o u t f u r t h e r i n v e s t i g a t i o n . I t may serve t o c l a r i f y the problem i f i t i s known t h a t these f u n c t i o n s a l s o occur i n o t h e r p h y s i c a l problems; a t y p i c a l one

i s t h a t o f a l t e r n a t i n g e l e c t r o m a g n e t i c f i e l d s . I n t h a t case, the f u n c t i o n NQ represents f i e l d s near a v e r y t h i n w i r e t h a t i s l o c a t e d a t the l o g a r i t h m i c s i n g u l a r i t y and c a r r i e s a c u r r e n t ; the f u n c t i o n JQ represents f i e l d s i n the absence o f such a w i r e . I n t h i s case t h e r e i s a c l e a r p h y s i c a l reason f o r t h e mathematical d i f f e r e n c e between the two s o l u t i o n s .

I n the present case, i t would seem t h a t no p h y s i c a l reason i s t o be ex-pected, since the equations we are s o l v i n g cease t o be v a l i d f o r such s m a l l values o f / . I t i s t h e r e f o r e suggested t h a t we somehow exclude these r e -gions o f very shallow water from c o n s i d e r a t i o n , i n order t o o b t a i n an

(48)

L e c t u r e , F a l l Semester, 1950-51 - 38

by Vx - f o i ' ; t > X > b u t t h a t , a t 7^ - a v e r t i c a l w a l l e x i s t s . Moreover, suppose the wave-height i s small enough so t h a t the waves do n o t break a g a i n s t t h i s w a l l , b u t are r e f l e c t e d w i t h o u t b r e a k i n g . Then a l l our prev i o u s equations remain prev a l i d f o r > >6 , b u t a new equation enters the p r o b -lem; t h i s equation s t a t e s t h a t no water f l o w s past the p o i n t X - and i s

[X(^yi ;^J;=0' This w i l l be s a t i s f i e d i f and o n l y i f

/

Now, the most g e n e r a l s o l u t i o n f o r i s (A, B c o n s t a n t )

42.

and t h e Eq. ( 4 1 ) w i l l be s a t i s f i e d i f

where C i s an a r b i t r a r y constant, and the accent i n d i c a t e s d i f f e r e n t i a t i o n w i t h r e s p e c t t o the argument o f t h e f u n c t i o n . I f i s l a r g e enough so t h a t Eq. (40) may be used, t h i s becomes

(49)

L e c t u r e , F a l l Semester, IDSO-Sl - 39

The I m p o r t a n t t h i n g t o be noted i s t h a t t h e a d d i t i o n a l boundary c o n d i t i o n , Eq. (41) has reduced the number o f s o l u t i o n s from two t o one; b u t i t has n o t e l i m i n a t e d the Neumann f u n c t i o n from c o n s i d e r a t i o n . I f we w i s h t o l e t become s m a l l , we cannot use Eq, (43) any l o n g e r ; more i m p o r t a n t i s the p h y s i -c a l f a -c t , t h a t i n order t o keep the waves from b r e a k i n g , the -c o n s t a n t C must be made ever s m a l l e r . We can assure t h i s i f we s e t

i f we do t h i s , then, when ^ ö A \ 3-^0, and we do ( r a t h e r a r t i f i -c i a l l y ] e l i m i n a t e the f u n -c t i o n NQ from our -c o n s i d e r a t i o n s .

This example has d e f i n i t e l y excluded s u r f o r the b r e a k i n g o f waves. We consider another example t h a t has one c h a r a c t e r i s t i c i n common w i t h the s u r f : t h e removal o f energy from the o r d e r l y motion o f the wave. I n the case o f s u r f , t h i s energy i s converted i n t o d i s o r d e r l y • motion. We cannot t r e a t t h i s w i t h i n t h e framev;orlc o f our present t h e o r y , b u t , i f we suppose t h e sea w a l l t o be movable, and t h a t i t s motion i s r e s i s t e d by f r i c t i o n , we can t r e a t the removal o f energy from the waves.

Let U be t h e v e l o c i t y o f the w a l l , M i t s mass, R the f r i c t i o n a l constant and F the f o r c e exerted on i t by the waves (M, R, and F are a l l t o be c a l c u l a t e d per u n i t l e n g t h ) : then

(50)

Lecture, F a l l Semester, 1950-51 ^ 40

By analogy t o e l e c t r i c a l and a c o u s t i c a l q u a n t i t i e s , we may c a l l Z the complex impedance o f t h e v m l l .

Now, since the w a l l moves w i t h t h e wave,

and ( t o a c e r t a i n a p p r o x i m a t i o n )

These equations reduce t o the boundary c o n d i t i o n

S u b s t i t u t i n g t h e g e n e r a l s o l u t i o n f o r , we f i n d

' 6 - - c f ï g T / - 7 ' - " : ^ J

44.

45.

the argument i n the Bessel f u n c t i o n s being / 4 ^ throughout. Again, we o b t a i n an a d d i t i o n a l boundary c o n d i t i o n , and t h i s again reduces the number of independent s o l u t i o n s from two t o one b u t , again, we do not e l i m i -nate the Neumann f u n c t i o n .

(51)

L e c t u r e , F a l l Semester, 1950-51 - 4 1

At the expense o f some a l g e b r a , one may w r i t e t h e expression f o r i the form , / /) \'/4 f . ^ - o ^ t - 4 J xn 46. where

/A- =

\J /I Xo 47.

and ;ï^is supposed l a r g e . The equation (46) represents an incoming wave o f amplitude p r o p o r t i o n a l t o /4^', and a r e f l e c t e d wave o f amplitude p r o p o r t i o n a l t o /A^ . The f r a c t i o n o f t h e incoming energy t h a t i s r e f l e c t e d i s

A

These examples are h i g h l y a r t i f i c i a l b u t serve s e v e r a l purposes. One i s the i n t r o d u c t i o n o f t h e q u a n t i t y j O ( j A l ^ ^ ^ ' ^ ^ (c^ ) '^ ^"^^ ^^^^ analogy t o e l e c t r i c a l and a c o u s t i c a l problems (always a dangerous procedure)

(52)

L e c t u r e , F a l l Semester, 1950-51 ~ -^2

t h i s q u a n t i t y w i l l be o f importance i n any.theory of s u r f . , I t may be c a l l e d The value of

the c h a r a c t e r i s t i c jjnpedance o f the surf-zone ."7 "/^^ i s the d i s t a n c e from shore a t which the waves begin t o break.

The other purpose i s t o show t h a t our previous equations have been p h y s i -c a l l y in-complete, and t h a t one a d d i t i o n a l boundary -c o n d i t i o n i s needed. I f i t i s imposed a t some p o i n t o t h e r t h a n X-o o r X r oo , i t may take the g e n e r a l form o f Eq. ( 4 1 ) , or ( 4 4 ) , depending on the p h y s i c a l nature o f t h e problem, However, i t may also be imposed a t >: r. o : t h e n , i n most p h y s i c a l problems, i t takes the form

fcX—^ .-P = 49.

I n our present case, t h i s seems r a t h e r a r t i f i c i a l ( b u t so are the previous p o s s i b i l i t i e s ) ; i f ve accept i t , then we can r e s t r i c t our a t t e n t i o n t o the s o l u t i o n X and exclude h/ . The l a s t p o s s i b i l i t y i s t h a t the boundary con¬ d i t i o n be imposed a t g r e a t d i s t a n c e s , and i s

This says, e s s e n t i a l l y , t h a t t h e r e are no waves r u n n i n g away from shore a t g r e a t d i s t a n c e s . A l l o f the energy o f the incondng waves i s somehow absorbed i n the s u r f zone. Perhaps t h i s equation makes the b e s t sense; t l i i s i s c e r t a i n l y t r u e o f waves whose periods and amplitudes correspond t o o r d i n a r y s w e l l . However, i f we d e a l w i t h very long p e r i o d , low amplitude waves, such as t h e s u r f beat, the t i d e s or t h e seiches o f lakes and harbors, i t i s u n l i k e l y t h a t Eq. (50)

(53)

L e c t u r e , F a l l Semester, 1950-51 43

w i l l be reasonable, since these waves do not break. For such problems, t h e r e f o r e , one o f t h e other boundary c o n d i t i o n s would seem more reasonable. Be-cause o f i t s mathematical s i m p l i c i t y , we \dll choose Eq, (49) i n such cases; t h i s d e f i n i t e l y c o n s t i t u t e s an assumption, however.

(54)
(55)
(56)
(57)

Lecture, F a l l Semester, 1950-51 - 44

8. The_Sc?.utions near the Water's Edge ( c o n t i n u e d )

We 'return t o Huyghen's c o n s t r u c t i o n , b u t continue t o take h = s

Since k"^ - /< / b , i t f o l l o w s t h a t the s e p a r a t i o n between successive phase l i n e s w i l l be " ~

/ s = f a / k ^ $o

and w i l l thus increase w i t h d i s t a n c e from shore. I f t h e i n i t i a l , a r b i t r a r y . , phase l i n e i s not p a r a l l e l t o shore ( i . e . , t o t h e y - a x i s ) the successive phase l i n e s w i l l be more and more i n c l i n e d as they leave the shore.

This can be v e r i f i e d from the geometric wave equation:

K

As b e f o r e , l e t S - X[-^) -h Then

The s u b s t i t u t i o n s

enable one t o evaluate the i n t e g r a l , and o b t a i n

(58)

L e c t u r e , F a l l Semester, 1950-51 - 45

Since Eq, (52) i s e q u i v a l e n t t o

i t i s e a s i l y seen t h a t the phase l i n e s .5 - X -f- ^ ^ const, are

c y c l o i d s , generated by a c i r c l e o f radius R r o l l i n g on t h e l i n e jx!..- 2R. They t h e r e f o r e have cusps on the l i n e pc ~ 2R, and are tangent t o t h e y - a x i s a t

p o i n t s separated by t h e d i s t a n c e 2 77-R. I t can be shown t h a t t h e rays are s i m i l a r c y c l o i d s , generated by r o l l i n g the c i r c l e o f r a d i u s R on t h e y - a x i s . For convenience, the d i s t a n c e 2 T T R w i l l be c a l l e d the s p r i n g - l e n g t h o f t h e r a y s .

This i n d i c a t e s t h a t waves o r i g i n a t i n g i n shallow water may be r e f r a c t e d u n t i l they r u n p a r a l l e l t o shore, and then turned even more, so t h a t t h e y u l t i m a t e l y r e t u r n t o the beach a t a d i s t a n c e from t h e i r . . p o i n t o f o r i g i n . I f such waves do n o t break, they may repeat t h i s h i s t o r y i n d e f i n i t e l y , u n l e s s , because o f t h e topography (curved shore l i n e , e t c . ) they f i n d an open r o u t e t o sea. (Our present simple assumption t h a t h => s v. does not enable us t o deduce a l l d e t a i l s , and t h i s l a s t remark i s r e a l l y based on an example t h a t w i l l be considered l a t e r . )

The. amplitude f u n c t i o n A can be e a s i l y c a l c u l a t e d (see Eq. ( 2 9 ) ) :

The amplitude o f t h e waves i s p r o p o r t i o n a l t o

(59)

I ^ c t u r ? , F a l l Semester, 1950-51 ™ 46

<2JCI^ bu QJ.T-J

<Ai"t >

0

This expression becomes i n f i n i t e f o r O ö and T T , which values correspond t o X^^f^(i.rxd o . We s h a l l see t h a t these i n f i n i t i e s do not occur i n the more exact p h y s i c a l t h e o r y ; however, the above equation f o r po> can be made reasonably accurate f o r values o f Q not too near the s i n g u l a r p o i n t s , i f the constant phase angle c|:. i s given the r i g h t v a l u e .

Very l i t t l e - a t t e n t i o n has been g i v e n t h i s phenomenon u n t i l r e c e n t l y . Stokes and Lamb"^ considered i t s u f f i c i e n t l y t o bestow the name "edge waves" on i t . However, because t h e r e appeared t o be no o b s e r v a t i o n a l evidence f o r t h e i r e x i s t e n c e , l i t t l e more was done. Munk'^ r e c e n t l y has found t h a t v e r y l o n g p e r i o d (about 4 min.) waves o f low amplitude (about 10 cm.) occur near shore, and has shown t h a t they are generated by groups o f h i g h breakers which occur a t about such time i n t e r v a l s . L a t e r Isaacs^ adduced reasons f o r sup-posing t h a t the phase l i n e s o f t h i s " s u r f beat" are i n c l i n e d to t h e shore. The two data: g e n e r a t i o n near shore and i n c l i n e d phase l i n e s seem t o equate edge waves t o s u r f beat.

When the edge waves are ^examined from the p o i n t o f view o f t h e p h y s i c a l wave equation, the phenomenon .ppears somewhat d i f f e r e n t than d e s c r i b e d above. However, the p r i n c i p a l reason f o r t h i s i s t h a t r a y t h e o r y i s v a l i d o n l y when the d i f f r a c t i o n terras are n e g l i g i b l e . The appearance o f i n f i n i t i e s i n the acpproximate s o l u t i o n i s s u f f i c i e n t evidence t o show t h a t t h i s i s n o t the case

here.u However, we may s t i l l take i t as a working hypothesis t h a t edge waves and s u r f beat are i d e n t i c a l .

M» ™ —^ ^

^ Lamb, Hydrodynamics, p. 447 (N.Y. 1945). 2 W. H. Munk, Trans. A.G.U., 30, 849 (1949).

(60)

Lecture, F a l l Semester, 1950-51

- 47

The canonic form o f t h e p h y s i c a l wave equation becomes

The a s s m p t i o n t h a t t h e phase l i n e s a r e i n c l i n e d t o t h e shore takes the form

where b . (We have considered t h e case h =0 i n t h e l a s t s e c t i o n , ) This

reduces t h e p a r t i a l d i f f e r e n t i a l equation t o t h e o r d i n a r y one:

d X

By i n s p e c t i o n o f t h i s e q u a t i o n , we immediately see t h a t , when ^ 2 l < , and d'^C^/cZ/K ^have opposite s i g n s . I n t e r p r e t i n g t l i i s g r a p h i c a l l y , the graph o f must everywhere be concave toward t h e p::-ajd.s: i . e . , t h e f u n c t i o n Q o s c i l l a t e s f o r ^K* When x > Zfion t h e o t h e r hand,

and Q V have the same s i g n , so t h a t i t s graph i s convex t o v a r d t h e PC - a x i s . T y p i c a l f u n c t i o n s having t h i s p r o p e r t y are ^ > s i n h Xp cosh X . Consequently, we may expect t h a t , i n g e n e r a l , Q. w i l l become i n f i n i t e f o r l a r g e values o f 'x- ; o n l y i n s p e c i a l cases w i l l i t behave l i k e

K or I / x and approach zero. Now, since we are i n t e r e s t e d i n waves gen-erated near shore, we s h a l l c e r t a i n l y exclude those s o l u t i o n s f o r which

Qcc-o) ±;-^o ; t h i s gives us one boundary c o n d i t i o n ; t h e o t h e r i s g i v e n by the c o n d i t i o n t h a t t h e waves are so low t h a t t h e y do n o t break; t h i s gives us Q.ia) - f i n i t e .

We proceed t o study t h e p h y s i c a l wave e q u a t i o n i n order t o f i n d these s o l u t i o n s , and the c o n d i t i o n s f o r t h e i r e x i s t e n c e . The Eq, ( 1 3 ) , w i t h

(61)

L e c t u r e , F a l l Semester, 1950-51 - 48 I

becomes

55.

which i s r a t h e r more g e n e r a l than Eq. ( 3 3 * ) . This i s an awkward equation t o study because (Y\ x ^ t u r n s out t o be a t r i n o m i a l . The f u r t h e r s u b s t i t u t i o n

4

- by.

f ^

'J 56.

reduces Eq, (55) t o t h e seemingly more e l a b o r a t e equation (known as Laguerre' e q u a t i o n )

57.

b u t , since

i s a b i n o m i a l , Eq. (57) i s a c t u a l l y much more t r a c t a b l e than Eq. ( 5 5 ) . We e a s i l y o b t a i n t h e one s o l u t i o n

(62)

L e c t u r e , F a l l Semester, 1950-51 ^ 49

which i s a g e n e r a l i z a t i o n o f the B^.ssel f u n c t i o n , We a l s o see t h a t we a g a i n have t o do \rith an e x c e p t i o n a l case. However, since we are i n t e r e s t e d o n l y i n those s o l u t i o n s t h a t remain f i n i t e a t the water's edge, we need n o t t r o u b l e t o f i n d the analogue o f Neumann's f u n c t i o n . The s e r i e s o f Eq. (59) i w e l l s u i t e d t o determining the value o f -f- f o r small values o f -zb^x b'^t we w i s h t o f i n d i t s behavior f o r large values. To do t h i s , we note t h a t t h e

f i r s t few terms form an i n c r e a s i n g p r o g r e s s i o n when -2.\:iX. is l a r g e , b u t t h a t l a t e r terms d i m i n i s h , The l a r g e s t term i s t h a t f o r which t h e exponent o f x i s t h e i n t e g e r nearest , where

I f 2i:)y»0^ t h i s i s - 2 b v . Under these c o n d i t i o n s , we can approximate the most i m p o r t a n t terms i n the s e r i e s by s e t t i n g u --o: ' t h i s w i l l make an a p p r e c i a b l e e r r o r i n t h e e a r l y terras, b u t n o t i n t h e l a r g e s t , and r e s u l t s i n

2. b 11

- <2

A c t u a l l y , t h i s crude c a l c u l a t i o n has l e d us t o a q u i t e c o r r e c t r e s u l t : i n g e n e r a l X becomes i n f i n i t e f o r l a r g e , and increases so r a p i d l y t h a t

a l s o becomes i n f i n i t e l i k e e-y.p ( b X.)^

This shows t h a t , i n general, t h e r e i s no s o l u t i o n f o r < ^ t h a t remains : f i n i t e b o t h a t ?c - c and =00. But our argument i s s u b j e c t t o e x c e p t i o n : when oc i s a negative i n t e g e r ( s a y c c ^ - / ^ ) , the c o e f f i c i e n t o f iJ-h^l"^ i s zero when u> n. . The i n f i n i t e series reduces t o a p o l y n o m i a l — c a l l e d the Laguerre polynomial /L (zhy) • There are s e v e r a l n o t a t i o n s f o r these p o l y n o m i a l s : one i s IX

(63)

Lecture, F a l l Semester, 1950-51 " 50

As can be v e r i f i e d by t r i a l , or proven i n o t h e r ways,*

The f i r s t few o f these polynomials are

L^C/O ( , - L , ^ x ) . - X + I

T h e . g r a p h s ^ o f the f u n c t i o n s ^ ( F i g s . 4, 5, 6)

v e r i f y the conclusions we drew concerning t h e f u n c t i o n P: t h e c^^ o s c i l l a t e f o r small values o f -pc , b u t approach zero a s j T n p t o t i c a l l y f o r l a r g e x •

The f u n c t i o n .

* Courant and H i l b e r t , Methoden der mathem. Physik., p. 77 ( B e r l i n , 1924). ^ B r i e f t a b l e s o f ^ C^) are t o be found i n P h y s i c a l Review 45 853

(64)

L e c t u r e , F a l l Semester, 1950-51 - 51

represents s t a n d i n g waves. T h e i r amplitude vanishes on the "nodal l i n e s " determined by the r o o t s o f t h e f a c t o r s ^. ^ and s i n bcj. . Consequently, t h e r e are KX n o d a l l i n e s p a r a l l e l t o shore, v M l e those p e r p e n d i c u l a r t o shore have t h e spacing r r / b = - "Xo • . ' ••. •

The d i s t a n c e /^.^. may a l s o c o n v e n i e n t l y be c a l l e d the l o n g i t u d i n a l wave l e n g t h . One may a l s o have s o l u t i o n s of the form

These r e p r e s e n t r u n n i n g waves, o f l e n g t h A(. , propagated p a r a l l e l t o shore; t h e i r amplitude depends on -p , because o f t h e f a c t o r and vanishes on t h e ^ nodal l i n e s t h a t r u n p a r a l l e l t o shore. ^ '

I f we c o n s i d e r t h e e q u a t i o n o<^-i/t; i t may be w r i t t e n

or

ZTT R - (n^^ ^ ^ 60.

I n words, t h e s p r i n g - l e n g t h o f the rays i s an odd i n t e g r a l m u l t i p l e o f h a l f the l o n g i t u d i n a l wa-\'e-length.

The p e r i o d o f t h e waves i s whence

(65)

L e c t u r e , F a l l Semester, 1950-51 - 5 U

r

and thus depends on > and the i n t e g e r ^ 5 fo]r_every 'Xu^ t h e r e are many p o s s i b l e p e r i o d s , o f which the longest i s 1 . Conversely, f o r every p e r i o d , t h e r e are many p o s s i b l e , o f which the s m a l l e s t i s CjX>T^/^'^» 9'. The Seiches o f a C i r o u l a r Lake

The slow o s c i l l a t i o n s o f a lake or other closed body o f water a r e c a l l e d seiches, These motions are so clow t h a t no turbulence or breaking r e s u l t s . Consequently, we expect them t o be r e f l e c t e d from the shore and t h e r e f o r e t o be represented by those s o l u t i o n s o f the wave equation t h a t are everyv/here

f i n i t e ,

This i s n o t the o n l y analogj-- t o t h e edge waves; since the water deepens toward the center o f t h e l a k e , t h e rays w i l l be curved back toward t h e shore, r e s u l t i n g i n arches, perhaps o f v a r i a b l e s p r i n g l e n g t h , depending on the

topography. I f the l a k e i s c i r c u l a r and i t s bottom has no i r r e g u l a r i t i e s , t h e ray arches w i l l be u n i f o r m i n l e n g t h . Perhaps one can immediately foresee t h a t t h e i r v e r t i c e s must c o i n c i d e w i t h those o f a r e g u l a r polygon; a t any r a t e , t h i s i s one c o n c l u s i o n we s h a l l reach.

Lamb* has t r e a t e d the case

k ^ - n . ' A ^ J x ^ c , ^ 62.

which represents a l a k e o f r a d i u s "R i n a p a r a b o l o i d a l b a s i n f i l l e d t o t h e h e i g h t above i t s lowest p o i n t . Using p o l a r coordinates

t h e p h y s i c a l wave equation (Eq. ( 1 3 ) ) becomes

A 63,

The s i m p l e s t s o l u t i o n s o f t h i s equation have t h e forms

(66)

Lecture, F a l l Semester, 1950-51 - 52

i-"^> L „ T'"^^ r ^ ' ^ i

64.

since \>(-'^)<i>) =^ ^(^^ ^ i - , i t f o l l o w s t h a t >vucan have any o f the values 0, 1 , 2 b u t no o t h e r s .

The Eq, ( 6 4 ) shows t h a t t h e nodal l i n e s i n c l u d e t h e 2m r a d i i

cL = rr/nt , ^ ' r y ^ t , ^.TA< . e t c . , i n t h e case o f t h e f a c t o r 4 , or, i n the case o f cos , t h e 2m r a d i i o b t a i n e d from these by r o t a t i o n

through the angle rr/xm.

Ve might a l s o have s o l u t i o n s o f t h e form < ^ ( ' ^ ) s i n n. ( 4 - 4 . ) ^os ^^t, where 4^ i s an a r b i t r a r y constant; f o r these t h e 2m nodal r a d i i are again e q u a l l y spaced, and one i s f ^ ^ . A s l i g h t l y d i f f e r e n t type o f s o l u t i o n i s

63a.

This has no nodal r a d i i , b u t represents waves t h a t t r a v e l around t h e l a k e w i t h the angular v e l o c i t y ad/vyi . The waves t h e r e f o r e complete one r e v o l u t i o n i n

K>1, p e r i o d s .

A l l o f these s o l u t i o n s may have o t h e r n o d a l l i n e s : t h e c i r c l e s determined by t h e equation ^ r ^ O r ö , and we now proceed t o d e t e m i u e t h i s f u n c t i o n . I t

must s a t i s f y the 'equation

where /c,, , d e f i n e d by

(67)

L e c t u r e , F a l l Semester, 1950-51 - 53

i s t h e wave number c a l c u l a t e d f o r the deepest p o i n t o f the l a k e . As always, we f i r s t c a l c u l a t e

— r

This.can be somewhat s i m p l i f i e d : on d e f i n i n g ƒ> by t h e equation

k"/ R ^ I ^ .((° ^-OCj^-^wv 67.

. i t becomes

T h u s , - l e t t i n g •

(68)

L e c t u r e , F a l l Semester, 1950-51

where

i s t h e hypergeometric s e r i e s , which w i l l be encountered again l a t e r and then s t u d i e d i n more d e t a i l .

I t might seem t h a t we c o u l d get another s o l u t i o n o f t h e form

CP c? A

-h

e , A.

)

and t h i s would be t r u e i f yVKj were n o t an i n t e g e r . Being an i n t e g e r , we should be l e d t o conclude t h a t c^^ - C, T ... C ^ . ( ^ 6 , and end w i t h the same s o l u t i o n as g i v e n by Eq. ( 6 8 ) . The Eq. (65) i s thus again an excep-t i o n a l case; b u excep-t , excep-t h e second s o l u excep-t i o n would become i n f i n i excep-t e a excep-t 3 o i . e , , i n t h e c e n t e r o f t h e l a k e . Since we have a l r e a d y concluded t h a t such a s o l u -t i o n i s no-t o f i n -t e r e s -t we a r e spared -the -t r o u b l e o f f i n d i n g i -t .

We must, however, consider the behavior o f t h e s o l u t i o n a t t h e water's edge, a = , The experience o f the previous s e c t i o n leads us t o expect d i f f i c u l t i e s a t t h a t p o i n t , And d i f f i c u l t i e s immediately appear, f o r t h e s e r i e s o f Eq. ( 6 8 ) , i n g e n e r a l , diverges when /\? / il"- >y I . There i s thus no easy way t o c a l c u l a t e c f o r /i, ^ > b u t t h e r e i s t h e j u s t i f i e d sus-p i c i o n t h a t i t w i l l become i n f i n i t e t h e r e .

However, t h e r e are a g a i n s p e c i a l cases i n which t h e s e r i e s \-(<^,^^, ^ i s n o t i n f i n i t e b u t represents a f i n i t e p o l y n o m i a l . These polyno9iial cases occur whenever e i t h e r o>- o r b i s a n e g a t i v e i n t e g e r , say — • Then t h e hypergeometric f u n c t i o n becomes a polynomial degree /a i n . I n these

cases, c e r t a i n l y remains f i n i t e f o r | .

V/e consequently conclude t h a t t h e o n l y s o l u t i o n s t h a t remain f i n i t e every-where are obtained when

2

- ^

in.

n

r

o , I

(69)

L e c t u r e , F a l l Semester, 1950-51 - 55

' - (Zh-t Zm-h l)iZh + O-I

- i^l •>r /»+/)+ 2 m. 69. I n these cases'**-70.

%, = ^^^^ - U IR)""ri-n, n+i^^l,jr,^ I, /

We consider a few o f these s o l u t i o n s ! l e t m ^ n ^ <^) " Thus t h i s s o l u t i o n i s a s t a t i c one, and represents t h e case o f a permanent

change i n l e v e l o f t h e l a k e . I f />i ^ n = I , = 8 ^ //^"^ and ^1-2 /„"^//C^ • Consequently, i n t h i s case t h e r e are no nodal

r a d i i , b u t a nodal c i r c l e a t = / ^ / / ^ . I f = /? r Z, u>^ ^ =

and t h e r e are two nodal c i r c l e s a t ^ - i I ± I / - / s ) ^7 ^ . I n g e n e r a l , the , f^) modes have n nodal c i r c l e s , and the normal

f r e q u e n c i e s increase w i t h b o t h ^ and h , although not l i n e a r l y .

This i s s c a r c e l y an exhaustive treatment o f seiches, b u t w i l l serve t o i n d i c a t e t h e i r r e l a t i o n t o edge waves, and t o suggest the s o l u t i o n o f o t h e r problems.

(70)

Lecture, F a l l Semester, 1950-51 55A

10. Oeneral Survey o f the i n f l u e n c e o f Topography on Surface Waves.

Several examples o f s u r f a c e waves on water o f v a r i a b l e depth have now been s t u d i e d . The v a r i e t y o f s o l u t i o n s o f t h e equations i s apparent, and i t becomes d e s i r a b l e t o o b t a i n some i n s i g h t i n t o t h e c o n d i t i o n s under which each phenomenon occurs. This i s best accomplished by a device t h a t makes use of the analogy bet^^een the rays and the m o t i o n o f a p a r t i c l e . I t w i l l

f i r s t be described, and then a p r o o f o f the analogy w i l l be presented. The wave number, , i s a f u n c t i o n o f t h e water depth; i n the cases we are s t u d y i n g

Consequently, the contours, o f a constant depth on a c h a r t o f the sea f l o o r are also the contours o f constant K . We can a l s o c o n s t r u c t a r e l i e f map o f — or imagine i t t o have been c o n s t r u c t e d — so t h a t the equation of i t s surface i s ( t o some s c a l e )

71.

This may be c a l l e d the r e c i p r o c a l r e l i e f map o f the bottom. The plane = O w i l l be c a l l e d t h e datum plane o f the map; a l l o f i t s p o i n t s are below the datura plane. A submarine mcmd or r i d g e w i l l appear as a depression on the r e c i p r o c a l r e l i e f , and a submarine canyon w i l l appear as a r i d g e . The water's edge i s a steep c l i f f t h a t drops o f f t o an i n f i n i t e distance beneath the datimi plane.

I f a b a l l i s allowed t o r o l l w i t h o u t f r i c t i o n on the r e c i p r o c a l r e l i e f map, i t w i l l t r a c e out one o f the p o s s i b l e r a y s , p r o v i d e d t h a t i t has a c e r t a i n

(71)

L e c t u r e , F a l l Semester, 1950-51 - 56,

t o t a l energy. This energy can be imparted t o i t by s t a r t i n g i t from r e s t a t t h e datum l e v e l and a l l o w i n g i t t o r o l l down a chute u n t i l i t reaches t h e surface o f the map.

The p r o o f o f t h i s i s simple: the d i f f e r e n t i a l equations o f the rays are g i v e n on p. 23; t h e parameter T was n o t s p e c i f i c a l l y determined. I f i t i s determined so t h a t

The equations on p. 23 reduce t o

73.

The Eq. (73) are t h e equations of motion o f a sphere r o l l i n g on the surface , w h i l e Eq. (72) s p e c i f i e s t h a t t h e t o t a l energy i s zero, when measured from t h e datum l e v e l .

I t should be noted, however, t h a t t h e t i m e r e q u i r e d f o r t h e sphere t o t r a c e o u t a g i v e n segment o f the r a y i s not equal t o t h e time r e q u i r e d f o r the wave-front t o t r a v e l t h e same d i s t a n c e . I n f a c t , t h e sphere's v e l o c i t y , L L w i l l be i n v e r s e l y p r o p o r t i o n a l t o the wave v e l o c i t y , c •* o j / k .

Since i t i s easy t o v i s u a l i z e t h e r e c i p r o c a l topography, and t h e r o l l i n g o f a sphere, t h i s analogy a f f o r d s an easy and r a p i d method o f a n a l y s i n g wave problems,

Cytaty

Powiązane dokumenty

In-depth interviews with water managers and spatial planners provided insight in changes in demand for urban surface water before 2040 in Amsterdam and Toronto. The results reveal

THE INPLUE!TOE OP WATER DTH ON THE HEAVING AND PITCHING- MOTIONS OP A SHIP MOVING IN LONGITUDINAL REGULAR HEAD WAVES.

The heaving and pitching motions and the midship bending moments of a T-2 Tanker model moving in longitudinal regular head waves of shaflow water are calculated by Watanabe's..

A train of surface waves is normally incident upon a cylinder that is totally submerged in a body of deep water.. Details are given for the cases of circular or elliptic cross

1 shows horizontal (x-y) trajectories of tracer particles at the fluid surface filmed for over 30 periods of the Faraday waves on the surface of water with added non-ionic

The dynamics of the hydrofoil craft supported by surface piercing fore foil and fully sub- merged aft foil in longitudinal waves have been clarified and the control of the craft

In the present chapter, this boundary condition is extended to 3D and the free-surface iteration method is applied to a test case involving stationary gravity waves induced by

The 23&#34;* Intemational Workshop on Water Waves and Floating Bodies was jointly sponsored by OfBce o f Naval Research, Seoul National University, LRET-funded Research