• Nie Znaleziono Wyników

Lyapunov and Hurwitz based controls for input-output linearisation applied to nonlinear vessel steering

N/A
N/A
Protected

Academic year: 2021

Share "Lyapunov and Hurwitz based controls for input-output linearisation applied to nonlinear vessel steering"

Copied!
11
0
0

Pełen tekst

(1)

Ocean Engineering 66 (2013) 58-68

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / o c e a n e n g

Lyapunov and Hurwitz based controls for input-output linearisation

applied to nonlinear vessel steering

Lokukaluge P. Perera, C. Guedes Soares *

Centre for Marine Technology and Engineering (CENTEC). Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal

CrossMark

A R T I C L E I N F O

Article history: Received 8 May 2012 Accepted 6 April 2013 Available online 8 May 2013 Keywords:

Partial feedback linearisation Input-output linearisation Nonlinear vessel steering Lyapunov based control Hurwitz based control Ship autopilot systems Ship control

A B S T R A C T

T h i s paper focuses on the Lyapunov, H u r w i t z a n d PID based control a p p r o a c h e s for an i n p u t - o u t p u t linearisation a p p l i e d n o n l i n e a r v e s s e l steering s y s t e m . A m a t h e m a t i c a l m o d e l of the v e s s e l steering s y s t e m is d e r i v e d c o n s i d e r i n g a s e c o n d - o r d e r Nomoto m o d e l w i t h n o n l i n e a r m a n o e u v r a b i l i t y features. In general, the control d e s i g n pr oces s of the n o n l i n e a r v e s s e l s t e e r i n g s y s t e m is affected by the nonlinearities that are related to r u d d e r angle, r u d d e r rate a n d v e s s e l h e a d i n g angle. T h e r e f o r e , to s i m p l i f y the n o n l i n e a r v e s s e l s t e e r i n g system, i n p u t - o u t p u t l i n e a r i s a t i o n is p r o p o s e d in this study. D u r i n g this proc e ss ( L e . i n p u t - o u t p u t linearization), the s y s t e m is d i v i d e d in a s y s t e m w i t h linear d y n a m i c s a n d a s y s t e m w i t h i n t e r n a l d y n a m i c s . F u r t h e r m o r e , the stability c o n d i t i o n s of internal d y n a m i c s are a n a l y s e d to observe o v e r a l l stability of the v e s s e l s t e e r i n g s y s t e m . T h e L y a p u n o v , H u r w i t z a n d PID b a s e d controllers are p r o p o s e d for course k e e p i n g and course c h a n g i n g m a n o e u v r e s in vessel steering. F u r t h e r m o r e , t h e overall stability conditions of the p r o p o s e d L y a p u n o v a n d H u r w i t z based controller a r e a n a l y s e d , c o n s i d e r i n g a L y a p u n o v candidate f u n c t i o n a n d the Hui-witz conditions, respectively. Finally, the p r o p o s e d c o n t r o l algorithms are s i m u l a t e d o n a v e s s e l s t e e r i n g s y s t e m and s u c c e s s f u l results w i t h r e s p e c t to c o u r s e k e e p i n g a n d course c h a n g i n g m a n o e u v r e s are p r e s e n t e d in this paper. © 2013 E l s e v i e r L t d . A l l rights reserved.

1. Introduction

One o f t h e m a j o r challenges i n m o d e r n m a r i t i m e n a v i g a t i o n is t o d e s i g n advanced a u t o p i l o t systems t h a t g u a r a n t e e r o b u s t s t a b i l i t y a n d p e r f o r m a n c e s u n d e r v a r i o u s sea c o n d i t i o n s . C o n v e n -t i o n a l m a r i -t i m e n a v i g a -t i o n consis-ts o f a u -t o p i l o -t sys-tems -t h a -t are g u i d e d b y r e m o t e p o s i t i o n i n g systems a n d c o m p l e m e n t e d b y m a r i t i m e s u r v e i l l a n c e sensors. Even t h o u g h , these r e m o t e p o s i -rioning systems a n d m a r i r i m e s u r v e i l l a n c e sensors have a c h i e v e d considerable i m p r o v e m e n t s i n recent years, m a r i t i m e a u t o p i l o t systems are s t i l l u n d e r d e v e l o p e d . As a n e x a m p l e , m o s t m a r i t i m e a u t o p i l o t s y s t e m s are m a i n l y g u i d e d t h r o u g h w a y - p o i n t s a s s o c i a t e d t r a j e c t o r i e s t h a t are b a s e d o n t h e p r o p o r t i o n a l , i n t e g r a l a n d d e r i v a t i v e ( P I D ) t y p e s o f c o n t r o l l e r s ( L i m a n d F o r s y t h e , 1983a, 1 9 8 3 b ) . H o w e v e r , t h e s e g u i d a n c e m e c h a n i s m s a n d c o n t r o l f o r m u l a t i o n s n o t a d e q u a t e f o r m o d e r n m a r i t i m e n a v i g a t i o n r e q u i r e m e n t s e s p e c i a l l y i n c o n f i n e d w a t e r w h e r e r e l a t i v e l y l a r g e a n d p r e c i s i o n c o u r s e c h a n g i n g m a n o e u v r e s are r e q u i r e d . T h e r e f o r e , t o s a t i s f y t h e p r e s e n t m a r i t i m e n a v i g a t i o n r e q u i r e m e n t s v a r i o u s i n t e l l i g e n t g u i d a n c e a n d a d v a n c e d c o n t r o l a l g o r i t h m s h a v e also p r o p o s e d i n t h e r e c e n t l i t e r a t u r e (Possen, 2 0 0 2 ; M o r e i r a et al., 2 0 0 7 ; * Corresponding author.

E-mail address: guedess@mar.ist.utl.pt (C. Cuedes Soares). 0029-8018/$-see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.Org/10.1016/j.oceaneng.2013.04.002

Perera et a l , 2 0 1 1 , 2012a, 2 0 1 2 b , 2012c, 2 0 1 2 d ; Perera a n d G u e d e s Soares, 2012c.

T h e c o n t r o l f u n c t i o n a l i t i e s i n m a r i t i m e a u t o p i l o t systems can be d i v i d e d i n t o t w o sub-systems: speed c o n t r o l s y s t e m a n d s t e e r i n g c o n t r o l system. The m a i n o b j e c t i v e o f t h e speed c o n t r o l l e r s y s t e m is t o m a i n t a i n vessel's speed, a n d t h e m a i n o b j e c t i v e o f the s t e e r i n g c o n t r o l s y s t e m is t o m a i n t a i n vessel's course. H o w e v e r , t h i s s t u d y is f o c u s e d o n t h e c o n t r o l l e r d e s i g n process o f vessel s t e e r i n g , w h i c h is t h e m o s t i m p o r t a n t aspect o f a m a r i t i m e a u t o p i l o t s y s t e m i n c o n f i n e d w a t e r s . T h e s t u d y deals w i t h t w o p r o b l e m s : t h e i d e n t i f i c a t i o n o f a p r o p e r vessel s t e e r i n g m o d e l a n d t h e d e s i g n o f a n a p p r o p r i a t e c o n t r o l l e r . T h e r e f o r e , t h e d e r i v a t i o n o f a m a t h e m a t i c a l m o d e l f o r vessel s t e e r i n g is a n i m p o r t a n t p a r t o f t h e c o n t r o l l e r design process, w h e r e a l m o s t a l l t h e c o n t r o l strategies i n t h e recent l i t e r a t u r e are based o n s o m e types o f m a t h e m a t i c a l m o d e l s .

T h e r e are several c o n t r o l l e r strategies p r o p o s e d i n t h e recent l i t e r a t u r e w i t h respect to vessel s t e e r i n g a n d t w o m a i n types o f c o n t r o l strategies can be i l l u s t r a t e d : l i n e a r c o n t r o l l e r s a n d n o n -l i n e a r c o n t r o -l -l e r s . The -l i n e a r c o n t r o -l -l e r s are p r o p o s e d c o n s i d e r i n g t h e l i n e a r state or p a r a m e t e r c o n d i t i o n s i n vessel steering. The n o n l i n e a r state or p a r a m e t e r c o n d i t i o n s i n vessel s t e e r i n g are o f t e n linearised a r o u n d specific p o i n t s (i.e. Jacobian l i n e a r i s a t i o n ) i n these l i n e a r c o n t r o l l e r s . Even t h o u g h , t h i s a p p r o a c h c o u l d s a t i s f y t h e r e q u i r e m e n t s i n course k e e p i n g m a n o e u v r e s t h a t m a y

(2)

be i n a d e q u a t e f o r course c h a n g i n g m a n o e u v r e s , w h e r e n o n l i n e a r vessel s t e e r i n g c o n d i t i o n s can also be observed.

T h e r e f o r e , a l i n e a r i s e d vessel s t e e r i n g m o d e l is n o t a d e q u a t e f o r c o u r s e c h a n g i n g m a n o e u v r e s i n vessel s t e e r i n g . H o w e v e r , these n o n l i n e a r vessel s t e e r i n g c o n d i t i o n s w o u l d g e n e r a t e stable or u n s t a b l e d y n a m i c s . T h e r e f o r e , t o s a t i s f y t h e n o n l i n e a r state o r p a r a m e t e r c o n d i t i o n s (i.e. stable a n d u n s t a b l e s t e e r i n g c o n d i t i o n s ) i n course k e e p i n g a n d course c h a n g i n g m a n o e u v r e s f e e d -back l i n e a r i z a t i o n is p r o p o s e d i n t h i s s t u d y . F u r t h e r m o r e , t h e n o n l i n e a r c o n t r o l l e r s based o n t h e L y a p u n o v a n d H u r w i t z c o n -d i t i o n s are p r o p o s e -d t o achieve c o u r s e k e e p i n g a n -d c o u r s e c h a n g i n g m a n o e u v r e s i n vessel s t e e r i n g .

2. Feedback linearisation

2.1. Introduction T h e i m p l e m e n t a t i o n o f a n o n l i n e a r c o n t r o l l e r is o f t e n d e g r a d e d b y t h e c o m p l e x i t y i n t h e d e s i g n processes. The d e s i g n c o m p l e x i t y i n t h e c o n t r o l l e r comes g e n e r a l l y f r o m the n o n l i n e a r state and p a r a m e t e r b e h a v i o u r i n t h e s y s t e m d y n a m i c s , i n w h i c h n o n l i n e a r vessel s t e e r i n g can be observed. T h e r e f o r e , as m e n t i o n e d b e f o r e , t o s i m p l i f y t h e c o n t r o l l e r d e s i g n process, t h e f e e d b a c k l i n e a r i s a t i o n t e c h n i q u e is p r o p o s e d i n t h i s study. The f e e d b a c k l i n e a r i s a t i o n t e c h n i q u e has b e e n used i n t h e l i t e r a t u r e t o a l g e b r a i c a l l y t r a n s -f o r m n o n l i n e a r system d y n a m i c s i n t o -f u l l y o r p a r t i a l l y l i n e a r s y s t e m d y n a m i c s (Slotine a n d Li, 1991) a n d t h a t can also be used t o a v o i d t h e c o m p l e x i t y i n t h e c o n t r o l l e r d e s i g n process.

T h e f e e d b a c k l i n e a r i s a t i o n a p p r o a c h s i m p l i f i e s t h e s y s t e m d y n a m i c s a r o u n d a n o p e r a t i n g r e g i o n , w h i c h is t h e m a i n a d v a n -tage i n t h i s a p p r o a c h . T h e c o n v e n t i o n a l l i n e a r i z a t i o n t e c h n i q u e (i.e. Jacobian l i n e a r i z a t i o n ) can s i m p l i f y t h e s y s t e m d y n a m i c s at a s p e c i f i c o p e r a t i n g p o i n t b u t c a n n o t preserve t h e s y s t e m d y n a m i c s a r o u n d o t h e r o p e r a t i n g p o i n t s . T h e r e f o r e , f e e d b a c k l i n e a r i z a t i o n is used t o linearise t h e s y s t e m d y n a m i c s a r o u n d a special r e g i o n . H o w e v e r , feedback l i n e a r i z a t i o n can o n l y be a p p l i e d t o a special class o f n o n l i n e a r systems t h a t are i n a f f i n e f o r m a t (i.e. c o n t r o l -lable c a n o n i c a l f o r m ) . A n o n l i n e a r s y s t e m t h a t is i n a f f i n e f o r m a t can be w r i t t e n as (Guay, 2 0 0 1 ) x = F(x)-hG(x)i(x y , = /7(x) (1) w h e r e x, s y s t e m states; f ( x ) , s y s t e m f u n c t i o n ; C(x), c o n t r o l f u n c -t i o n ; Ux, c o n -t r o l i n p u -t ; y^, o u -t p u -t ; a n d f i ( x ) , o u -t p u -t f u n c -t i o n . H o w e v e r , a n a d d i t i o n a l c o o r d i n a t e t r a n s f o r m a t i o n can be used t o achieve t h e a f f i n e f o r m a t f o r a n o n l i n e a r s y s t e m t h a t has n o t b e e n i n t h e f o r m a t o f ( 1 ) . The n o n l i n e a r vessel s t e e r i n g m o d e l t h a t is i n t r o d u c e d i n t h i s s t u d y is n o t b e i n g p r e s e n t e d i n t h e a f f i n e f o r m a t ; t h e r e f o r e a c o o r d i n a t e t r a n s f o r m a t i o n is b e i n g also i n t r o d u c e d .

I n general, t h e feedback l i n e a r i s a t i o n process can be d i v i d e d i n t o t w o steps ( H e n s o n a n d Seborg, 1997). The flrst, t h e change o f c o o r d i n a t e s o f t h e system states. The second, t h e f o r m u l a t i o n o f t h e c o n t r o l l a w u n d e r f e e d b a c k l i n e a r i s a t i o n . The change o f c o o r d i n a t e s o f t h e system can be c o n s i d e r e d as a t r a n s f o r m a t i o n o f a n o n l i n e a r s y s t e m i n t o a l i n e a r s y s t e m . I n g e n e r a l , t h e f e e d b a c k l i n e a r i s a t i o n can also be f o r m u l a t e d b y i n s p e c t i n g t h e o r i g i n a l n o n l i n e a r s y s t e m a n d selecting a n e w c o n t r o l l a w t h a t can cancel t h e s y s t e m n o n l i n e a r i t i e s (Yang et al., 2 0 0 1 ; R a m i r e z a n d Ibanez, 2 0 0 0 ) . H o w e v e r , c o m p l e x n o n l i n e a r systems can be l i n e a r i s e d c o n s i d e r i n g Lie d e r i v a t i v e based t r a n s f o r m a t i o n s ( H e n s o n a n d Seborg, 1990) as f u r t h e r discussed i n t h i s study.

The change o f coordinates o f the system states can be f u r t h e r categorised into t w o f o r m u l a t i o n s : f u l l state feedback linearisation and partial feedback linearisation. The f t i l l state feedback linearisaflon is

o f t e n refen'ed as input-state linearisaflon t h a t maps t h e linearised inputs i n the enflre state variable space o f the nonlinear system. However, o f t e n nonlinear systems cannot satisfy the f u l l state feedback linearisation condiflons, due to the system i n p u t - o u t p u t relaflonships. I n these situations (i.e. failures i n f u l l state feedback linearisation), t w o soluflons are introduced. The flrst, an arflflcial o u t p u t can be i n t r o -duced to satisfy the f u l l state feedback linearisable condiflons. The second, partial feedback linearisation can be i n t r o d u c e d to s i m p l i f y the nonlinear system. However, the flrst approach is n o t always applicable i n the controller design process, w h e r e the a r f l f l c i a l o u t p u t is d i f f e r e n t f r o m the actual o u t p u t t h a t cannot be observed o r measured by t h e system sensors. Therefore, i n a tracldng s i t u a f l o n the arflflcial o u t p u t w i l l n o t necessarily saflsfy the desired o u t p u t (Henson and Seborg, 1997).

Partial f e e d b a c k l i n e a r i s a t i o n is b e i n g p r o p o s e d i n t h i s s t u d y t o s i m p l i f y t h e n o n l i n e a r vessel s t e e r i n g s y s t e m . P a r t i a l feedback l i n e a r i s a t i o n t h a t is o f t e n r e f e r r e d as i n p u t - o u t p u t l i n e a r i s a t i o n can be used f o r a n o n l i n e a r system, w h e r e t h e s y s t e m is incapable o f f u l l state f e e d b a c k l i n e a r i s a t i o n . F u r t h e r m o r e , i n p u t - o u t p u t l i n e a r i s a t i o n m a p s t h e l i n e a r i s e d i n p u t s w i t h t h e a c t u a l o u t p u t s i n t h e n o n l i n e a r s y s t e m w h i c h is a n advantage i n t h i s a p p r o a c h .

A sector o f s y s t e m d y n a m i c s c a n n o t be d i r e c t l y c o n t r o l l e d or o b s e r v e d i n an u n d e r - a c t u a t e d n o n l i n e a r s y s t e m (i.e. vessel steer-i n g s y s t e m ) . T h e r e f o r e , f u l l state f e e d b a c k l steer-i n e a r steer-i s a t steer-i o n o f t e n fasteer-ils t o s i m p l i f y a n u n d e r a c t u a t e d n o n l i n e a r s y s t e m . H o w e v e r , i n p u t -o u t p u t l i n e a r i s a t i -o n can be used t -o s i m p l i f y an u n d e r - a c t u a t e d n o n l i n e a r s y s t e m , w h e r e t h e c o n t r o l l a b l e o r observable sector o f t h e s y s t e m can o f t e n be l i n e a r i s e d . The r e m a i n i n g sector o f t h e u n d e r - a c t u a t e d n o n l i n e a r system, t h e u n c o n t r o l l a b l e o r unobser-v a b l e sector, is categorised as i n t e r n a l d y n a m i c s t h a t c a n n o t be d i r e c t l y c o n t r o l l e d o r observed b y t h e o u t p u t a n d t h a t c a n n o t be l i n e a r i s e d b y f e e d b a c k l i n e a r i s a t i o n .

The presence o f a n u n c o n t r o l l a b l e o r unobservable sector i n a n o n l i n e a r s y s t e m raises issues o n t h e overall s t a b i l i t y (Terrell, 1999). One s h o u l d note t h a t t h e stable i n t e r n a l d y n a m i c s can generate necessary c o n d i t i o n s f o r the system t o stabilise u n d e r various feedback c o n t r o l laws. Hence, i n p u t - o u t p u t l i n e a r i s a t i o n can also be affected b y stable i n t e r n a l d y n a m i c s , w h e r e t h e s t a b i l i t y c o n d i -t i o n s o f i n -t e r n a l d y n a m i c s s h o u l d be f u r -t h e r analysed u n d e r -t h e b o u n d e d - i n p u t - b o u n d e d - o u t p u t (BIBO) c o n d i t i o n s .

A n o n l i n e a r system w i t h stable i n t e r n a l dynamics is o f t e n referred as a m i n i m u m phase system and a n o n l i n e a r system w i t h unstable i n t e r n a l dynamics is o f t e n referred as a n o n - m i n i m u m phase system. The m i n i m u m phase nonlinear system is o f t e n i d e n t i f l e d b y the zero-dynamics, w h e r e the i n p u t c o n d i f l o n s o f t h e system is observed w i t h respect to t h e zero o u t p u t conditions. The stability c o n d i t i o n s o f t h e zero-dynamics o f a n o n l i n e a r system can be f u r t h e r analysed either b y Lyapunov stability t h e o r e m or H u r w i t z c o n d i t i o n s .

Even t h o u g h , the z e r o - d y n a m i c s can be g l o b a l l y a s y m p t o t i c a l l y stable i n a system, these approaches can o n l y guarantee local stability c o n d i t i o n s , w h i c h is d u e to the applicable r e g i o n o f f e e d -back l i n e a r i s a t i o n . A n o n l i n e a r system w i t h a s y m p t o t i c a l l y stable zero d y n a m i c s is called a s y m p t o t i c a l l y m i n i m u m phase systems. However, a n o n - m i n i m u m phase o r w e a l d y n o n - m i n i m u m phase n o n l i n e a r system can also be stabilized b y selecting a proper/ a r t i f l c i a l o u t p u t or a c o n t r o l i n p u t (Slotine a n d Li, 1991).

T h e r e f o r e , t h e f e e d b a c k l i n e a r i s a t i o n process can be s u m -m a r i s e d as f o l l o w s . The flrst step, t h e n o n l i n e a r s y s t e -m f o r f u l l y o r p a r f l a l l y l i n e a r i z a t i o n s h o u l d be o b s e r v e d . The second step, i f t h e s y s t e m is f u l l state linearisable t h e n i n p u t - s t a t e l i n e a r i s a t i o n s h o u l d be a p p l i e d , o t h e r w i s e i n p u t o u t p u t l i n e a r i s a t i o n (i.e. p a r -tial f e e d b a c k l i n e a r i z a t i o n ) s h o u l d be a p p l i e d . T h e t h i r d step, t h e s t a b i l i t y c o n d i t i o n s o f i n t e r n a l d y n a m i c s s h o u l d be o b s e r v e d , unless t h e s y s t e m is f u l l state linearisable. T h e final step, a p r o p e r c o n t r o l l a w t o stabilise t h e c l o s e d - l o o p c o n t r o l s y s t e m u n d e r f e e d b a c k l i n e a r i s a t i o n s h o u l d be d e r i v e d .

(3)

60 LP. Perera, C. Guedes Soares / Ocean Engineering 66 (2013) 58-68

The necessary c o n d i t i o n s f o r f u l l y or p a r t i a l l y f e e d b a c k l i n e a r -i s a t -i o n o f a n o n l -i n e a r s y s t e m can o f t e n be o b s e r v e d b y the r e l a t -i v e degree o f t h e system, w h i c h can be d e f i n e d as t h e d i f f e r e n c e b e t w e e n t h e n u m b e r o f f i n i t e poles a n d zeros o f the s y s t e m t r a n s f e r f u n c t i o n . Hence, i f t h e r e l a t i v e degree o f a s y s t e m is less t h a n t h e s y s t e m order, t h e n some zeros t h a t m a y be stable o r u n s t a b l e e x i s t o n t h e s y s t e m . Hovvever, t h e t r a n s f e r f u n c d o n c o n c e p t is n o t a p p l i c a b l e i n n o n l i n e a r systems. Hence, i f t h e r e l a t i v e d e g r e e is less t h a n t h e s y s t e m o r d e r i n a n o n l i n e a r system, t h e n t h e s y s t e m has s o m e i n t e r n a l d y n a m i c s t h a t c a n n o t be o b s e r v e d f r o m t h e o u t p u t . T h e r e f o r e , i n these types o f s i t u a t i o n s the s t a b i l i t y o f i n t e r n a l d y n a m i c s s h o u l d be f u r t h e r analysed t o d e t e r m i n e t h e o v e r a l l s y s t e m s t a b i l i t y . A r e l a t i v e degree o f a n o n l i n e a r s y s t e m can be c a l c u l a t e d by a Lie d e r i v a t i v e s a p p r o a c h . T h e s i m p l i f i e d Lie d e r i v a t i v e c o n d i t i o n s w i t h respect to a r e l a t i v e degree o f a n o n l i n e a r s y s t e m can be w r i t t e n as, several d i f f e r e n t i a t i o n s o f t h e s y s t e m o u t p u t u n t i l t h e i n p u t appears e x p l i c i t l y . T h e f i r s t d i f f e r e n t i a t i o n o f t h e n o n -l i n e a r s y s t e m o u t p u t p r e s e n t e d i n ( 1 ) u s i n g Lie d e r i v a t i v e s can be w r i t t e n as y . = ^ x = ^ ( F ( x ) + C(x)u.) dh{x) Fix) dx dh(x) dx dx = L f / l ( X ) + (Lc/7(X))Ux G(x)Ux (2) A s s u m i n g the c o n d i t i o n t h a t t h e s y s t e m i n p u t c a n n o t be o b s e r v e d b y the first d i f f e r e n t i a t i o n , w h e r e Lcii(x) = 0, t h e n the second d i f f e r e n t i a t i o n o f t h e s y s t e m o u t p u t i n ( 1 ) u s i n g Lie d e r i v a t i v e s h o u l d be p e r f o r m e d a n d t h a t can be w r i t t e n as y x = ^ y x = ^ ( i F / j ( x ) ) = ^ x = ^ ( F ( x ) + G(x)u.) ^ ( ^ ' ' " « > F ( x ) 4 - ^ ^ C ( x ) u . dx dx = Ljh(x) + (LcLlh{x))Ux (3) A s s u m i n g the c o n d i t i o n t h a t t h e s y s t e m i n p u t c a n n o t be o b s e r v e d b y t h e second d i f f e r e n t i a t i o n , w h e r e LcLlh(x) = 0, t h e n t h e t h i r d d i f f e r e n t i a t i o n o f t h e s y s t e m o u t p u t s h o u l d be p e r -f o r m e d . H o w e v e r , i -f L c L -f / j ( x ) * 0 , t h e n i t can be c o n c l u d e d t h a t t h e r e l a t i v e degree o f t h e n o n l i n e a r s y s t e m is 2. O t h e r w i s e , t h i s process s h o u l d be c o n t i n u e d r-l steps, w h e r e the s y s t e m o u t p u t is o b s e r v e d b y t h e i n p u t , I c L p h ( x ) * 0 , w h e r e t h e n o n l i n e a r s y s t e m has t h e r e l a t i v e d e g r e e o f r.

Hence, t h e r e l a t i v e degree c a l c u l a t i o n can be s u m m a r i s e d b y t h e d i f f e r e n t i a t i o n o f t h e n o n l i n e a r s y s t e m o u t p u t i n f o l l o w i n g f o r m a t , w h e r e a n o n l i n e a r s y s t e m t h a t has r e l a t i v e d e g r e e r i n Lie d e r i v a t i v e s o f Levine (2011) LcL'l:ii(x) = 0 f o r k < r - l LcL'f'h(x)T^O (4) T h e r e f o r e , to f i n d t h e r e l a t i v e degree o f a n o n l i n e a r system, t h e Lie d e r i v a t i v e s L c l . f / i ( x ) are d e r i v e d f o r k<r-l s u c h t h a t t h e LcLph(x) is i n v e r t i b l e . One s h o u l d n o t e t h a t i f t h e r e l a t i v e degree o f a n o n l i n e a r s y s t e m is e q u a l t o t h e o r d e r o f t h e s y s t e m , t h e n the s y s t e m is f u l l i n p u t s t a t e linear, o t h e r w i s e t h e s y s t e m is i n p u t -o u t p u t linear. F u r t h e r m -o r e , t h e f e e d b a c k l i n e a r i s a t i -o n a p p r -o a c h n o t o n l y f o r a s i n g l e i n p u t n o n l i n e a r s y s t e m b u t also f o r a m u l t i -i n p u t n o n l -i n e a r s y s t e m c a n also be used ( H o u a n d Pugh, 1997). As t h e f i n a l a n d m o s t i m p o r t a n t step o f f e e d b a c k l i n e a r i s a t i o n , a p r o p e r c o n t r o l l a w s h o u l d be d e r i v e d . T h e c o n t r o l l a w u n d e r

i n p u t - o u t p u t l i n e a r i s a t i o n can be w r i t t e n as

Ux = ^ ( - « ( > ; ) + Vx) (5)

w h e r e Vx is n e w c o n t r o l i n p u t and a{y) a n d /?(y) are c o n t r o l f u n c t i o n s t h a t can be w r i t t e n as

a(x) = L'phix)

/?(x) = LcL^-'h(x)

2.2. Literature review

(6)

T h e r e are m a n y feedback l i n e a r i s a t i o n based c o n t r o l systems p r o p o s e d i n t h e r e c e n t l i t e r a t u r e . The f e e d b a c k l i n e a r i s a t i o n d e s i g n f o r vessel s t e e r i n g w i t h t h e r u d d e r angle a n d r u d d e r r a t e s a t u r a t i o n l i m i t a t i o n s is p r o p o s e d b y T z e n g et al. ( 1 9 9 9 ) . A d a p t i v e f e e d b a c k l i n e a r i s a t i o n a p p l i e d l i n e a r q u a d r a t i c o p t i m a l c o n t r o l f o r ship s t e e r i n g is p r e s e n t e d i n Fossen a n d Paulsen ( 1 9 9 2 ) . H o w e v e r , t h e vessel d y n a m i c m o d e l s i n these studies are l i m i t e d to t h e m o d i f i e d first o r d e r N o m o t o m o d e l , w h e r e t h e n o n l i n e a r vessel s t e e r i n g b e h a v i o u r has n o t b e e n c o n s i d e r e d .

The feedback l i n e a r i s a t i o n can o n l y p r o d u c e a f u l l state or p a r t i a l l i n e a r i s e d system t h a t is associated w i t h a feedback c o n t r o l l a w . H o w e v e r , m o s t o f t h e c o n v e n t i o n a l c o n t r o l strategies can f a i l t o s i m p l i f y the c o n t r o l design process due t o t h e n o n l i n e a r i t i e s a m o n g t r a n s f o r m e d i n p u t s a n d o r i g i n a l o u t p u t s ( H e n s o n a n d Seborg, 1997). T h e r e f o r e , t h e H u r w i t z a n d L y a p u n o v based c o n t r o l strategies are p r o p o s e d i n t h i s s t u d y to be i m p l e m e n t e d o n t h e i n p u t - o u t p u t l i n e a r i s a t i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g system. A l i n e a r s y s t e m w i t h a c h a r a c t e r i s t i c e q u a t i o n t h a t is associated w i t h t h e r o o t s i n t h e l e f t - h a l f plane o f r o o t - l o c u s c a n be cate-g o r i s e d as t h e H u r w i t z c o n d i t i o n s (Clark, 1992). T h e r e f o r e , t h e H u r w i t z c o n d i t i o n s can be used t o d e s i g n a n a p p r o p r i a t e c o n -t r o l l e r f o r -t h e i n p u -t - o u -t p u -t f e e d b a c k l i n e a r i s a -t i o n a p p l i e d vessel s t e e r i n g s y s t e m . L y a p u n o v c a n d i d a t e f u n c t i o n s have b e e n used t o observe t h e s y s t e m s t a b i l i t y c o n d i t i o n s a n d t o d e s i g n c o n t r o l l e r s f o r t h e n o n l i n e a r c o n t r o l systems. A p r e d e f i n e d c a n d i d a t e f u n c t i o n is used t o d e r i v e t h e s y s t e m s t a b i l i t y c o n d i t i o n s a n d t o d e s i g n a n a p p r o p r i a t e c o n t r o l l e r f o r t h e i n p u t - o u t p u t f e e d b a c k l i n e a r i s a t i o n a p p l i e d vessel s t e e r i n g s y s t e m i n t h e sense o f L y a p u n o v ( K h a l i l , 2 0 0 2 ) . T h e r e f o r e , a c o m p a r i s o n a m o n g these t w o c o n t r o l s t r a t e -gies a n d a c o n v e n t i o n a l PID c o n t r o l l e r is f u r t h e r p r e s e n t e d i n t h i s s t u d y .

T h e r e are m a n y linear and n o n l i n e a r vessel c o n t r o l approaches p r o p o s e d i n the r e c e n t l i t e r a t u r e w i t h respect to t h e vessel n a v i g a -t i o n sys-tems. A s l i d i n g m o d e c o n -t r o l l e r f o r ship course c o n -t r o l has been p r o p o s e d a n d s i m u l a t i o n results are described by Tomera (2010). Yaozhen et a l . (2010) present a f u z z y s l i d i n g m o d e l c o n t r o l l e r f o r a s h i p course c o n t r o l system. The c o m p a r i s o n b e t w e e n the M o d e l Predictive a n d Sliding M o d e Controllers f o r ship h e a d i n g c o n t r o l is presented i n M c G o o k i n et al. ( 2 0 0 8 ) . H o w e v e r these studies are l i m i t e d to linearised vessel steering m o d e l s .

A t e r m i n a l s l i d i n g m o d e f u z z y c o n t r o l a p p r o a c h based o n m u l t i p l e s l i d i n g surfaces f o r a n o n l i n e a r s h i p a u t o p i l o t s y s t e m is p r o p o s e d b y Y u a n a n d W u ( 2 0 1 0 ) . S i m i l a r l y , a p i - t y p e s l i d i n g m o d e c o n t r o l l e r is p r o p o s e d f o r t r a c k i n g c o n t r o l o f a s h i p b y Y u a n d W u ( 2 0 0 4 ) . H o w e v e r , t h e r u d d e r rate e f f e c t s o n vessel s t e e r i n g are i g n o r e d i n these studies, w h e r e a vessel s t e e r i n g s y s t e m is f u r t h e r s i m p l i f i e d . One s h o u l d n o t e t h a t t h e special c o o r d i n a t e t r a n s f o r -m a t i o n a l o n g w i t h f e e d b a c k l i n e a r i z a t i o n is p r o p o s e d i n t h i s s t u d y t o a v o i d t h e r u d d e r rate e f f e c t s f r o m t h e c o n t r o l s y s t e m . Vessel m a n o e u v r i n g p e r f o r m a n c e a l o n g a d e s i r e d p a t h u s i n g s l i d i n g m o d e c o n t r o l is p r o p o s e d i n S k j e t n e ( 2 0 0 5 ) , w h e r e t h e s i m u l a t i o n results are l i m i t e d t o c i r c u l a r m a n o e u v r e s . S i m i l a r l y , a s l i d i n g m o d e c o n t r o l l e r f o r h a r b o u r m a n o e u v r e s o f a large s h i p is

(4)

p r o p o s e d b y Le et a l . ( 2 0 0 3 ) . H o w e v e r , the s h i p m a n o e u v r e s are s u p p o r t e d b y e x t e r n a l forces (i.e. t u g b o a t s ) i n t h i s study, w h e r e t h e ship as a f u l l y a c t u a t e d s y s t e m is assumed.

F u r t h e r m o r e , a s l i d i n g m o d e c o n t r o l l e r f o r t r a j e c t o r y t r a c k i n g o f a m a r i n e vessel is p r o p o s e d i n Cheng et al. ( 2 0 0 7 ) . S i m i l a r l y , a vessel as a f u l l y a c t u a t e d s y s t e m is assumed i n t h i s study, w h e r e t h e surge force, s w a y f o r c e a n d y a w m o m e n t are available. It is w e l l k n o w n t h a t t h e vessel s t e e r i n g s y s t e m is associated w i t h u n d e r - a c t u a t e d c o n d i t i o n s , w h e r e the s w a y m o t i o n c a n n o t be d i r e c t l y actuated. Even t h o u g h these studies have p r o p o s e d t h r u s t e r s f o r t h e s w a y a c t u a t i o n , a f u l l y a c t u a t i o n s i t u a t i o n u n d e r h i g h speed a n d r o u g h sea c o n d i t i o n c a n n o t be a c h i e v e d b y t h e vessel.

T h e t h e o r e t i c a l a n d e x p e r i m e n t a l results f o r p a t h c o n t r o l o f a surface s h i p i n r e s t r i c t e d w a t e r s are p r e s e n t e d by Z h a n g et al. ( 2 0 0 0 ) . T h e c o n t r o l a p p r o a c h is based o n an i n p u t o u t p u t l i n e a r -i s a t -i o n based s l -i d -i n g m o d e c o n t r o l l e r . T h e d y n a m -i c a d a p t -i v e s l i d i n g m o d e c o n t r o l l e r f o r t r a c k i n g o f s h i p s t e e r i n g is p r o p o s e d i n C h e n g et al. ( 2 0 0 6 ) . H o w e v e r , these studies are l i m i t e d t o s m a l l h e a d i n g angle v a r i a t i o n s . I t is o b s e r v e d t h a t f o r large h e a d i n g angle changes, large r u d d e r angle v a r i a t i o n s are r e q u i r e d . H o w -ever, t h e r u d d e r angle a n d r u d d e r rate are associated w i t h some a c t u a t i o n l i m i t a t i o n s , t h e r e f o r e t h e h i g h e r c o n t r o l gains r e q u i r e d b y t h e p r o p o s e d m e t h o d s c a n n o t be achieved, w h e r e t h e s t a b i l i t y i n t h e c o n t r o l l e r c a n n o t be p r e s e r v e d .

O p t i m i s a t i o n b a s e d c o n t r o l strategies b y t w o types o f p e r f o r -m a n c e i n d i c e s f o r course k e e p i n g (i.e. to -m i n i -m i s e h e a d i n g error, p r o p u l s i o n losses a n d r u d d e r a c t i v i t i e s ) a n d course c h a n g i n g (i.e. t o m i n i m i s e h e a d i n g e r r o r ) m a n o e u v r e s are p r o p o s e d b y L i m a n d Forsythe (1983a, 1 9 8 3 b ) . S i m i l a r l y , the s i m u l a t i o n s are l i m i t e d t o s l o w a n d s m a l l changes i n h e a d i n g angle c o n d i t i o n s , w h e r e t h e adequate p e r f o r m a n c e i n t h e p r o p o s e d c o n t r o l approaches c a n n o t be e v a l u a t e d .

T h e r e are m a n y o t h e r a p p l i c a t i o n s w i t h respect t o f e e d b a c k l i n e a r i s a t i o n has b e e n p r o p o s e d i n the f o l l o w i n g studies o f Guay ( 2 0 0 1 ) , Y a n g et al. ( 2 0 0 1 ) , R a m i r e z a n d Ibanez ( 2 0 0 0 ) , H e n s o n a n d Seborg ( 1 9 9 0 ) , S p o n g (1994), a n d L i u e t al. ( 2 0 0 4 ) .

It is o b s e r v e d t h a t t o achieve a large h e a d i n g angle change w i t h i n a s h o r t t i m e p e r i o d , a large r u d d e r angle v a r i a t i o n w i t h i n a s h o r t time p e r i o d is r e q u i r e d , i n w h i c h preserves t h e c o n t r o l l e r p e r f o r m a n c e . H o w e v e r , t h e r u d d e r a c t u a t i o n is a f f e c t e d b y t h e r u d d e r angle a n d r u d d e r rate l i m i t a t i o n s , w h e r e m a n y vessel s t e e r i n g s i m u l a t i o n s are l i m i t e d t o s m a l l h e a d i n g angle v a r i a t i o n s .

A large h e a d i n g angle change w i t h i n a s h o r t time p e r i o d can be a v o i d e d b y d e s i g n i n g a p r e - f i l t e r t h a t can reduce t h e s u d d e n h e a d i n g angle v a r i a t i o n s . T h e r e f o r e , a p r e - f i l t e r can reduce t h e large e r r o r v a r i a t i o n s , w h i c h e v e n t u a l l y reduce t h e large r u d d e r angle a n d r u d d e r rate r e q u i r e m e n t s t o m a i n t a i n t h e s t a b i l i t y i n t h e c o n t r o l l e r .

I t is w e l l k n o w n t h a t t h e vessel s t e e r i n g s y s t e m is a s l o w response system. Hence, t h e s y s t e m does n o t r e s p o n d t o s u d d e n v a r i a t i o n s o f t h e r e f e r e n c e a n d c o n t r o l i n p u t s . T h e r e f o r e , t h e p r o p o s e d p r e - f i l t e r c a n s l o w d o w n t h e vessel reference h e a d i n g a n d c o n t r o l i n p u t s t h a t are s l i g h t l y faster t h a n t h e vessel response a n d t h a t c a n i n t r o d u c e constrains o n t h e c o n t r o l l e r b e h a v i o u r . Hence, t h e large v a r i a t i o n s i n t h e vessel h e a d i n g r e f e r e n c e are r e d u c e d t h a t e v e n t u a l l y reduce large v a r i a t i o n s i n t h e c o n t r o l i n p u t s (i.e. t h e large r u d d e r angle and rate v a r i a t i o n s ) , w h e r e t h e p r o p o s e d p r e - f i l t e r c a n preserve t h e s t a b i l i t y o f t h e c o n t r o l l e r .

The o r g a n i s a t i o n o f this paper is as f o l l o w s . Section 2 c o n t a i n s a m a t h e m a t i c a l m o d e l o f vessel steering, w h i c h is c o n s i d e r e d f o r t h e c o n t r o l l e r design. T h e f e e d b a c k l i n e a r i s a t i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g s y s t e m is discussed i n Section 3. The c o n t r o l design is p r e s e n t e d i n Section 4. Section 5 contains a d e t a i l e d d e s c r i p t i o n o f t h e c o m p u t a t i o n a l s i m u l a t i o n s . Finally, t h e c o n c l u s i o n is p r e -sented i n Section 6.

3. A mathematical model of vessel steering

3.3. Sway-yaw sub-systems

T w o c o o r d i n a t e systems f o r vessel s t e e r i n g are p r e s e n t e d i n Fig. 1. The c o o r d i n a t e systems can be d e f i n e d as X„Y„Zn, t h e e a r t h fixed c o o r d i n a t e s y s t e m a n d XbV/^Zi,, t h e vessel b o d y fixed c o o r d i -n a t e s y s t e m . The vessel states are d e f i -n e d as u, surge l i -n e a r v e l o c i t y ; v, s w a y l i n e a r v e l o c i t y ; w , heave l i n e a r v e l o c i t y ; p , r o l l a n g u l a r v e l o c i t y ; q, p i t c h a n g u l a r v e l o c i t y ; r, y a w a n g u l a r v e l o c i t y ; X, surge f o r c e ; V, s w a y f o r c e ; Z, heave f o r c e ; K, r o l l m o m e n t ; M , p i t c h m o m e n t ; a n d N , y a w m o m e n t .

A s s u m i n g , t h e c o n s t a n t f o r w a r d speed, Uo, o f ocean vessel n a v i g a t i o n a n d t h e s w a y - y a w s u b - s y s t e m can be c o u p l e d , t h e vessel l i n e a r s t e e r i n g s y s t e m can be w r i t t e n as

m(v + Uor + Xci-) = Y^v + Yrr - l - YsSn -F Y^v - I - Yf-r

hr -F mxdv -F Uor) = N„v + Nrr -F NSSK + Ni,v + Nj-r ( 7 ) ' w h e r e t h e s y s t e m p a r a m e t e r s can be w r i t t e n as m , mass o f t h e

vessel; UQ, c o n s t a n t surge l i n e a r v e l o c i t y ; XQ. d i s t a n c e t o t h e c e n t r e o f g r a v i t y ; SR, r u d d e r angle; and k, i n e r t i a o f t h e vessel a l o n g t h e z-axis. F u r t h e r m o r e , the respective h y d r o d y n a m i c c o e f f i c i e n t s c a n be w r i t t e n as Yv, Vr, Ys, Vy a n d Yf, h y d r o d y n a m i c c o e f f i c i e n t s o f t h e s w a y m o t i o n a n d Nv, Nr, Ns, Ny a n d Nr, h y d r o d y n a m i c c o e f f i c i e n t s o f t h e y a w m o t i o n . The state space m o d e l d e s c r i b i n g t h e vessel l i n e a r s t e e r i n g system, i n t r o d u c e d i n ( 7 ) can be w r i t t e n as MRi>vr + NRiUo)l^vr = BRSR (8) w h e r e t h e s y s t e m states c a n be d e f i n e d as, Pvr=lv r f , a n d t h e m a t r i c e s o f MR, NR{UO), a n d BR can be f u r t h e r r e p r e s e n t e d as MR: NR{UO)--m-Yy mxc-Yr m x c - N v h-Nr -Yv mUo-Yr -Nv mxcUo-Nr (9) A s s u m i n g t h a t MR is p o s i t i v e d e f i n i t e t h e vessel l i n e a r s t e e r i n g s y s t e m i n ( 8 ) can be w r i t t e n as -MR-^NR{Uo)L'yr+MR ^BRSR (10) A = The s y s t e m m a t r i c e s A a n d B i n ( 1 0 ) can be r e p r e s e n t e d as Qii au g _ 021 022 ' ~ b2 (11)

(5)

62 LP. Perera, C. Cuedes Soares / Ocean Engineering 66 (2013) 58-68 w h e r e t h e respective c o e f f i c i e n t s o f m a t r i c e s / I a n d B i n (11) can be w r i t t e n as a i l = a i 2 = 021 = 022 = 01 = 02 = (Iz-Nr)Yy + {Yr-mxc)N, (m-Yi,)(Iz-Nr)-(mxc-Yi,)(mxc-Nr) {Iz-Nr)(Yr-mUo) + (Yi-mxc)(Nr-mxGUa) (m-Yv)(Iz-Nr)-{mxG-Yy)(mxc-Nr) (m-Yy)Nv + (Nv-mxc)Yv (m~Yi,)(Iz-Nr)-(mXc^ (m-Yv)(Nr-mxcUo) + -Yi,)(mxc-Nf) (Ni-mXc)(Yr-muo) (m-Yy)(Iz-Nf)-(mxc-Yv)(mXc-Nr) (Iz-Nr)Ys + (Yt-mxc)Ns (m-Yv)iIz-Nr)-(mXc-Yi)(mxc-Nr) {m-Yi,)Ns + (Nv-mXc)Ys (m-Yi,)(Iz-Nr)-(mxc-Yi,)(mxc-Nr) (12)

3.2. The modified Nomoto model

T h e s e c o n d - o r d e r l i n e a r N o m o t o e t al. ( 1 9 5 7 ) m o d e l c a n be d e r i v e d f r o m ( 1 2 ) b y e l i m i n a t i n g t h e s w a y v e l o c i t y , v, w h i c h is r e s u h i n g i n rir2i^ + ( r i -\-T2)r-\-r = l(R(T35R-\-SK) ( 1 3 ) w h e r e t h e r e s p e c t i v e vessel s t e e r i n g p a r a m e t e r s are c o n s i d e r e d as Tu T2, T3 a n d KR a n d can be w r i t t e n as r i T 2 + 1 2 = 011022-012021 O n -I-O22 0 1 2 0 2 1 - 0 1 1 0 2 2 Ö2 KR- 0 2 1 ^ 1 - 0 1 1 ^ 2 0 1 1 0 2 2 - 0 1 2 0 2 1 (14) A d e t a i l e d d e s c r i p t i o n o f t h e s t a b i l i t y o f vessel s t e e r i n g w i t h r e s p e c t to t h e above p a r a m e t e r s is p r e s e n t e d i n Perera a n d Guedes Soares (2012a, 2 0 1 2 b ) . The s e c o n d - o r d e r l i n e a r N o m o t o m o d e l , i n (14), can be r e w r i t t e n c o n s i d e r i n g the vessel h e a d i n g angle, 1//

5R) (15)

The second-order N o m o t o m o d e l i n (15) is adequate f o r course keeping manoeuvres, b u t this m o d e l may n o t be s u f f i c i e n t f o r course changing manoeuvres, w h e r e the nonlinear conditions i n vessel steering cannot be incorporated. Furthermore, the nonlinear steering conditions can generate stable and unstable steering conditions i n vessel navigation. Furthermore, the same vessel can demonstrate unstable steering conditions due to the sea or cargo conditions. Therefore, the vessel steering system presented i n (15) s h o u l d be m o d i f i e d to include n o n l i n e a r steering conditions as proposed i n A m e r o n g e n a n d Cate (1975), w h e r e the vessel heading rate, ij/, is replaced by a n o n l i n e a r f u n c t i o n KRH(4/). Hence, (15) can be w r i t t e n as

T2 hT2 KR hT2 (16) C o n s i d e r i n g t h e n o n l i n e a r f u n c t i o n t h a t c a p t u r e s vessel n o n -l i n e a r s t e e r i n g c o n d i t i o n s , w h e r e H(ij/) = n^tj/+ n2ii'^, i n w h i c h is c o m m o n l y r e f e r r e d as t h e s t e e r i n g characteristics f u n c t i o n . T h e r e -f o r e , ( 1 6 ) can be w r i t t e n as

1//^^' = -d\ii,-d2ia2>r' + aw) + diidiÖR -1- 5R) (17)

w h e r e t h e n o n l i n e a r s t e e r i n g p a r a m e t e r s are d e f i n e d as n , a n d 02, and t h e i n i t i a l p a r a m e t e r s o f vessel s t e e r i n g s y s t e m are d e f i n e d as (^1 = 7 7 + 7T' ^2 = 7 ^ a n d da = T3. Hence, (17) can be r e w r i t t e n as

V^^^^a^ijf^+a2ij/ + a3W + f)\SR-i-/32SR ( 1 8 )

w h e r e the final p a r a m e t e r s o f vessel s t e e r i n g can be d e f i n e d as

aj=-n2d2, a2=-n,d2, a 3 = - d ; , pi=d2, a n d P2=d2d3.

4. Feedback linearisation

4.1. Coordinate transformation One s h o u l d n o t e t h a t t h e n o n l i n e a r vessel s t e e r i n g s y s t e m d e r i v e d i n ( 1 8 ) consists o f r u d d e r a n g l e a n d r u d d e r rate e f f e c t s t h a t c a n n o t be c o n t r o l l e d s i m u l t a n e o u s l y by a s i m p l e c o n t r o l s y s t e m . F u r t h e r m o r e , t h e vessel s t e e r i n g s y s t e m i n ( 1 8 ) is n o t i n t h e a f f i n e f o r m as discussed p r e v i o u s l y . T h e r e f o r e , t h e n o n l i n e a r vessel s t e e r i n g m o d e l i n ( 1 8 ) c a n n o t be used f o r f e e d b a c k l i n e a r i s a t i o n . Hence, t o c o n v e r t t h e vessel s t e e r i n g s y s t e m i n t o a n a f f i n e f o r m a t (i.e. t o r e m o v e t h e r u d d e r rate effects f r o m vessel s t e e r i n g ) , a special algebraic c o o r d i n a t e t r a n s f o r m a t i o n is p r o p o s e d as X, = v / X 2 = V / X3=v-nSR ( 1 9 ) Hence, a p p l y i n g t h e c o o r d i n a t e t r a n s f o r m a t i o n i n ( 1 9 ) t o t h e n o n l i n e a r vessel s t e e r i n g m o d e l i n ( 1 8 ) can be w r i t t e n as Xl = v ^ = X2 X 2 = V> = X 3 -I- J'J Ö R X 3 = v ' ^ ' - ) ' l 5 f i = a i X 2 ^ + «2X2 -FaaXs + / ? 2 5 R - ) ' , 5 R (20) A s s u m i n g t h e c o n d i t i o n s o f = / ? 2 , t h e n o n l i n e a r vessel s t e e r i n g m o d e l i n ( 2 0 ) can be w r i t t e n as X , = X 2 X 2 = X 3 + / ? 2 5 R X3 = « 1 X 2 ^ - ^ 0 2 ^ 2 + « 3 X 3 - H / ? l 5 j ! ( 2 1 ) One s h o u l d n o t e t h a t t h e m a i n o b j e c t i v e o f t h e p r o p o s e d t r a n s f o r m a t i o n is t o r e m o v e r u d d e r rate e f f e c t s f r o m t h e n o n l i n e a r vessel s t e e r i n g s y s t e m a n d t o t r a n s f o r m t h e s y s t e m i n t o a n a f f i n e f o r m a t . T h e r e f o r e , t h e r u d d e r a n g l e as t h e m a i n c o n t r o l i n p u t is i l l u s t r a t e d i n the s y s t e m i n ( 2 1 ) . Hence, t h e n o n l i n e a r vessel s t e e r i n g s y s t e m p r e s e n t e d i n ( 2 1 ) c a n be w r i t t e n i n a f f i n e f o r m a t x = F(x) + C(x)Ux (22) w h e r e t h e respective s y s t e m m a t r i c e s can be w r i t t e n as T X = [Xi X2 X 3 j - , U X-2 m = X3 «1X2^ + « 2 ^ 2 0 = SR «3X3 C(x) = (23)

The o u t p u t o f vessel steering, t h e h e a d i n g angle o f t h e vessel, c a n be w r i t t e n as yx = h(x) = w (24) Hence, t o s i m p l i f y t h e n o n l i n e a r vessel s t e e r i n g s y s t e m i n ( 2 2 ) , t h e feedback l i n e a r i s a t i o n t e c h n i q u e is c o n s i d e r e d i n f o l l o w i n g s e c t i o n . 4.2. Relative degree As t h e flrst step o f f e e d b a c k l i n e a r i s a t i o n , t h e r e l a t i v e degree o f t h e s y s t e m s h o u l d be i n v e s t i g a t e d t o v e r i f y w h e t h e r the n o n l i n e a r vessels s t e e r i n g s y s t e m is i n p u t - s t a t e o r i n p u t - o u t p u t l i n e a r i s a b l e .

(6)

The f i r s t Lie d e r i v a t i v e c o n d i t i o n d e r i v e d i n ( 4 ) c a n be i m p l e m e n -t e d f o r -t h e n o n l i n e a r vessel s -t e e r i n g s y s -t e m i n ( 2 2 ) a n d c a n be w r i t t e n as Ö / ! ( X ) , LcL°h(x) = Lgh(x): dx -G(x) dhix) dX2 mm' dX3 = [ 1 0 0 ] = 0 (25) Since, t h e f i r s t Lie d e r i v a t i v e c o n d i t i o n , L c f . ° / ! = 0 , t h e n t h e second Lie d e r i v a t i v e c o n d i t i o n s h o u l d be c a l c u l a t e d a n d t h a t can be w r i t t e n as L C 4 / I ( X ) = L G dh(x) dy 'dim dXt Fix) dim dX2 dhix)' dX3 [ 1 0 0 ] = [ 0 1 0 ] X2 a,X2^ -I-«2X2 ^3 « 1 X 2 ^ - I - « 2 ^ 2 + « 3 X 3 = ^27^0 03X3 = Lc[X2] (26)

Since, t h e second Lie d e r i v a t i v e c o n d i t i o n , LcLlhix)*0, i t can be c o n c l u d e d t h a t t h e r e l a t i v e degree o f t h e s y s t e m is i n t h e o r d e r o f 2 a n d t h e n o n l i n e a r vessel s t e e r i n g s y s t e m is i n t h e o r d e r o f 3, w h e r e t h e r e l a t i v e degree is less t h a n t h e system order. T h e r e f o r e , t h e n o n l i n e a r vessel s t e e r i n g system is n o t i n p u t - s t a t e l i n e a r i s a b l e b u t i n p u t - o u t p u t l i n e a r i s a b l e w i t h r e s p e c t t o t h e s y s t e m o u t p u t (i.e. t h e vessel h e a d i n g ) . 4.3. Input-output linearisation T h e i n p u t - o u t p u t l i n e a r i s a t i o n a p p r o a c h f o r t h e n o n l i n e a r vessel s t e e r i n g s y s t e m i n ( 2 2 ) can be w r i t t e n as z, = L ° / i ( x ) = h(x) = x , Z 2 = 4 h ( X ) = dh(x) dx

_ dim dim) dhix)

— ÖX, dX2 dx. !<2 X3 = [ 1 0 0 ] « 1 ^ 2 -I- « 2 ^ 2 + "3X3 X2 X3 a i X 2 ^ + « 2 X 2 + « 3 ^ 3 = X2 (27)

w h e r e Z7 a n d Z2 are n e w l y d e f i n e d s y s t e m states. Hence, t h e c o n t r o l f u n c t i o n s o f a(x) a n d /?(x) i n ( 6 ) can be w r i t t e n as a(x) = Ljh(x) = LFLlh(x) [0 1 0 ] X2 X3 « 1 X 2 " + « 2 ^ 2 + « 3 X 3 = X3 /?(x) = L c 4 / ! ( x ) = L c t r / i ( x ) 0 = [ 0 1 0 ] / ? 2 | (28) Hence, t h e c o n t r o l l a w u n d e r i n p u t - o u t p u t l i n e a r i s a t i o n (i.e. f e e d b a c k l i n e a r i z a t i o n ) i n ( 5 ) can be w r i t t e n as Ux= -^i-Xi-l-Vx) P2 (29) a n d the i n p u t - o u t p u t l i n e a r i s a t i o n (i.e. f e e d b a c k l i n e a r i z a t i o n ) a p p l i e d vessel s t e e r i n g s y s t e m can be s u m m a r i s e d as Z , = Z 2 Z 2 = V x (30) I n t e r n a l d y n a m i c s o f t h e i n p u t - o u t p u t l i n e a r i s a t i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g s y s t e m can be w r i t t e n as X 3 - « 3 - | ) x 3 - « , Z 2 ^ - a 2 Z 2 = | v x (31) One s h o u l d n o t e t h a t t h e n o n l i n e a r vessel s t e e r i n g s y s t e m p r e s e n t e d i n ( 1 8 ) has b e e n s e p a r a t e d i n t o t w o sectors o f a s y s t e m o f l i n e a r i s e d d y n a m i c s i n ( 3 0 ) a n d a system o f n o n l i n e a r i n t e r n a l d y n a m i c s i n ( 3 1 ) b y i n p u t - o u t p u t l i n e a r i s a t i o n . T h e r e f o r e , t h e s t r u c t u r e o f n o n l i n e a r i n t e r n a l d y n a m i c s w o u l d n o t p l a y a n i m p o r t a n t p a r t o f t h e c o n t r o l l e r design process as t h a t c o u l d be separated f r o m l i n e a r d y n a m i c s . H o w e v e r , t h e c o n t r o l l e r d e s i g n process d e p e n d s o n t h e s t a b i l i t y c o n d i t i o n s o f i n t e r n a l d y n a m i c s . Hence, t h e s t a b i l i t y c o n d i t i o n s o f i n t e r n a l d y n a m i c s i n ( 3 1 ) s h o u l d be f u r t h e r i n v e s t i g a t e d t o observe t h e o v e r a l l s y s t e m s t a b i l i t y . 4.4. Internal dynamics

The stability conditions i n internal dynamics o f the i n p u t - o u t p u t linearisation applied nonlinear vessel steering system can be observed b y its zero d y n a m i c conditions as discussed previously. The zero d y n a m i c conditions o f internal dynamics o f the i n p u t - o u t p u t linear-isation applied nonlinear vessel steering system can be achieved t h e under the conditions o f

X, = z , = 0 X, = Z 2 = 0 Z2 = = 0 ( 3 2 ) A p p l y i n g t h e zero d y n a m i c c o n d i t i o n s i n ( 3 2 ) i n t o i n t e r n a l d y n a m i c s o f t h e i n p u t - o u t p u t l i n e a r i s a t i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g s y s t e m i n ( 3 1 ) c a n be v y r i t t e n as X 3 + ^ - « 3 X 3 = 0 "2 (33) One s h o u l d o b s e r v e t h a t t h e p a r a m e t e r c o n d i t i o n s i n ( 3 1 ) c a n be w r i t t e n as a, <0, 02 < 0, 0 3 < 0, /?, > 0 a n d /?2 > 0 f o r t h e n o n l i n e a r stable vessel s t e e r i n g s y s t e m . Hence, t h e c o n d i t i o n s o f

^ £ 1 - 0 3 ^ = J - - l - i + J - > 0 are a l w a y s s t r a t i f i e d . T h e r e f o r e , ( 3 3 ) is

H u r w i t z , w h e r e t h e zero d y n a m i c c o n d i t i o n s are a s y m p t o t i c a l l y stable, w h e r e t h e r o o t s o f i n t e r n a l d y n a m i c s are o n t h e l e f t - h a l f p l a n e o f t h e r o o t locus (Ogata, 1997). Hence, t h e stable d y n a m i c c o n d i t i o n s f o r the i n p u t - o u t p u t l i n e a r i s a t i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g s y s t e m can be c o n c l u d e d .

5. Controller design

T h e p r o p o s e d c l o s e d - l o o p c o n t r o l s y s t e m i n vessel s t e e r i n g is p r e s e n t e d i n Fig. 2. T h e s y s t e m consists o f t h r e e m a i n u n i t s p r e -f i l t e r , vessel s t e e r i n g system, a n d c o n t r o l s y s t e m . T h e p r e - -f i l t e r derives t h e r e f e r e n c e h e a d i n g angle, a n d t h e h e a d i n g rate w i t h respect to t h e r e q u i r e d h e a d i n g angle.

The s y s t e m c o m p a r e s t h e r e f e r e n c e h e a d i n g w i t h t h e a c t u a l h e a d i n g i n t h e vessel t o calculate t h e h e a d i n g error. T h e n t h e a n g l e d i f f e r e n c e (i.e. h e a d i n g e r r o r ) w i l l f e e d b a c k i n t o t h e c o n t r o l system, w h e r e t h e c o n t r o l s y s t e m w i l l generate a n a p p r o p r i a t e

(7)

64 LP. Perera, C. Cuedes Soares / Ocean Engineering 66 (2013) 58-68

Pre-filler Conlroller system

Vessel steering system

Fig. 2. The closed-loop control system.

c o n t r o l i n p u t t o t h e r u d d e r a c t u a t i o n system. T h e r u d d e r angle v a r i a t i o n s w i l l generate t h e r e q u i r e d s t e e r i n g c o n d i t i o n s t o achieve t h e d e s i r e d m a n o e u v r e s , w h e r e t h e a p p r o p r i a t e r u d d e r angle a n d r u d d e r rate c o n d i t i o n s generate t h e d e s i r e d h e a d i n g angle c o n d i t i o n s t h r o u g h t h e vessel s t e e r i n g system.

The vessel s t e e r i n g s y s t e m can be f o r m u l a t e d b y a n o n l i n e a r m a t h e m a t i c a l m o d e l t h a t has p r e v i o u s l y f o r m u l a t e d i n (18), w h e r e t h e c o n t r o l s y s t e m consists o f the p r o p o s e d c o n t r o l a l g o r i t h m s . T h r e e c o n t r o l a l g o r i t h m s c o n s i d e r e d i n t h i s s t u d y are t h e H u r w i t z , Lyapunov, a n d PID based c o n t r o l l e r s . The PID c o n t r o l l e r is p r o posed as a n a d d i t i o n a l s i m u l a t i o n to c o m p a r e t h e s y s t e m p e r f o r -mances u n d e r t h e L y a p u n o v a n d H u r w i t z based c o n t r o l l e r s i n t h i s s t u d y .

As p r e s e n t e d i n Fig. 2, t h e closed-loop c o n t r o l s y s t e m consists o f a p r e - f i l t e r , w h o s e m a i n o b j e c t i v e is to derive s m o o t h c o n t i n u o u s f u n c t i o n s f o r the vessel reference heading, y/^, and t h e h e a d i n g rate, i j / r , c o n s i d e r i n g t h e r e q u i r e d h e a d i n g angle, iff'-^. T h e r e f o r e , the p r e -f i l t e r -f a c i l i t a t e s s m o o t h t r a n s i t i o n o -f t h e re-ference h e a d i n g angle and h e a d i n g rate c o n d i t i o n f o r the c o n t r o l l e r . The p r o p o s e d p r e -f i l t e r can be w r i t t e n i n t h e -f o l l o w i n g -f o r m u l a r i o n

(34) w h e r e f r a n d cor are the p r e - f i l t e r parameters.

The p r o p o s e d c o n t r o l l e r s f o r the i n p u t - o u t p u t l i n e a r i s a r i o n a p p l i e d n o n l i n e a r vessel s t e e r i n g s y s t e m are discussed i n t h e f o l l o w i n g secrions. T h e c o n t r o l m e t h o d o l o g i e s are d e r i v e d c o n -s i d e r i n g t h e i n p u t - o u t p u t l i n e a r i -s a t i o n a p p l i e d n o n l i n e a r ve-s-sel s t e e r i n g s y s t e m i n ( 3 0 ) a n d (31).

5.1. Hurwitz based control

The respective h e a d i n g e r r o r c o m p o n e n t s i n vessel s t e e r i n g can be w r i t t e n as e2=Z2-y'r (35) w h e r e e,, h e a d i n g e r r o r ; 62, h e a d i n g e r r o r rate;i//r , r e f e r e n c e h e a d i n g a n d 1//^, r e f e r e n c e h e a d i n g rate. The d i f f e r e n r i a r i o n o f t h e respective h e a d i n g e r r o r c o m p o n e n t s i n ( 3 5 ) can be w r i t t e n as e i = Z l -Vr (36) I t is a s s u m e d t h a t t h e second d i f f e r e n r i a r i o n o f t h e r e f e r e n c e h e a d i n g i n t h e p r e - f i l t e r is n e g l i g i b l e , w h e r e i//r = 0. This c o n d i r i o n has b e e n a s s u m e d t o r e d u c e the c o n t r o l g a i n r e q u i r e m e n t t h a t w o u l d i n f l u e n c e t h e r u d d e r a c t u a t i o n system. One s h o u l d n o t e t h a t t h e r u d d e r a c t u a t i o n s y s t e m is associated w i t h r u d d e r angle and r u d d e r rate l i m i t a r i o n s . T h e r e f o r e , t h i s c o n d i t i o n c o u l d p r e -serve t h e c o n t r o l l e r s t a b i l i t y a n d ( 3 6 ) can be w r i t t e n as e, = z i -6 2 = 2 2 V r (37) The e r r o r d y n a m i c c o n d i r i o n s o f t h e vessel s t e e r i n g s y s t e m can be w r i t t e n as

w h e r e iu a n d l<2 are respective e r r o r d y n a m i c constants. T h e r e f o r e , t h e respective e r r o r d y n a m i c constants, l<, a n d k2, s h o u l d be p r o p e r l y selected t o s a t i s f y t h e H u r w i t z c o n d i t i o n s . W h e n , t h e respective e r r o r d y n a m i c constants, l<, a n d k2 are H u r w i t z , t h e n ( 3 8 ) converges a s y m p t o r i c a l l y t o zero, w h e r e t h e closed l o o p s y s t e m is e x p o n e n r i a l l y stable. A p p l y i n g t h e e r r o r c o n d i r i o n s i n ( 3 7 ) i n t o ( 3 8 ) results i n

62 + /<2e2 + /<iei = 0

Hence, ( 3 9 ) can also be w r i t t e n as

èi = 6 2 é 2 = - ' < i e i - / c 2 e 2 (39) (40) T h e r e f o r e , t h e n e w c o n t r o l i n p u t u n d e r t h e H u r w i t z c o n d i t i o n s c a n be w r i t t e n as Vx = -l<\e^-i<2e2 (41) Hence, c o n s i d e r i n g ( 4 1 ) t h e m o d i f i e d f e e d b a c k c o n t r o l l e r l a w d e r i v e d i n ( 2 9 ) can be w r i t t e n as iix=-^(-X3-/<iei -/<:2e2 ) ( 4 2 ) P2

5.2. Lyapunov based control

L y a p u n o v s t a b i l i t y t h e o r e m is one o f t h e n o n l i n e a r m e t h o d s t h a t guarantees t h e s t a b i l i t y o f a closed l o o p c o n t r o l s y s t e m . T h e r e f o r e , t h e s t a b i l i t y c o n d i t i o n o f a n o n l i n e a r c o n t r o l s y s t e m is o f t e n analysed b y L y a p u n o v s t a b i l i t y t h e o r e m . To analyse t h e s t a b i l i t y c o n d i t i o n s o f t h e vessel s t e e r i n g s y s t e m , a f o l l o w i n g L y a p u n o v c a n d i d a t e f u n c t i o n is p r o p o s e d V = l e j + i e l (43) The d i f f e r e n t i a t i o n o f t h e L y a p u n o v c a n d i d a t e f u n c t i o n i n ( 4 3 ) c a n be w r i t t e n as V' = e i è , -F 6262 (44) A p p l y i n g t h e e r r o r c o n d i t i o n s p r e s e n t e d i n ( 3 6 ) i n t o ( 4 4 ) c a n be w r i t t e n as V = (Z, -y/r)(Z2-Vr) + (Z2-V'r)Vz = (Z2-V/r)(Zl " V r + ^x) (45) C o n s i d e r i n g t h e c o n t r o l i n p u t as Vx = - Z l -F V r - Z 2 + (46) A p p l y i n g t h e c o n t r o l i n p u t ( 4 6 ) i n t o ( 3 9 ) can be w r i t t e n as V = - ( Z 2 - v . r ) ' < 0 (47) Hence, i t is o b s e r v e d t h a t ( 4 7 ) a l w a y s makes a n e g a t i v e s e m i -d e f i n i t e c o n -d i t i o n ( A i c a r -d i et al., 1995). C o n s i -d e r i n g LaSelle's t h e o r e m ( K h a l i l , 2 0 0 2 ) , t h e c o n d i t i o n o f V = 0 f o r z, = Z 2 = 0 is r e q u i r e d t o p r o v e t h a t the c o n t r o l l e r is g l o b a l l y a s y m p t o t i c a l l y stable. H o w e v e r , o n l y t h e c o n d i t i o n o f V = 0 f o r Z2 = 0 c a n be p r o v e n i n t h i s s i t u a t i o n , a n d t h e r e f o r e t h e c o n t r o l l e r c a n achieve s e m i g l o b a l s t a b i l i s a t i o n . The e s t i m a t e d r e g i o n o f a t t r a c t i o n , i2, t h a t preserves the c o n t r o l l e r s t a b i l i t y is g i v e n hy Q = Z2eR^ : V<c. The c o n s t a n t , c, c a n be chosen large e n o u g h , w h e r e V is r a d i a l l y u n b o u n d e d . The r a d i a l u n b o u n d e d n e s s i n V g u a r a n t e e s t h e b o u n d e d n e s s o f t h e e r r o r t h a t c o r r e s p o n d s t o any b o u n d e d i n i t i a l c o n d i t i o n s . Hence t h e largest i n v a r i a n t set, E, t h a t c o r r e s p o n d s t o a n y b o u n d e d i n i t i a l c o n d i t i o n s can be w r i t t e n as

(8)

Hence, c o n s i d e r i n g ( 4 6 ) , t i i e m o d i f i e d feedbacl< c o n t r o l l e r l a w d e r i v e d i n ( 2 9 ) can be w r i t t e n as

Ux = ^ ( - X 3 - Z , + Wr-22 + V'r) (49)

5.3. PID control

I t is obsei-ved t h a t m o r e t h a n h a l f o f t h e i n d u s t r i a l c o n t r o l l e r s are based o n PID o r m o d i f i e d PID t y p e a p p l i c a t i o n s (Ogata, 1997). I n PID c o n t r o l , an accurate s y s t e m m o d e l is n o t r e q u i r e d f o r t h e i m p l e m e n t a t i o n , w h i c h is an advantage over o t h e r c o n t r o l l e r s . The PID c o n t r o l l e r can be w r i t t e n as

Vx = -kpe^-ki e^(T)dT-koe2 ( 5 0 )

w h e r e hp, kj and ko are p r o p o r t i o n a l , i n t e g r a l a n d d e r i v a t i v e c o n t r o l gains, respectively. Hence, c o n s i d e r i n g ( 5 0 ) , t h e m o d i f i e d f e e d b a c k c o n t r o l l e r l a w d e r i v e d i n ( 2 9 ) can be w r i t t e n as

Ux = ^ ^ - X 3 - / < p e , - k , e, ( T ) d T - / < D e 2 ^ ( 5 1 )

6. Computational simulations

6.3. Summarised system dynamics

A s u m m a r y o f system dynamics i n n o n l i n e a r vessel steering t h a t has been used f o r t h e c o m p u t a t i o n a l simulations can be w r i t t e n as

X l = = X2 X2 = l/> = X3 + Ux = Vx X3 = « 1 X 2 ^ + «2X2 + ( " 3 - ^ ) ^ 3 + ^ V x (52) w h e r e "x = 5R = J - (-X3 + Vx) and n = ^ 2 6.2. Controller parameters T h e c o m p u t a t i o n a l s i m u l a t i o n s o f t h r e e c o u r s e c h a n g i n g m a n o e u v r e s o f a n o n l i n e a r vessel s t e e r i n g s y s t e m are p r e s e n t e d i n Figs. 3 a n d 4 . T h e t o p p l o t o f F i g . 3 consists o f t h e vessel r e s p o n s e o f r e f e r e n c e h e a d i n g , a c t u a l h e a d i n g u n d e r L y a p u n o v b a s e d c o n t r o l w i t h o u t r e f e r e n c e h e a d i n g r a t e (LBC w / o R H R ) , L y a p u n o v based c o n t r o l w i t h r e f e r e n c e h e a d i n g r a t e (LBC w / RHR), H u r w i t z based c o n t r o l ( H B C ) a n d PID c o n t r o l ( P I D ) , r e s p e c t i v e l y . O n e s h o u l d n o t e t h a t t h e H u r w i t z b a s e d c o n t r o l l e r has n o t b e e n u s i n g t h e f e e d b a c k o f t h e r e f e r e n c e h e a d i n g r a t e . T h e m a i n r e a s o n b e h i n d t h i s s e l e c t i o n is t o r e d u c e t h e l a r g e r c o n t r o l g a i n t h a t c o u l d be d e m a n d e d b y t h e c o n t r o l l e r f r o m r u d d e r a u c t i o n s . As t h e r u d d e r a c t u a t i o n s y s t e m is l i m i t e d b y t h e r u d d e r r a t e a n d r u d d e r a n g l e l i m i t a t i o n s , t h i s a p p r o a c h m a k e s r e a l i s t i c c o n d i t i o n s i n vessel s t e e r i n g . T h e b o t t o m p l o t o f Fig. 3 c o n s i s t s o f t h e v e s s e l r e f e r e n c e h e a d i n g e r r o r u n d e r t h e c o n t r o l l e r s o f LBC w / o RHR, LBC w / R H R , HBC a n d PID, r e s p e c t i v e l y .

The t o p p l o t o f Fig. 4 consists o f t h e vessel r u d d e r angle u n d e r t h e c o n t r o l l e r s o f LBC w / o RHR, LBC w / R H R , HBC a n d PID, respectively. T h e b o t t o m p l o t o f Fig. 4 consists o f t h e b o u n d e d d i s t u r b a n c e s t h a t w e r e i n t r o d u c e d i n t o i n t e r n a l d y n a m i c s o f t h e vessel s t e e r i n g s y s t e m t o observe t h e s y s t e m p e r f o r m a n c e u n d e r t h e above c o n t r o l l e r s . The b o u n d e d i n t e r n a l d i s t u r b a n c e s t h a t m o d e l l e d as w h i t e Gaussian noise d i s t n b u t i o n s are assumed i n t h i s study. T h e p r o p o s e d c o n t r o l l e r s are i m p l e m e n t e d o n t h e IVIATLAB s o f t w a r e p l a t f o r m .

T h e parameters f o r t h e n o n l i n e a r vessel s t e e r i n g s y s t e m are considered as a i = -0.3710 ( l / r a d ^ ) , a 2 = - 0 . 4 3 4 0 ( l / s ^ ) , a 3 = - 3 . 4 0 0 0 (1/s), /?! = 0.3500 ( l / s ^ ) , a n d / J 2 = 0 . 1 2 2 5 (1/s^). S o m e o f these p a r a m e t e r s are extracted f r o m the s t u d y ( A m e r o n g e n a n d Cate, 1975), a n d o t h e r parameters are generated b y t r i a l a n d e r r o r calculations c o n s i d e r i n g t h e vessel response u n d e r stable s t e e r i n g c o n d i r i o n s . I t is assumed t h a t t h e r u d d e r angle is associated w i t h t h e m a x i m u m l i m i t o f ;r/4 ( r a d ) as p r e s e n t e d i n t h e t o p p l o t o f Fig. 4, Vessel heading Reference heeijing L 3 C w / e R H R LBCw/BHR

-/'-

HBC PID

Reference heading error O.B , 0.5 0.-1 0.3 -0.2 - • 01 0 -0.1 -0.2 •0.3 -0.4 - LBC w/o RHR L B C v / f f l H R NSC 40 60 BO Time (sl

(9)

66

t h e r e f o r e t h e r u d d e r angle v a r i a t i o n s w i t h i n this r e g i o n are expected, w h e r e the c o n t r o l l e r can preserve its stability. Further-m o r e , the paraFurther-meters f o r the p r e - f i l t e r are considered as f r = 1-0 a n d ( O r = 1 . 0 .

T h e p a r a m e t e r s f o r t h e H u r w i t z c o n d i t i o n s are c o n s i d e r e d as k j = 0 . 1 ( l / s ^ ) a n d /<2=0.8(l/s). One s h o u l d note t h a t t h e L y a p u n o v based c o n t r o l l e r has n o t b e e n i n v o l v e d w i t h any p a r a m e t e r c o n d i t i o n a n d the c o n t r o l l e r is p u r e l y based o n t h e f e e d b a c k o f t h e vessel states o f vessel r e f e r e n c e h e a d i n g , h e a d i n g rate, vessel actual h e a d i n g a n d h e a d i n g rate. T h e PID c o n t r o l p a r a m e t e r s c o n s i d e r e d f o r the s i m u l a t i o n s c a n be w r i t t e n as kp^l.O (1/s^), k,=OA ( l / s 3 ) a n d k D = 1 . 0 ( l / s ) .

7. Discussion

One s h o u l d note t h a t a n o n l i n e a r vessel steering system c o n sidered i n this study is l i m i t e d to stable n o n l i n e a r steering c o n d i -tions. H o w e v e r , a n o n l i n e a r vessel steering system w i t h unstable n o n l i n e a r steering c o n d i t i o n s w i l l be considered as a f u t u r e s t u d y o f this w o r k .

A b r i e f o v e r v i e w o f t h e c o m p u t a t i o n a l s i m u l a t i o n results are f u r t h e r discussed i n t h i s section. The r e f e r e n c e h e a d i n g t h a t is g e n e r a t e d u n d e r t h e p r e f i l t e r to c o n s t r a i n t h e c o n t r o l p e r f o r -m a n c e is p r e s e n t e d i n t h e t o p p l o t o f Fig. 3. The vessel actual response u n d e r the L y a p u n o v based c o n t r o l l e r w i t h t h e reference h e a d i n g rate (LBC w / R H R ) generates t h e fastest p e r f o r m a n c e , w h e n i t converges to the r e f e r e n c e h e a d i n g . T h i s is m a i n l y due to t h e a d d i t i o n a l f e e d b a c k i n p u t o f t h e vessel reference h e a d i n g rate t h a t is used i n t h e c l o s e d - l o o p c o n t r o l l e r . H o w e v e r , t h e vessel response is associated w i t h an a d d i t i o n a l s l i g h t o v e r s h o t i n c o m p a r i s o n to the o t h e r c o n t r o l l e r s . F u r t h e r m o r e , t h e LBC w / RHR f e e d b a c k n o t o n l y generates t h e f a s t e r vessel response b u t also r e q u i r e s a larger r u d d e r angle t h a t is b e y o n d r u d d e r angle l i m i t a t i o n s . Some o v e r s h o o t c o n d i t i o n s can also be o b s e r v e d f r o m t h e r e f e r e n c e h e a d i n g e r r o r i n t h e b o t t o m p l o t o f Fig. 3 u n d e r t h e

same c o n t r o l l e r . As p r e s e n t e d i n t h e b o t t o m p l o t o f Fig. 4, t h e r u d d e r response o f LBC w / R H R goes b e y o n d t h e r u d d e r angle l i m i t a t i o n s , w h i c h is a d r a w b a c k i n t h i s c o n t r o l l e r .

T h e r e f o r e , t h e L y a p u n o v based c o n t r o l l e r w i t h o u t r e f e r e n c e h e a d i n g rate (LBC w / o RHR) is c o n s i d e r e d . T h e vessel response u n d e r t h e LBC w / o RHR generates t h e second f a s t e s t response w h e n i t is c o n v e r g i n g to t h e r e f e r e n c e h e a d i n g . H o w e v e r , t h e c o n t r o l l e r does n o t generate a s l i g h t o v e r s h o o t as f o r t h e p r e v i o u s case. T h e r e f o r e , t h e r u d d e r angle r e q u i r e m e n t o f t h e LBC w / o RHR is s m a l l e r c o m p a r e d t o t h e r u d e r angle r e q u i r e m e n t o f t h e LBC w / R H R . H o w e v e r , t h e c o n t r o l l e r LBC w / R H R has a f a s t e r response w h e n c o m p a r e d t o t h e c o n t r o l l e r LBC w / o RHR.

T h e vessel response u n d e r t h e H u r w i t z based c o n t r o l l e r (HBC) generates t h e s l o w e s t response w h e n i t is c o n v e r g i n g t o t h e r e f e r e n c e h e a d i n g . H o w e v e r , t h e c o n t r o l l e r does n o t generate a n o v e r s h o o t as f o r t h e f i r s t s i m u l a t i o n . The r u d d e r a n g l e v a r i a t i o n o f t h e HBC is s m a l l e r w h e n c o m p a r e d t o t h e r u d e r a n g l e r e q u i r e -m e n t s o f a l l o t h e r c o n t r o l l e r s . H o w e v e r , t h e vessel r e s p o n s e u n d e r t h e HBC is also s l o w e r w h e n c o m p a r e d t o t h e o t h e r c o n t r o l l e r s . T h i s is m a i n l y d u e t o t h e l o c a t i o n o f t h e r o o t s i n t h e c o n t r o l l e r u n d e r t h e H u r w i t z c o n d i t i o n s . One can argue t h a t t h e r e s p o n s e c a n be f a s t e r b y f o r m u l a t i o n o f t h e r o o t s l o c a t i o n i n t h e c o n -t r o l l e r . H o w e v e r , -t h e o v e r s h o o -t a n d o s c i l l a -t i o n c o n d i -t i o n s i n -t h e vessel r e s p o n s e w i l l g e n e r a t e w i t h t h e f a s t e r v e s s e l r e s p o n s e u n d e r t h e HBC.

T h e vessel response u n d e r t h e PID c o n t r o l g e n e r a t e s a m o d e r -ate response w h e n i t is c o n v e r g i n g t o t h e r e f e r e n c e h e a d i n g . H o w e v e r , t h e c o n t r o l l e r generates o v e r s h o o t as w e l l as o s c i l l a t i o n c o n d i t i o n s . One c o u l d argue t h a t the v a r i a t i o n s i n PID c o n t r o l gains c o u l d r e s u l t i n b e t t e r vessel s t e e r i n g s y s t e m responses, w h e r e t h e s e t t l i n g t i m e c o u l d also be c h a n g e d . I f t h e PID c o n t r o l l e r has a l a r g e r s e t t l i n g t i m e the response o v e r s h o o t w i l l be r e d u c e d a n d i f t h e PID c o n t r o l l e r has a s h o r t e r s e t t l i n g t i m e t h e n t h e response o v e r s h o o t w i l l be increased. T h e r e f o r e , t h i s is a g e n e r a l b e h a v i o u r o f PID c o n t r o l a n d an a p p r o p r i a t e s e t t l i n g t i m e w i t h r e s p e c t t o t h e o t h e r c o n t r o l l e r s are c o n s i d e r e d i n t h i s s i m u l a t i o n s , w h e r e t h e

Cytaty

Powiązane dokumenty

Jednak realizm tych miejsc zo- staje mocno podważony przez to, iż mieszkania tracą swoją funkcję prze- strzeni prywatnej i stają się przestrzenią przejściową, przez

Фэнтези – это жанр литературы, пароди- рующий, вбирающий и отчасти развивающий все фантастически образные жанровые системы: от

In this regard, several types of MPC algorithms have been applied to HVAC systems in the literature [13–15, 17–29] ; see also [30,31] and the references therein. In particular,

Różnorodność stylów i gatunków sztuki nie jest dziś projekcją czasu na przestrzeń współprzebywania; nie dzielą się style na postępowe i zacofane, nowe i przestarzałe;

Другим за перевагами є насіння вівса (RCA 2 = 1,71 ), а насіння ячменя є третім за значенням серед аналізованих культур;

[X] Kaplica Fugerów przy

Tomasz Zan otrzymał od organu administracyjnego pismo wzywające go do wniesienia nieuiszczonych należności tytułem kosztów postępowania administracyjnego wciągu 10 dni... Umowa

Therefore, the relaxation test results suggest that aged bitumen is more susceptible to stress accumulation, as its ability to relax stress decreases, and consequently is more