• Nie Znaleziono Wyników

Model tests on impulsive water pressure acting on the hull surface of an ore-carrier in two directional waves

N/A
N/A
Protected

Academic year: 2021

Share "Model tests on impulsive water pressure acting on the hull surface of an ore-carrier in two directional waves"

Copied!
15
0
0

Pełen tekst

(1)

ARCHIEF

Lab.

v Scheepsbouwkunde

Technische Hogeschool

?lodel, Tests on Impulsive Water Pressures Acting

on the Hull Surfacé of an Ore-carrier in Two

i1#e

Directional Waves*

by Kazuo Sugai,

Kunio Goda,

Hiromitsu Kitagawa, Yukio Takei,

Nakoto Kan,

Takeshi Niyamoto,

Shigeo Obmatsu,

Michio Okamoto.

Abstract

This paper describes the résults of a model test on the

impulsive water pressures acting on the hull surface of a

gigantic ore-carrier in waves,

In order to produce the

impulsive water pressures on the free running model,

especial-ly on the ship side, short crested waves from two directions

were generated as the wave environment of the experiment in

the square tank, Ship Research Institute, in which the second

wave maker of plunger type has been installed at right angle

to the first one recéntly.

As water impact is such a quick phenomenon,

a new

measur-ing system includmeasur-ing a special pressure transducer and

record-ing apparatus was prepared.

The system worked well to catch

the impulsive water pressures even in detail o± the peak

precisely.

What parameters affect occurrence of impulsive water

pressures was discussed first.

From analysis of the test

results, it was made clear that effect of the ship speed and

the wave steepness is predominent on the phenomenon, while

that of the wave direction and the ship motions is

comparative-ly dull.

Next, on what part of the hull surface the impulsive

water pressures will appear was investigated.

From the

experimental results, it was concluded that the frequency

of the occurrence and the peak value of the preésure increase

abruptly as the measuriag position moves from the parallel

body to the bow of the ship.

Further experiments in irregular waves from two directions

are going on in the square tank for analyzing the frequency

distribution of the impulsive water pressures statistically.

* Summarized from the

paper (in Japanese) published in

Journal of the Society of Naval Architects of Japan,

Vol. 135, 1974.

(2)

1-15

2

1*

<

*E1E

t/o/./J

ci?7)

by Kazuo Sugai, Member Hiromitsu Kitagawa, Member Makoto Kan, Member Shigeo Ohmatsu, Member

.1U ]Eß.

lEg

11

ill

&

)

IEL

:i'r

1E

*

*

lEg

'

IE 4

*

Model Tests on Impulsive Water Pressures Acting on the Hull Surface of an Ore-carrier in Two Directional Waves

Kunio Goda, Member Yukio Takel, Member

Takeshi Miyàmoto, Member Michio Okamoto, Member

153

Summary

This paper describes the results of a model test on the impulsive water pressures acting on the hull surface of a gigantic ore-carrier in waves. In order to generate impulsive water pressures on the free running model, especially on the ship side, the regular waves from two directions

were adopted as the wave environment of the experiment.

From analysis of the test results, it is discussed what parameters affect occurrence of impulsive

water pressures and on what part of the null surface impulsive water pressures will appear. A new measuring system including a special pressure transthicer and recording apparatus was

prepared. The system worked well to catch impulsive water pressures even in detail of the peak precisely. 1 W < b71 .

ftP

tZ'b'*JE i:

IL

*.Q)i

WCh0

lLtlt,

.

U 11tj:%

rc7"0

t,

st23L.

i,

è

.

jt/'35)o et.:. A7tf

4t1

Ç

tht'0 LLtJb.

kQ)3JU

jI

L'

:cY

4I1Q)

rnQ)

li L±.

LO1i

è tr., s1»ì

iLEM

D Lè1bØ

(3)

154 1354 . ) Uii

4

Ltt.

<

:UT-:,bI, j

:

-L < t

Lrt

<

L%44I

Ç) 5

5i:

). 2 i:: ¿:

7re ,

i

Ui

¿

. L? i-

ttì4I2

-rj <.

2

4:-GJ-y,

¿-rt. 4h.

2 ÏJ!Ui.

U±, 2

i1flZL-c4,

t4fSj

¡: i)

j-,

j&Aj Lt»/VtD

LfS

L1-c

J . 1Yf13

t-t

-tt<,

1fIL

fi: t.

t 4.

tI:< 'h

J4-C70

<. * L

i4rEo,

-

Q)

ï

it P

EtC

o

tlljM

¿:. fUjt; Lf. , 7

rJí-t.

tEE

A[5l_.

¿ ¿:-,

-

:

,'

3. L:rt

< E

r

t'o *äJt

24

2.1

flLt ± < II ì'WJl

ciL-)

4. 5mfl

lcj: n '- Table j

j-0

i: t.t:.

: &ici1j

J;:[JL-ct.c,

< t.

,.

2.2

t,

Q)J

:,

t<

2

:Lr (.LZ, tZJ)

(4)

t

*

J

ti:.

7

i.Lt.:0

,f,

1m

L

iÜJ . O

-t7

Cl70

.

i:F7

,-c0

kQ)

6)

*tt.:s0

Fig.1

tj0

Ims

'itL

l±5Li

0M NOAIL ! 0M LAID t:C SPICcK RELAY 05ClLLOGRAF. CA_IA LANCI 5&i NN.ULA,'7CM.I

Fig. 1 Measuring System for Impact Pressure

4) 5) 6) 7) 8) 9) 4. 2

±n3

1Iii,

F. P. 0.

*E (6

.DfJ)

iÙ4cE (16 (S.S. 8V2. 9V2 9s/4

tPI.

.

16mm '*i

4ZE .t V 2

025L :ri'j-7,)

l4l-).

tt'CI. 4

Lt.:0¿

±Ii4c1

ÇO) ¿ J 155

Table 1 Principal Particulars

Items Ship Model

Length betw. P.P (L,,) 247.000m 4. 5000m

Breadth Mid. (B) 40.600m 0. 7397m

Depth Mid. (D) 23.000m 0. 4190m

Draft Mid.

(d)

16.000m 0. 2915m

Displacement (W) 135.950 ton 0. 8013 ton

Block Coefficient (C5) 0.8243 0.8243

C.G. from Midship

(G)

fore 7.301m fore 0. 1330m

C. G. from Keel (KG) 12.280m 0.239m

Metacentric Radius (GM) 4.130m 0.069m

Longi. Gyradius (JCL) 0.2362 L,, 0. 238L,,

Trans. Gyradius (Ks) 0. 2300B 0. 360B

Rolling Period (TR) 11.04 sec 2.01 sec

PRESSURE TRAtSICER

CINTOLA

I

T1W)) 11100Cl

BRWOE BOX ATtLIFIER

1

,oa

¿GAUGESTIPS

POI PG1LLJNI TRILLI.CINL (IUTo

NE NINAILO M.LGE

\p*.sII, Ir". W.NI2 1CM.

'1'

RI0 cITROL

(5)

Item Sensitivity Linearity Natural Frequency Zero Shift Thermal Shock

Fig. 2 Details of Impact Pressure Gauge

155

135-Table 2 Characteristics of Pressure Gauge Type: TOYODA THP-3 Range : 0-0. 3 kg/cm2

Resistance : 2k (Standard) Primary driving voltage : 5.0V DC

Catalogue Test 45 mV/F. S. (Standrad) 0.5%/F. S. 40kHz no description no description 42 mV/F. S. 50 mV/F. S. max. 0.8%/F. S. not tested

initial stage 10. 3g/cm2/10 min

run stage no shift initial stage ; 4 gfc&/6°C

run stage no shock

No. Zan lOcaUo4Co.s3

I 11.2 21.01 2 tß 9t upp.I 3 5.3 9 IcwU i. o.a 9» upper 5 ¿.2 9» 10w« 6 9.1 a»upp« 7 ¿.2 IÓw,r 8 ¿.0 5

Fig. 3 Locations of Impact Pressure Gauges

l:E;12L iL

LtIt. fim3ktt THP-3

tl4,rcQyC0 n;tlt.

t.

dt*z 1Jj Fig.2

Jiie

LEItJ

OE1-0.2mm C)'9

IC (j4y)

1OJ.

Çj-0

tt0

¿

hC0

t'

VC'.0

Il.tlt.

êt71t:j3,

<sDUQ)'i)

't4cEJf

*l

* ?, <. A.,

it7oc.

<iM'0 .Ç)

Table 2

Lt0

Fig.

Ef*3

Z445

tC

t)

thIo 6

t17.'1P71ILt.0

k+-J .. ¿

L-7V1 (NP 151

fie') WM-812

) ,

¡jj

AD 2kW 0) Ic l)

2s

t

PfP79fJI]Lt0

*'P7tf

iL-

7'1Q)

I'

.:

G-1000

.Lt-0

97'1I:t.

)')

- L

0)ft,j

t) t) ¿ ¿le

(6)

2*Z-

157

L

t L.1 L U 7

tj

±rq-

o

t't2iElt.

¿e: ! 2.3

t. Røii

(1)

t.bht

¿ <4

2

Aht50 IiiÌt. 21

tt

- 4 1Q)ÇYC,

2I <

L-J

1r.L?Q

L.'ti2

¿l 1.-t0

Lt11.

275I21L

-)itE

Lt.0

Ç)

gj

L/40=6.175m

.Ç)33lt.

L LJ20

L/20=12. 35m èt7 t

2 .

t

t-CIt

-eit, *

fqt7J5j, -j-tj

ir.t 1

Lt

Table 3 Experimental Conditions Cross

Ang.

Swell (No. i

Wave Maker)Wave MakerSea (No.2 Heading Angle of Ship to MovingDirection of Swell

Remarks

AIL

¡ii,

AIL Hw 90' 112.5' 120' X, 157.5' 165' 180' 202.50

1.50

L/40 1.50

L/40 135' Q ®Vo=1O.44 1.50

L/40 1.25

L/40 137.40 K,1 V0=14.80 1.50

L/40 1.00

L/40 140.8 Q Q Q Q Q V0=20.77 1.50 L/40 0.75 L/40 144.7' Q

0

0

0

in stillwater 1.50

L/40 0.50

L/40 150°

0

0

0

0

1.50 L/40 0.30 L/40 155.9

0

QV0=14.80 K1 1.25 L/40 1.25 L/40 135' Q Q Q Q Q in still 1.25 L/40 1.00 L/40 138.

Q

Q Q water 1.25 L/40 0.75 L/40 142.3 Q Q Q Q

Q ®V0=14.80

1.25 L/40 0.50 L/40 147. Q Q @

°

®

®

®

K1 V0=17.75 1.25 L/40 0.50 L/30 147.7°

0

0

0

0

V0=20. 73 90'

1.25 L/40 0.50 LIGO 147.7°

o

o

o

in stillwater

1.25 L/40 0.30

L/40 153.9' 0

0

0

0

0

0

1.00 L/40 1.00 L/40 135° Q

0

0

0

0

22. 59K1 1.00 L/40 0.75 LilO 139.1

0

0

Q

0

0

in still 1.00 L/40 0.50 L/40 144.7°

0

Q

0

0

0

0

0

water 1.00 LJ40 0.30 LIlO 151.3 Q Q Q O Q 0.75 L/40 0.75 L/40 1350

0

0

0

0

0

0.75 L/40 0. 50 L/40 140.8 Q

0

0

0

0

0

0.75 L/40 0.30 L/40 147.7 Q Q Q O 0.50 L/40 0.50 L/40 135' Q

0

0

0

0

0.50 L/40 0.30 L/40 142.3

0

0

0

0

(7)

Pt". w:;rM:R (ELP)

= = = = = =

= = =

_'l

SWCU Crest l.ne

uI a I' u sweU MODEL BASIN S'CS CxAt

Fig. 4 Definitions and Notations

JJE-'L't,

&

ttt,

"'.

°)br-Table 3 ,

ft1j,

Fig.4

a-ct0

3 Notations

Asw wc.e Ienth of Swell

wcve ler?th cl Secs

Cx phcse velocity of swell

Cy phor.e velocity of secs

Hw %Cve height

pot tern ongle te cvcr.c.rç direction Of Swell

Op cvcncing direction of t

cr

ecvec o thct of swell X ha.rç orte Of sup to swell

Xp l.eng crleof Ship to slt wfn

the thipis in bow CCrditi to the cornosed waves

Vt svp speed in Stil; wctei

Vw ship speeØ (rl wOres

Ni total number Of impact peesur. n number of freç'ercy in histogram

3-1

*fføp1

t.

¿t:.

'±-g-t'l:L1:--0

fUJU-i-0 :3[:

:hl

t').

Fig.5--t. IiQ):

LC0

I2YJjj

-!b1t.

--2-<tI

C«iZ

-tr'o

k-,t°)

rsi-j-Fig. 6rsi-j-Fig. 9 ,

Fig. 5 Categories of llydrodynarnic Pressures

l:j±,

t)

srks Categorp Examples at PressureS Ship Motn R,cd w OscilloapPi

aufs, w.QrrTiC. aia dIClgç p'sssze. Q O itrpecl esIiesa.a,i .w tr.-.eri,v. lirçct, U.fl.flapea, ,w 11159, cmØ.isg, w p.ii..tj. 1ies,i w.v,. Qmwri taris, ir. a is si... awqiazn erta,.'.. aina,y oaa.uai.ig

-1..a s,.lax lita

tO C E bo(

.J..J".,...cL.pr.J'LflLJ\(J\J'L

10f .J\..J't.1-a..ç..J\J\p,J\J\J\p

158

B*:

135

(8)

r,,

'

b:. 1(4) ,

Fig. 6

Illustrative Diagrams Showing Occurrence of Impact for Various \'ave Conditions

Fig.

T

Illustrative D agrams Sho'ing Occurrence of Impact for Various Ship Speeds

b. 4)111 flIp?

Fig. 8 lllustratiye Diagrams Showing Occurrence of Impact

for Various Wave heights

ShIoS,r,d.IL.eIu. n'il noIr

Fig. 9

Illustrative Diagrams Showing Occurrence of Impact for Various Heading Angles (n w

sr

0.30 0.50 0.75 .0O 0.50 rR4)e,ea r,,oe,. 075

r'0

v'

4i-i'

°4)SiS LOO rJ'ee,Ia rpas7pc ,p,e,ea ,,e,ea 2. ±E FP4)CI ?P97PI

III7fIU

be?ea 1.50 z->--L_ -_±L_ I v 'E' -o_-a. rrse,ev F.9a?e

,Ie,sa

cieca Swell Sia Heading Height at Sea Waves: Hw '4O CD, e e ea çpg e , e b

5

S.l (.1 pive e , e a p.g e e e a re e e e a ISO'

'

r.p,e,e, rPIeea rp.eaeea 202.5 C.0 PP9 i i e a IP.) $ C SE F.? I 7 Swell Hw.l Sea !4r.V11 H,odng Shp Spnod w sil: wolir 14.COKn 17.75K,, 20.73$,,

t

'.

z.

jn

1.25 0.50 2p Ç re,e,SE FP.'I7ea CDseve r ¶(5 IdI

;_

-r..---o-e -r..---o-e .!._!... .D) I 7 i I Ç.D9 e e a r

_E'

IP) I i i a r.pe e 7 CI ,..9 e e e a

i:I1::

202.5 rp.)e7eI CP.967$a PP.11,11 Swell Hw.1445 SPG X lI.4)b..p blÇIO . o.I iSO. 202.5 90' Zp e1lp

çIn.5SI

rp,,,ea

epici ea trueca 1.25 0.30

I!

lc

receda

IP tPCl7SI 'P9SCSE

(9)

4. ,ßo

n*j

135-bLe -r

Fig.6 -r0

ffit2)It±

zo

2 -Ç) ¿: t L/40 1..,,

' L.

Iz?jrt 14. 8

-

.c

-F.rz.t 5:Lt:0 J;&F.

Jto

2

ì<.

L-tJPjXI X,-180° Q)PtL7o

.

Lut 1.'o

*, .t i,

¿ ( .

t

.

L1i- < .

7 ÀSE=O. 3

ib' (

¿.

O

t-t.7o

t:t.:5,

5zt7

1tZ0

t3L'C.

gL-C

'o < ?

è.

fl(4:

&-t

tC.' 7

< ? ;.

ÌA'i <t

°) .3 .t 2

*It*o

:r

th4Jb è

htr'0

.,'rit.

tL

EE3.°)

. tc 0)

L

LC %.'to L?i Lt

ÙLè- 9

. 9

bíi

Fig.V

LO

7èWi!

itZitLhu L ¿ <i

7 /7 -

è

'

o t- L

<

t&?tc < to

Fg.8

*9I4?

3WJLit0

L

9

9.

<l:

7Í° . IiIt

*0)ii' < ?

L L

*1ÌLÌZ1 9

Fig.9

iU-kt°)

2

L"Ct. 2

0)1t

è Lo )L'.

t7

è

L''Ji è

Pr < t.c

Q)b1J.

ILC

L L

Fi! L''9 Ut-c

4 sQ)2. R

è

è ° tf

t

è *..

oM:t.

ti.

7e

i: è

90)

EJt

*

Lt t 0).

j

V.1L7M Vw 11.3 Mn Yw. 6.9 Mn

Sw,It '.IL.I.25 I4w.uo Locatàon

Seo Hw.uo S.S.9}Law.

1 1p.147.7

Fig. 10 Change of Oscillograph

Record Pattern due to

(10)

9'I

3.65 L. .i aDS LOCATION Stein SCALE LOCATION X

2 12'1"- <

Eii

161

(a)

Fig.12 Typical Impact Pressure Recorded by Digital Memory

0.05s.C.

Stem 142.3°

Pp-p °24.9I}tm2

0.ô05s.c.

WAVE Swell A/L!25 HwOL/40

Seo 0.30 L/40

Pp-p 22.5 gitm2

WAVE Swell XI

Sea

Fig. 13 Typical Impact Presstre Recorded by Digital Memory and Osdilograph

X 153.9° V 14.8 Kn in still water

Vw IOÁ.kfl in wave

(a)

(b)

Fig. 11 Typical Impact Pressure Recorded by Digital Memory

-SCALE 0icIn OJO51C. LOCATION S.S.9l/2 UP. X 180.00

(a)

Pppo8.5 g/cm2 WAVE Swell X/L° 1.25 H L/40 Sea Ct30 L140 vo 14.8 Kn in still water Vw 10.9 Kn In wave

(b)

L°0.50 0.00Suc. Hw° L/40 0.30 L140 Vo Vw

148 Krs its still water

iO.Okn in wave

(11)

e.

162

H*j i35

t.bt.

< . Ç)b:

<

Fig. lo

5j---.: IZL' L±If?.0 ),

) Lt.

ji:

Hj:,t.0

i:,

-:.

5-t

L1:,-C.

Ç)

(W)

Lti:j0 t,

2iI'j

'.,t

-t0

i

tr L1:i

-Ltl:,3

fll L

1.-,C<70

3.2

*Ei

-'r7

.'1: .t 7

t

L

tJj.

Fig. 11

J Fig. 12 t:, 2.2

,.

t

i!

10 6jLt

7ic

(a)

fWfk

io tt)(b)

i:jf0

tt

.

t'Lt:

thb

2

lmst

'5f

< lOins

<lIs.,

2O0psI:

1t.:()

rt-j-. Fig. 11(b)

J

7

i

3. 67g/cm2 jJg

1 ms fJ Table 4

i:j--0

Table 4 Rise Time Rates and Peak Values of Impact Pressures under Various Conditions Vorri4.8K,

HwL/40

Conditions

AIL X Location

Swell Sea (deg.)

1.02 2.25 4.05

I 11.80

Rise 'iiRate to

Peak Value (Max.)

0.76 1. 75 3.02 8.75 9.0 19.2 22. 5 24.9 Peak Value 4.9 10.5 12.1 13.7 0.75 0.75 135 Stem 0.50 0.30 142.3 SS9'/2Up. 0.50 0.30 142.3 Stem 1.25 0.30 153.9 Stem

Model Ship Model Ship

(12)

2C I.. '2 Sw. *25 H*.LØ S. kt03Q MLf X SnQSP..2 u.e in .n $1.1 .Zi. Tc.ct Cnnt NOI.. 277 8;Ij8 ¡mpOclNO_

Fig. 14 Histograms oi Peak Values of Ship Motions and of Impact Pressures on Various Locations

163

1J.h. í& izo,

,t

tc )

lJ2; Lr1I

?I.).)-V. --:-c

4±ij.

trL..7.

)t

t.:.

tL(

1tJ

tb) r

o L*: tpo)pjt-c.

)

flIJ},-c

Lt

-b700

*-eit,

3Ft Lt'*s

44o

Fig.13(a)

o)

LCI'o

(t t

¿*

Fig. 11 50Hz G 1000 JiL

2t'Pf7

°)tM-cf.<

3.3 .t

)*L

2 3: c 2 * n000 o S. 8'/ up. t. 3' 20 IO 20 n 12

II

t.

rct

p M0t, 'C S1 .It.O.5O Hw.LJC3

S.o £ot.0.30 H-.IJCO

X Xp 1142.3) O..n2 Stt.p0çn.o *4.6 On

mold! *01st

*2 COli! £*ooni NOI..

Nj T*ti *mCImj No*.

e0

22 0

Fig. 15 Histograms of Peak Values of Ship Motions and of Impact Pressures on Various Locations

(13)

s

64

n*2

135

:r,tCZ. ILfÇII

1tI.

¡jC

t'JJL

JIV , i tM1ií

(i:,

:. <

fjt

5LtM

2.

14

Fig.15l.

hh2

f jUsjt

2ar:-.'z.

ÇCjf'

VE+:

jI

Ltt70

flJJ1'il%I LtiU'P'.

O 816 243240 56 m2 <

Swill )4t.1.25 HwLUO

SiS iLO.3 ItsLJ40 ¿

30m 4ç Sn 14.0 bInin sGU water

Fig. 16 Histograms of Peak Values of Impact Pre- 4

t L.

RU'1

ssures for two different Number of Sample

iitthlf.

53. 9/3 UP. ¿1 «O 8 164 37 w2 TS.9i' U?.E9 Swell ?JLl.25 11w Lt.0 TotalEnco.nl 277 I. (1:lI Enconl 11,0. 33) r loo l.a, I,.,Scl Iflflr.,ort t'no... Pr,sui.

Fig. 17 Histograms of Peak Values of Pressures Fig. 18 histograms of Peak Values of Pressures on Three Locations at S.S. 91/, on Three Locations at S.S.91/,

n 1c1l L-cnl lOO NOS. 358 s.s.s½ çc':.

In1

83 nOn I 50 I- P,ns. o e ta 24 32 .cn'2 20' Total nl beat L3_ 27F

-.Ri1íl

Lt,0

Lt,J

La)i4:.

10

¿E-"

f-it.

-i3

O a G 24 32 .0 4$6 $,tmZ 2 il

Lt

Swill ?.1L0 hLI43 biO 4L=5.33 h.Li43 ( < i ç X. 142.

14.ev.n.n SeUl wo!«

g,

fif

TotalEflOrt Totallnpt

¡i

20' to Td St...i

L'C'0

<t-,-ct.

m°.

lt C

20 SS 91/3 UNrCR h1. I (1olEro.nit11S..C) 10

(14)

2 111;J

Ç)f&J <

jcE-,Ç'

165

:fj.Z)

. .) ;

t1 °t3th.. *e

Mt(

1(

t.t5. Fig.16 c

. 5i

< jUC--v19

nc--,t

41 C b

,.

2 7.ßGn

Fig. 17 Fig. 18

. rc2-

f)

na) 27J#Jt2I.'C,

il

S.S. 9V5

ttI±'t.

J4LE

1!

ìt

Í.Ji1LEQ)

[ffl

JF,CZ<tQY

b i6:-o

tL4.

L/20 9)t2)3l rtt, 'J±

;(l 2.25m

¿_

tÇ)

Ji

) ±JY7 '7tj.

") ¿ t 0

C<t). ¿ <-ii' Fig.18

e io 2 bt)C <. < u z . &'

l:: '

i:jc0

Z'<

t

bt

io ti

< ftEi t

it? <.

t5flJ

¿i4Ctt.0 t.,

Fj4cLEDj:,

ì b i 2.. 32 Wcn

fflf7 ¿t. h°)7

H*.LI0

Fig. 19 t,

iißI

1V'<)EO. *

u..ci° LC

44-1

OO

:b,0

Fig. 19 Histograms of Peak

4 Values of Pressures for

Various Ship Speeds fivM 2

D4L

O) ¿

(1) 2J!,

F

rii-r

(2)

4'DI

l

L JÇ?

<?

¿,

<

o LL.

¡:jct,

i'J's0

19)<?.7j

t!*t

fi-22jl:fr L

<

t70 LL

* L

t?sØ

< [Jj

45ê'1. LUI'o

(3)

t. 9f,

lij/

: :jj Lt.0

()

.

LML4!,

¿ t 'i

t

¿

1AIZt

Lt.0

jJ9jf1 j

j t1'D ±Q)t Q)

7,I).

f(I1

f'T1±±'i1

.

) t.

*

LRJ1iX

tO)

.t

Ltt-c.

t 2Ì5j!WiO) I

(15)

166 1354

tfl3l

Lh0

132 (1972). 1) 2) 3) 4) 5) 6) 7) 8) 9)

Ì: LC :J <

L'43±l0

Lt1t!:

Lt:I'0

1'C 3.

Lttj t*L-ìht

ßk*1t

UII:

Q) l33-3 (1973).

G. R. G. Lewison On the Reduction of Slamming Pressures, Vol. 112, No.3, (July 1970).

JiI± :

-,

t:.

. E

è.ftte

Quarterly Transaction of R. 1. N. A. (1969).

*131 (1972).

(1973).

22ZfiZ

f** No. 176.

(1973). ,

'jsJIIÇ:Q)f*J,

526-v (1973).

tJIL

Q)t'1.

22

I*ffll:

çQ),

(1973). 131

XYL *f1F:

LE .3

Cytaty

Powiązane dokumenty

In the GOCE case the algorithm results in two separate cross-wind data sets, one derived from linear accelerations (force-derived), the other from angular

Językoznawcy wyrażają się na temat pisowni słowa „internet” w sposób niejednoznaczny, na przykład Mi­ rosław Bańko, początkowo przekonany o konieczności

[r]

Niedojrzałe postawy wobec rodzicielstwa częściej wiążą się z takimi właściwościami indywidualnymi młodych dorosłych, jak niski poziom oceny wartości religijnych

Przedstawienie funkcji kulturowej muzyki sakralnej w perspektywie integralnego rozwoju osoby implikuje przyjęcie faktu iż można ja uznać za „transmitera” wartości

LA_SurveyPurposeType: the LA_ SurveyPurposeType code list includes all the various survey purpose types, such as: land consolidation, control measurements or division of a

In this study, referring to the Italian situation, energy retrofitting interventions for the residential sector were analyzed, using a set of four Key Performance Indicators,

The experimental results on yeast data sets demonstrated that using the constructed TI-PINs can obtain better identification of protein complexes than five existing dynamic