• Nie Znaleziono Wyników

Index of /rozprawy2/10927

N/A
N/A
Protected

Academic year: 2021

Share "Index of /rozprawy2/10927"

Copied!
4
0
0

Pełen tekst

(1)

Contents

List of Figures vii

1 Introduction 1

1.1 Non-destructive Evaluation . . . 2

1.2 Structural Health Monitoring . . . 4

1.2.1 Structural Health Monitoring techniques . . . 6

1.2.2 Wave based techniques in Structural Health Monitoring . . . 8

1.3 Lamb wave based damage identication congurations . . . 10

1.4 The eect of environmental conditions for SHM . . . 11

1.5 Objective . . . 13

1.6 Dissertation overview . . . 17

2 Temperature eect of Lamb wave based damage detection 21 2.1 Literature overview . . . 21

2.1.1 Temperature eect on Lamb waves . . . 21

2.1.2 Multiple environmental eects on guided and Lamb waves . . . . 24

2.2 Numerical methods for wave propagation modelling . . . 25

2.3 Summary . . . 27

3 Lamb waves - theoretical background 28 3.1 Introduction to Lamb waves . . . 28

3.2 Lamb wave sensitivity to thermal uctuation . . . 34

3.3 Change of dispersion curves under temperature variation . . . 37

3.4 Summary . . . 39

(2)

CONTENTS

4 The Local Interaction Simulation Approach for wave propagation

mod-elling 40

4.1 The LISA algorithm . . . 40

4.2 Parallel architecture on graphical cards - LISA implementation . . . 42

4.3 Numerical errors and discrepancies . . . 44

4.3.1 Numerical dispersion and stability condition . . . 44

4.3.2 Dissipation . . . 45

4.3.3 Edge reections . . . 47

4.4 Examples of LISA implementation . . . 48

4.4.1 The LISA for plate like structure . . . 48

4.4.2 The LISA for rail inspection . . . 50

4.4.2.1 Numerical model of guided wave propagation . . . 50

4.4.2.2 Numerical results . . . 50

4.4.2.3 Experimental set-up for guided wave air-coupled in rail 54 4.4.2.4 Experimental results . . . 55

4.5 Thermal eect implementation for LISA approach . . . 57

4.6 Summary . . . 58

5 Lamb wave propagation modelling under varying temperature 59 5.1 Background . . . 59

5.2 Experimental tests . . . 60

5.3 Numerical model implementation . . . 63

5.3.1 Temperature dependent LISA algorithm . . . 64

5.3.2 Numerical model of Lamb wave propagation . . . 65

5.4 Analysis of Lamb wave features - experimental and numerical comparison 67 5.4.1 Peak-to-peak amplitude . . . 67 5.4.2 Arrival time . . . 69 5.4.3 Time delay . . . 70 5.4.4 Instantaneous phase . . . 71 5.5 Summary . . . 77 ii

(3)

CONTENTS

6 Two-dimensional actuation stress modelling of piezoceramic transduc-ers under temperature eld uctuation 79

6.1 Background . . . 80

6.2 Actuation and sensing time-dependent models for Lamb wave propaga-tion - problem formulapropaga-tion . . . 81

6.3 Actuation stress models . . . 83

6.3.1 Theoretical model . . . 84

6.3.2 Numerical model . . . 86

6.4 Results . . . 87

6.4.1 Actuated in-plane shear and normal stresses . . . 87

6.4.1.1 The eect of transducer's stiness . . . 87

6.4.1.2 The eect of adhesive layer's stiness . . . 91

6.4.1.3 The eect of excitation frequency . . . 94

6.4.2 The eect of temperature on piezoceramic transducers . . . 96

6.5 Summary . . . 101

7 Three-dimensional transducer modelling under temperature eld vari-ation 103 7.1 Time-dependent Lamb wave propagation . . . 103

7.1.1 Problem examined . . . 103

7.1.2 Numerical simulations . . . 104

7.1.2.1 Finite element model . . . 104

7.1.2.2 Voltage response . . . 106

7.1.3 Experimental validation . . . 108

7.2 Results and discussion . . . 109

7.2.1 Lamb wave amplitude . . . 110

7.2.2 Electric eld response . . . 114

7.3 Summary . . . 116

8 Temperature eect for the plate-bond-transducer structure used in wave propagation 117 8.1 Eect of temperature on Lamb wave generation, propagation and sensing 117 8.2 Proportional inuence of model components on Lamb wave response . . 122

8.3 Summary . . . 124

(4)

CONTENTS

9 Temperature eect in Lamb wave based damage localisation using Macro Fiber Composite 125

9.1 Background . . . 126

9.2 Response of MFC piezo-composite sensors to Lamb waves . . . 127

9.2.1 Straight-crested wavefronts . . . 127

9.2.2 Circularly-crested wavefronts . . . 130

9.3 MFC rosettes for wave source location . . . 133

9.4 MFC rosettes for damage location . . . 136

9.4.1 Experimental setup and procedure . . . 136

9.4.2 Wave direction estimation . . . 137

9.4.3 Damage location estimation under temperature variation . . . 142

9.5 Summary . . . 144

10 Conclusions 147 10.1 Summary of the presented work . . . 147

10.2 Main conclusions and achievements . . . 149

10.3 Future work proposal . . . 150

References 151

A Shape functions for hexahedron elements 173 B List of publications related to presented research work 174

Cytaty

Powiązane dokumenty

Key words: finite-difference schemes, dispersion relation, acoustic propagation, Euler’s equations, computational

c) możliwości utrzymania wspólnej strategii cenowej: przeciwdzia­ łanie ze strony krajów producenckich negatywnym konsekwencjom przed­ stawionej sytuacji w sferze popytu możliwe

I bez względu na to, czy idola można zobaczyć (chociaż rzadko), czy też jest on tylko wytworem fantazji, osoba z n i m związana nigdy nie czuje się osamotniona, nigdy nie czuje

Keywords: sensor placement option; hotspot damage; Lamb wave; Structural Health Monitoring (SHM); finite element modelling; image processing; additive color

Nie kierujemy się egoistycznym interesem (wbrew temu co się nam zarzuca). Adwokatura jest otwarta dla przedstawicieli innych zawodów prawniczych, czego dowodem są

Challenges for the packaging industry in the Circular Economy Abstract: The concept of a Circular Economy assumes that the value of products, materials and resources is

У країнах Європейського Союзу та в Україні склалася патентна форма охорони об’єктів інтелектуальної власності, що відображено у Законі «Про

Ponieważ, jak zauważył Pietri, ,,1'iconographie reflete obscurement une evolution des mentałites dans la societe chretienne"**, można domyślać się, że język,