• Nie Znaleziono Wyników

Recrystallized and disaggregated limestones in the Triassic of Silesia

N/A
N/A
Protected

Academic year: 2022

Share "Recrystallized and disaggregated limestones in the Triassic of Silesia"

Copied!
16
0
0

Pełen tekst

(1)

A N N A L E S D E L A S O C I É T É G É O L O G I Q U E D E P O L O G N E

Tom (V olum e) X L ! — 1971 Z eszyt (F ascicule) 3 K raków 1971

STANISŁAW DŻUŁYŃSKI \ ANDRZEJ KUBICZ 2

RECRYSTALLIZED AND DISAGGREGATED LIMESTONES IN THE TRIASSIC OF SILESIA

(PI. XX—XXIII and 5 Figs.)

ZREKRYSTALIZOWANE I ROZSYPLIWE WAPIENIE W TRIASIE ŚLĄSKA OPOLSKIEGO

(Taibl. X X —XXIII i 5 fug.)

A b s t r a c t : The Middle Tiriassic Karohowice Beds of Silesia have been locally altered into a friable and porous aggregate of coarse ca lo te crystals. The alteration look place iin two successive stages: 1) conversion of finengrained calcium arbanate into a coarse calcite mosaic, 2) dissolution at the individual crystal boundaries, and .subsequent disaggregation. The second change 6s largely the product of attack by meteoric waters, and is o í recent origin. The ireorystalfeatioin is regarded as a -remote manifestation of changes wlhiich, further to the east, and at ¡the close of Tiriassic time, resulted indolomi'tii:zation and emplacement of sulfiide ores. Some specific karst featu­

res, which tend to develop in altered limestones, are briefly discussed.

INTRODUCTION

Dolomites and, to a m uch lesser extent, lim estones a r e liable to' disaggre­

gate into a friable mass of crystals through recry Stallization and dissolution a t the individual crystal boundaries. The disaggregated oir „sanded” dolomi­

tes, as they iare often term ed ( S e e e . g. H e y l e t al. I'9i5i9), are know n to occur amoirijg waifl-rock alterations a t th e contact w ith ore-bodies (see e. g.

L o v e i r i n g et al. 1949). In such cases the disaggregation is ascribed to the action of hydrotherm al solutions. O utside the realm of m ineralization, other processes, such as w eathering, solvent action of meteoric w ater or bacterial activity, are called uipon to explain the granular disaggregation, (see e. g.

A n d¡ r ¡u s o v li955, Z g o g o v i c 1966, C a u m a r t i n 1963). In y et other instances the oirigitn of 3,sanded” oir „p o n d e red ” dolom ites is sought in tecto­

nic processes o r in a combination of tectonic crushing and subsequent disso­

lution (Z a 1 a f f i 1969).

V ery little work hias been done o n sim ilar alterations in limestones, and geologic literatu re oonta'ilns only b rief references to their existence (L o- v e r i n g et al. 1;949, fide H e y l e t a ! Ii959, H r o v a t 1953, Z g o g o v i c 1964). The following rep o rt is largely devoted to this question and deals w ith extensive alterations observable in th e Middle Triassic Karchowice

t

1 Kraków, ul. Grodzlka 64. Instytult Geografia PAN Zakład Geomorfologii.

2 Kraków, al. Midkiewicza 30. Zakład .Złóż Surowców Skalnych AGH.

(2)

Beds of Silesia. The end-product of these alterations is a friable or w eakly cem ented m ass of recrystaH ized calcite crystal's, w hich will be referred to as disaggregated or „sanded” lim estone (in accordance w ith th e term already applied to sim ilarly altered dolomites). The altered lim estones in the K ar- chowice Beds have been briefly m entioned by A s s m a n n (1944), who attrib u ted their crum bly appearance to1 th e action of m eteoric waters.

The aim of the presient study is to provide m ore inform ation on th e origin'of alterations in th e K archow ice lim estones. The exam ples cited are from the region of K am ień Śląski in Silesia (south-east of Opole). However, sim ilar alterations occur in o th er places, an d th e ones described here may be regarded as representative fo r the Karchowice limestones.

GEOLOGIC SETTING

The Karchowice Beds belong to the u p p er p a rt of the Low er M uschelkalk (A s s m a n n li944, S i e d 1 e c k i 1948). They consist of m edium bedded clastic lim estones an d r a re plano-convex bioherms. The la tte r are m ade up of small colonial corals, crinoids an d hryozoąrians. Microscopic study of the u n altered lim estones shows th at th ey a re chiefly composed of intraclasts of both, organic and inorganic derivation, cem ented by m ierite and sparry calcite. The rock as a whole is a relatively p u re ^calcium carbonate w ith small am ounts of MgO (up to 3 %), iron oxides an d a negligible content of terrigenous m aterial.

H igh porosity, chiefly of secondary origin, is one of the characteristic properties of th e K archowice limestones. Countless, sm all solution openings and spongework cavities give to the lim estones a cavernous appearance. A t present all these cavities a re dry, and only during w et w eath er are som e of them filled w ith percolating rain w ater.

The total m axim um thickness of th e Karchowice Beds is about 15 m.

They a re underlain by thin-bedded lim estones .and m arls (the T erebratula Beds), w hich are practically im perm eable to w ater.

PETROGRAPHICAL CHARACTERISTIC OF ALTERED LIMESTONES

An outstanding a n d unique feature of th e K archow ice Beds is th eir display of reorystallized and disaggregated lim estones. Megascopically such lim estones exhibit a characteristic ru sty coloration, succrose appearance and a highly increased porosiły. U nder the microscope they consist of a mosaic of anhedral and hypadiomorphic crystals w ith ab u n d an t solution voids a t th e crystal boundaries (PI. XX, fig. 1— 4). The grains are erystalcgraphi- cally random ly oriented, an d are significantly larger than those of the unaltered rock. The latter, as seen in th in sections, is chiefly m ade up of m ierite sm aller than 0.005 m m in average size. Sporadically occurring, sp a rry calcite varies in diam eter 'entirely from 0.02 to 0.05 mm. In contrast, the altered or „sanded” lim estone consists entirely of crystals varying in size from 0.02 to 0.5 mm.

The crystal mosaic of the altered lim estones is entirely devoid of any traces of prim ary sedim entary structures. Only faint relics of earlier gene­

rations of calcite are still recognizable in some of the new ly form ed crystals, although in m ost of them the alteration is complete. The mosaic crystals m ay also contain sm all euhedral rhom bs of calcite (PI. XX, fig. 2).

(3)

The areas affected toy recrystallization are n o t controlled by prim ary structures (pervasive recrystallization), and th e crystals grew unselectively and sim ultanouSly from a g reat num ber of centers.

The developm ent of secondary vug-porosity is a n im p o rtan t m odifica­

tion im posed upon th e moslaic calcite. The porosity, as seen in thin-sections, is present in th e form of variously shaped vugs, w hich cover ca 20% of th e area occupied by the calcite mosaic. The voids m ay occur both, w ithin the crystals and betw een th em i(Pl. XX, fig. ¡3, 4). Sm all voids v ary in size from 0.1 to 0.3 mm. T here a re also larger openings le ft a fte r th e dissolution of individual crystals or groups of 'crystals.

There is a nptalble concentration of .iron oxides in th e altered p arts of the Karchowice limestones. The iron oxide coats the crystal surfaces, and m ay be so abundant locally, as to fill some of th e vugs. I t th u s plays th e

role of both pigm ent and cem ent.

The sanded lim estones oomtain clusters of dnusy calcite cryistals (PI. XXI, fig. 1) which m ay be regarded as indicative lof opennspace 'crystallization.

Those nodular bodies, as w ell as the composing oalcite 'crystals are large and some of them m ay m easure several centim eters in diam eter.

A part from an increase in iron content, the chem ical 'composition of th e rock has been little affected by th e alteration. The in fra -red spec- tu rm of the altered lim estones shows th e presence of calcite (712 cm -1) w ith o u t any recognizable quantities of dolom ite (Fig. 1).

80

Fig. 1. Widma absorpcyjne w ¡podczerwieni z przekirystalizowanyicih i rozsypliwych w a­

pieni ikarch'owickioh z okolicy Kamienia Śląskiego

Fig. 1. Infrared spectrum of altered Kar- choiwice limestones. Samples from Kamień

Śląski

1000 900 800 700

F R E Q U E N C Y [ c m 1]

(4)

SPATIAL DISTRIBUTION AND THE SHAPE OF ALTERED LIMESTONES

A lthough certain, parts of the Karchowice lim estones are selectively altered in preference to others, the reason for this is not apparent from the lithological composition. N either is th e relation to joints conclusive in this respect. Sometimes the alteration affects the whole mass of the limestone,

Fig. .2. Zmiany w wapieniach karchowiokich. 1 — przekryistalizowane i rozsypliwe wapienie o strukturze •reliktowej. Porównaj Tabl. XXÏ, Æiig. I- à 12; .2 — wapienie nie zmienione; 3 — jamy krasowe wypełnione iłami. Kamień Śląski, kamieniołom w e wsi Fig. 2. Alterations in the Karchowice limestones.. 1 — altered lim estone w ith „sanded branchwork” structures. Compare w ith Pl. XXI, Fiig. 1 and 2; 2 — unaltered lim e­

stone ; 3 — clay filled kairst cavities. Kaimień Śląski

Fig. 3. Zmiany w wapieniach kardhowickich. 1 — przekrystalizowany wapień zm ie­

niony całkowicie w rozsypliwą masę kryształków kalcytu; 2 — wapień przekrystali­

zowany i rozsypliwy o strukturze reliktowej. Odsłonięcia na ,pd. od stacji kol. Kamień Sląsiki. Porównaj Tabl. XXIII, fig 1

Fig. 3. Alterations in the Karchowice limestones. 1 — sanded limestone; 2 — partly sanded limestone w ith sanded branchwork structure. Kamień Śląski. Compare w ith

iPl. XXIII, Fig. II

(5)

so th at it is difficult to draw a separation line betw een th e u n altered and altered rock. O ften enough, however, such a line is recognizable, and th e .altered parts of the rocks take th e form of m ore o r less clearly delineated bodies. These bodies may have alm ost any shape. They m ay be rudely tab u ­ lar, irregularly dom ed or chim ney-like (PL X XIII, f;ig. 1, Fig. 3).

STRUCTURES RESULTING FROM PARTIAL ALTERATION

The degree of alteratio n expressed by volum etric proportion of altered to unaltered rock varies w ithin the previously described bodies. It may be so .small th a t m uch of th e rock characteristics rem ain unaffected, or so' profound th a t all relics of the. prim ary lim estone are obliterated. Betw een these two extrem es th e re are all possible gradations.

: The incipient alteratio n is m arked by the appearance of isolated patches or spaces filled w ith porous calcite mosaic. These spaces are variously shaped and sized b u t volum etrically subordinate to the unaltered rock. In m ore advanced stages, the altered and unaltered lim estones are p resen t in m ore or less equal quantities. U nder such conditions, the ,,sanded branch- w ork” is form ed (PI. XXII, fig. 1, ¡2). It resem bles the p attern of sponge- w ork cavities in its com plexity, close spacing and th e irreg u lar m anner by which the altered parts of the rock ¡are m utually interlocked. W here fu rth e r developed, the altered lim estone consists oif disconnected relics of th e unaltered rock floating in a mass of coarse calcite crystals. The relics exhi­

b it surfaces etched by recrystallization, b u t reta in m ost of th eir original petrologic characteristics. They are not surrounded by cockade structures and, as seen in thin sections, the contacts b e tw e e n 'th e unaltered m icro­

crystalline rock and the recrystallized mosaic calcite may be ab ru p t (PI.

XX, fig. 1).

^ It is of interest to no te th at individual relics m ay possess their own system of sm all open cracks. These cracks m ay be a ttrib u te d to the stress redistribution consequent upon the solutkm al rem oval o fcalciu m carbonate.

■ The .ultimate, developm ent of disaggregation leads to total transform a­

tion of lim estones into a w eakly cem ented mass of crystals. Not only does th e original tex tu re disappear b u t even relics and bedding surfaces a re rendered obscure or altogether obliterated.

PROCESS OF ALTERATION

Field evidence shows th a t th ere is a close spatial coincidence betw een the recrystallTzed and sanded limestones. The „sanded” lim estone is always th e recrystallized one, an d the ire crystallization precedes th e disaggregation.

T he la tte r is sim ply due to solutionial w idening of contacts betw een the crystal's, facilitated by an increase in porosity w hich follows the recrystalli­

zation (see experim ental investigationis by O h 1 e 1955).

N ear th e ground surface, th e solutional disaggregation is largely due to th e action of meteoric soil w aters ( A s s m a n n 1944), aided by frost. The present incoherent character of th e recrystallized Karchowice lim estones is, thus, of recen t age and, the altered .rocks are often spoken of as w eath er­

ed. The recent origin of disaggregation, however, does not debar the possibility th a t th e vug-porosity m ight have been, at least partly, produced soon a fte r recrystallization. It is known th a t slowly moving aqueous solu­

(6)

tion, which produces recrystafllization, m ay in the course of tim e redissolve th e recrystallizied rock.

While th e problem of salutional disaggregation is relatively simple, the origin of recryistallization, presents a difficult question. A troublesom e b arrier to its solution is th e fact th at, to díate, th e calcite-to- -calcite conversion is ,,'largely a n unsolved enigm a” (C h i 11 i n g a r et al.

1967, p. 217).

The recrystallization of the Karchowice lim estones is undoubtedly epi­

genetic and la te r than all early diagenetic alterations. This is show n by th e pervasive character of recrystallization and considerable siize of the recry- staUized bodies w hich miay extend vertically through m uch of the w hole stratigraphi'ic unit.

Binocular microscopic exam inations, of polished and etched surfaces,, a n d th e ¡study of th in sections and acetate peels, disclose „tongues” or

„fronts” of recrystallization extending along innum erable sm all diagenetic veinflets, stylolithic seam s and m inor secondary fractures which transect th e lim estone (PI. XXI, fig. 1, 2). These p rim ary and secondary discontinu­

ities served as loci in themselves, an d tran sm itted th e process of recrystalli- zation. Much of these discontinuities are very small on th e scale of alte ra ­ tions an d repeated a t distances so sm all th a t they m ay b e regarded as pene­

trativ e features in the m eaning of T u r n e r and W e i s s (1963). T his explains w hy th e factors controlling the progress of recry stabilization a re not readily visible to th e naked eye, and are n o t apparent from the shape of relics (PL XXII, fig. 1, 2).

Inadequate data m ake it impossible to determ ine w ith assurance th e causes and tim e of re cry stallization.

There are, however, certain indications w hich are relevant to this pro­

blem. These a r e :

1) th e recrystallizatiian in th e Karchowice lim estones is epigenetic 2) th e recrystalliziation is chiefly localized in one lithostratigraphic unit, i.e. in th e Karchowice Beds, w hile lithologically a n d petrographically sim i­

la r beds, e.g. th e Górażdże Beds are devoid of com parable alterations.

3) th e occurrence of sanded limestones, in general, is a very ra re phe­

nomenon, hence th e ir unusual abundance in the K archowice Beds implies, unusual causes ,and conditions, w hich a re not commonly encountered.

Bearing these points in m ind it is suggested th a t th e irecrystallization has.

been accomplished th ro u g h th e action of unusual ground and/or connate w aters. This probably took place a t th e ¿Lose of Trilaissi'c tim e, during th e period of extensive dolom itization a n d ore-minerailization of the T riassic rocks situated fu rth e r to the east (Craoov—Silesian ore—‘district). Although, th e available d a ta n e ith e r substantiate nor disprove th e above suggestion, these fit th e above indicated points, an d are consistent w ith th e know n facts 'concerning th e ¿inc-lead m ineralization in th e Cracov—Silesian region..

This m ineralization w as accompanied b y a ‘considerable horizontal tran sfer of hydrotherm al solutionis over som e im perm eable horizons (see B o g a c z et al. 197>0). It seeons logical to assum e th a t th e introduction of such solu­

tions m ay have initiated a w idespread horizontal flow of ground and con­

nate w aters w hich Caused the recrytstallization. It m ay b e appropriate a t th is point to indicate th at, a t th e tim e of oiTe-emplacement an d dolom itiza- tion, most of th e fau lts w hich transect th e Triassic rocks ’had n o t y et deve­

loped. Therefore th e mobilized ground w aters could easily m igrate over considerable distances, taking advantage of porous lim estones. The Karcho­

wice Beds, being stratigraphieally th e highest perm eable rocks w ith in the

(7)

T riassic sequence of th e region investigated, w ere m ost likely to invite th e passage of ground water's w orking their w ay to the surface.

In attrib u tin g the recrystallization tio the agency of ground w aters a t th e close of Triassic tim e, it is realized th a t they differed in composition from the present-day ■ground w aters. T here is a good reason to suppose th a t th ese p rim ary ground w aters 'contained m uch of th e connate 'brines e n ­ trapped during sedim entation. They also w ere enriched in Mg, as evidenced by the presence of 'prim ary dolostones. T he ground w aters having such a composition can convert lim estones and prim ary dolom ites in to th e epige­

netic dolomites. This happens, in particular, w hen th e wiaters are heated to an appropriate te m p eratu re (see L o v e r i n g 1(969). In th e p rese n t au th o rs opinion, th e late Triassic connate ground waters, heated by th e introduction of hydrotherm al solutions, w ere p artly 'responsible fo r th e form ation of the so called ,,ore-bearing dolom ite” in the Triassic of th e 'Cracov-Silesian re ­ gion. The origin of this dolom ite is still a m oot question; how ever, its epi- gentic character is evident (for references and discussion see S 11 w i n s k i 1969), Distally from the sources of the hydrotherm al solutions, th e m obili­

zed connate w aters caused extensive recrystallization of lim estones. The recrystallized sanded Karchowice limestones, as seen from th is p o in t of view, are features characteristic of the o u ter lim its of the ore-bearing dolo­

m ite. Their appearance reflects th e alterations produced ¡at low tem p era­

tu re s and higher Ga/Mg m olar ratios. It also testifies to th e epigenetic origin of dol'omitization. It m ay be w orth noting th a t very sim ilar tran sfo r­

mations, although on a m uch .smaller scale, are know n to occur as w all-rock alterations in lim estones adjacent to oire-biodies (H a g n i a n d S a a d a l l a h 1965).

DEVELOPMENT OF CAVITIES IN DISAGGREGATED LIMESTONES

The altered p arts of the Karchowice lim estones offered an easier access to percolating w ate r and becam e m ore affected by erosion th a n the u n alte­

red rocks. This had a n im p o rtan t bearing on th e developm ent of some k arst feature in the Karchowice Beds.

It can be dem onstrated th a t a p a rt of th e spdngework cavities, which riddle the Karchowice lim estones, evolved from th e sanded branchw ork previously described (P. XXII, fig. 1;, 2). This is shown by th e existence of all possible transitional stages betw een the sanded branchw ork and spon­

gework cavities. M oreover th e walls of th e spongework cavities coincide closely w ith th e form er boundaries betw een the sanded and u n altered parts of the rock (PI. XXIII, fig. 2, Fig. 4). This p a tte rn of coincidence is so consistent th a t i:t can scarcely b e fortuituous. Therefore, the sanded branchw ork m ay be regarded as a n em bryonic stage of some spongework cavities. No inference, however, of general applicability is here made, since even in the Karchowice lim estones th ere are spongework cavities w hich do not show any 'apparent relatio n to th e process of disaggregation.

W ith progressing enlargem ent of spiongework cavities th e supporting fram ew ork m ay be dissolved o r collapse, iresulting an larg er openings .(Fig. 5). The bottom s of such openings are littered w ith fragm ents of the disrupted fram ew ork an d relics originally suspended in a m ass of calcite crystals. The relics and fragm ents exhibit solutionally rounded edges, and th eir accum ulation represents a specific type of cave filling w hich does not fit well into any accepted category of cave deposits. This accum ulation can-

(8)

n o t be eq.uoted w ith th e collapse breccia, form ed by mass failure nor w ith th a t resulting from progressive spailing and slabbing of rock fragm ents. I t constitutes a specific residual product, although it is not th a t which most speleologists w ould have in m ind w hen speaking about residual deposits.

W orth noting are openings form ed along th e u p p er boundaries of large sanded bodies ((Fig. 5). A ten tativ e explanation of th e origin of such cavities is th a t th ey w ere initiated by the settling of sanded masses d u e to the solu- tionai rem oval of calcium carbonate.

The cavities so far discussed are som ew hat unusual, in th a t th e m echa­

nical rem oval of calcite crystals played an im portant role in th e ir excava­

tion. A considerable pairt of these crystals w ere then deposited w ith in th e cavities them selves and1 incorporated in to th e filling.

Fig. 4. Labiryntowe kanaliki krasow e (rozwinięte w ¡rozsyipliwym iwapien'uii o strukturze reliktow ej. Porównaj

Tabl. XXIII, fig. 2

Fig. 4. Sp'omgewcxrk cavities evolved from sanded branch work. Compare

PI. XXIII, Fig. 2

Fig. 5. Jama krasowa rozwinięta w stropie zmienionych wapieni. 1 — czwartorzędowe- wypełnienie ilastte; 2 - - nagromadzenie reliktów nie zmienionego wapienia; 3 — prze- krystalizowany i rozsyipliwy wapień z reliktami. Kamień Śląski, odsłonięcia na pd. od”

st. kolejowej

Fig. 5. Clay fidded opening formed along the upper margin of a sanded body. 1 — c l a y fill (Pleistocene); 2 — accumulation of relics; 3 — sanded limestone with relics. Ka­

mień

(9)

CONCLUSIONS

The foregoing rem arks on k arst features, .although n o t of im m ediate consequence for the m ain su'bjedt of this .article, w ere given to indicate some of th e m any im plications which .arise from the study of disaggregated and recrystallized lim estones. The problem of sanded lim estones leads also to the question of some oire-structures. The recrystallized lim estones m ay serve not only as conduits inviting deeper penetrations of aqueous solutions b u t as superb host rook a n d reoep'tadles for various ores. In th is regard, the sanded branchw ork and rela ted structures are of in te re st for th e lig h t they m ay throw on some „breccia-like” ore-structures. T he reorystallization of limestones, if envisaged as forerunning th e fro n t of dolomitizatiom, m ay faciliate and clear th e w ay for m etasom atic replacem ent of calcium carbo­

n ate by dolomite. These as w ell as m any o th er questions w hich arise in connection w ith sanded lim estones constitute a prom ising field of in q u iry for fu tu re investigations.

Institute of Geography Polish A ca d em y of Sciences in Cracow

D ep a rtm en t of G eomorphology A c a d e m y of Mining and M etallurgy in Cracow

D ep a rtm en t of Nonm etallic Deposits

WYKAlZ LITERATURY REFERENCES

A n d r u s o v D., (1955), O povode Sloven sky ch dolorrotov a dolomitovych „pieskov”'

¡(On the origin of dolomites and doiloimiitie isandis In SLovalkia). Geol. Shorn. Slo- ven sk iej Akad, Vied., VI, 3—4, pp. 1®4—1119*8. Bratislava.

A s s m a n . n P. (11944), Die Stratigraphie deir Ob er acihilesich en Tirias. Tl. II. Der Mu- schelkialk. A bh. Reichsam ts Bodenforsch. N. F., H. i208, (pp. 1—¡125. Berlin.

B o g a c z K., D z u l y r i s i k i S., H a r a r i c z y k C., (1970). Ore-filled hydrothermal karst features in the Triassic rooks of the Cracow-Silesian region. A cta geol. pol.

v. 20, No. 2. pp. 247—2'07. Warszawa.

C a u m a r t i n V. (1.963), Review of the microbiology of 'underground environments.

Biul. National Speleological Soc. v. .2il, part il, pp. 1;—‘14. Arlington.

C h i 11 i n g a r G. V., B i s s e l 1 H. J., W o l f K. H. (1967), Diagenesis of carbonate rooks,

—. in Diagenesis in Sediments pp. 179—322, ed. Larsen G. and Chillmgar G. V. — Developments in Sedimentology 8. Elsevier Publ. Comp. Amsterdam, London.

H e y 1 Jr. A. V., A g n e w A F .., L y o n s E. J., B e h r e Jr. C. H., (Ii95t9). The Geology of Upper Mississippi Valley Zin'c-Lead District. U.S. Geol. Surv. Profess. Paper 309.

Washington.

H r o v a t A. (1953). Kraslka Ilovica, njeme iznacilnoisti in vpliv na zigradbe. p. 91, Lju­

bljana.

L o v e r i n g T. S. (1960), The .origin of hydrothermal and low temperature dolomite*

Econ. Geology, v. 64, No 7, pp. 743!—754.

O h l e E. L. (1951), Influence of permability o.n ore distribution in limestone and do­

lomite. Econ. Geology, part II. v. 46, pp. 871—'908.

(10)

R i c h a r d D. H., S a a d a l l a h A. A., (1®65), Allteraition of host rock limestone adja­

cent to Zimie-Lead ore deposits in the triJstate distract, Missouri, Kansas, OMaho- ma. Econ. G eology v. 60, pp. 1607i—Ł0119.

S i e d l e c k i S., (1940), Zagadnienia stratygrafii morskich osadów triasu krakowskie­

go. (Problems of stratigraphy of marine Tiiiassdc in the Cracow area). Rocz. Pol.

Tow. Geol. 18, (za rok IMS). Kraków.

Ś l i w i ń s k i S., (1I969), Rozwój dolomitów kruiszconośnych w obszarze krakowsko- -śląskim (The development of ore-bearing dolomites in the Cracov-Silesian area).

Pr. Geol. PAN, Krakow, no. 07 (Polish w ith English summary).

T u r n e r F. J., W e i s s L. E., (Ii9i03), Structural analysis of metamorfic tectonites.

p. 530. Me G rew -H ill Book Comp. New York,

Z a 1 a f f i M,, (10491), Osservazioni isu ailicuni aifioramenti di forina di dotamia al bordo meridiomale ¡del Matese. Boll. Soc. Geol. Ital., 88, pp. 101—¡170. Roma.

Z g o g o v e c D., ¡(Idee), Hiiidrqgeoilaska .uloga dolomita ai diinenskom karsitu. V esn ik inżenjerska geologija i hidrogeologija. VI. pp. 5—<1106. Beograd.

STRESZCZENIE

W apienie karchow ickie podlegają przemianom, w których następstw ie pierw otnie lity i spoisty w apień przeistacza się w rozsypliw ą skałę o żółt awo- -rdzaw ym zabarwieniu. Skała ta różni się zasadniczo od m acierzystego w a­

pienia. Składa się ona z mozaiki kryształków kalcytu o zarysach ksenom or- ficznych. K ryształki te swoimi rozm iaram i (0,02— 0,5 mm) w ielokrotnie przewyższają ziarna, z których zbudow any jest n ie zm ieniony w apień k ar- cho wieki (por. Tabl. XX, fig. 1). Znam ienną właściwością tej mozaiki jest w tórna szczelinowa porowatość. Pow stała ona w wyiniku rozpuszczania kal­

cytu, i to zarówno w obrębie powiększonych kryształów, jak również wzdłuż ich krawędzi (Tab. XX, fig. 3).

Przem iany, jakim podlegał w apień karchowicki, .a k tóre doprowadziły do jego obecnej rozsypliwośoi są zatem w ynikiem : 1 — rekrystalizacji, 2 — osłabienia spoistości m iędzy now o powstałym i kryształam i w w yniku rozpuszczania przez krążące wody.

Wiek rekrystalizacji, która poprzedziła utw orzenie się porowatości szcze­

linowej oraz rozpad wapieni© jest tru d n y do ustalenia. Przypuszczalnie n a ­ stąpiła ona u schyłku triasu, równocześnie z dolomityzacją i okruszcowa- niem skał triasow ych w obszarze śląsko-krakowskim. Powodem rek ry stali­

zacji mogła być m igracja w ód gruntow ych, w których skład wchodziły głów­

nie wody przychw ycone w czasie sedym entacji.

Instytut Geografii P A N Zakład Geomorfologii K r a k ó w

Zakład Złóż

S u row ców Skalnych A G H K ra k ó w

(11)

OBJAŚNIENIA TABLIC EXPLANATION OF PLATES

Tablica — Plate X X

Fig. 1. Granica między wapieniem nie zmienionym (M) i zrekrystalizowanym (R). Ni­

kole skrzyżowane

Fig. 1. Boundary 'between the unaltered (M) and recrystallized (R) limestone. Crossed niçois

Fig. 2. Wapień przekrystalizowany z silnie zrośniętymi ksenomorficznyml ziarnami kalcytu. Nikole równoległe

Fig. 2. Recrystallized limestone wiith interlocked texture. One niool

Fig. 3-. Pory rozwinięte na granicach i w obrębie kryształów kalcytu. Nikole skrzy­

żowane

Fig. 3. Typically developed vug-porosity within and between crystals. Crossed nicols Fig. 4. Typowa struktura zmienionego wapienia karchowickiego. Nikole równoległe Fig. 4. Typical texture of altered Karchowice limestone. One nicol

Tablica — 'Plate XXI

Fig. 1. Struktury rekrystalizacyjne odwzorowane na błonie acetonowej (negatyw), U — wapień nie zmieniony; R — wapień zrekrystalizowany; d — druzy kal- cytowe; i — szczelinka wypełniona tlenkami żelaza. Część powierzchni zgładu przedstawionego na fig. 1, Tabl. XXII

Fig. 1. F'artial recrystallizatiom and disaggregation as seen in acetate peel (negative).

U — unaltered limestone; R — recrystallized limestone; d — drusy caloite; i — crevices filled With iron oxides. Fragment of the surface shown in Fig. 1, PI.

XXII

Fig. 2. Struktury rekrystalizacyjne odwzorcowane na ¡błonie acetonowanej, (negatyw).

Oznaczenia jak na fig. 1. Widoczna ostra granica obszaru zrekrystalizowanego wzdłuż szczelinki kalcytowej — c

Fig. 2. Partial recrystallization as seen in acetate peel. Denominations as in Fig. 1.

Note sharp boundary of rearystaillized area along caloite vein — c

Tablica — Plate XXII

Fig. 1. Wygładzona powierzchnia wapienia o strukturze reliktowej. U — nie zmienio­

ny wapień; R — wapień przekrystalizowany; d — druzy kalcytowe. Obszar ob­

jęty linią odwzorcorwiany jest na błonie acetonowanej na fig. 1, Tabl. XXI Fiig. 1. Poiisihed surface of altered limestone. U — relics of unaltered rock; R — re-

crystallized and disaggregated limestone; d — drusy calcite. Area marked by lines is shown on acetate peel negative in Fig. 1, F'l. XXI

Fig. 2. Wygładzona powierzchnia wapienia o strukturze reliktowej. Oznaczenia jak na fig. 1

Fig. 2. Polished surface of ailtered limestone with typicailly developed bran-chwork.

Denominations as in Fig. 1

Tablica — Plate XXIII

Fig. 1. Zmiany w wapieniach karchowickich. 1 — całkowicie przekrystalizowany i roz- sypliw y wapień; 2 — wapień częściowo przekrystalizowany z reliktami; 3 —■

wapień nie zmieniony

8 R o cz n ik PTG t. XLI z. 3

(12)

Fig. 1. Alterations im the Karchowice limestones. 1 — entirely recrystallized and san­

ded limestone; 2 — partly recrystallized limestone with relics; 3 — unaltered limestone. Exposure shown in Fig. 3. Kamień Śląski.

Fig. 2. Labiryntowe kanaliki krasowe rozwinięte w przekrystalizowanych wapieniach o strukturze reliktowej. Kamień Śląski

Fig. 2. Spimgewoik cavities developed within the sanded branchwork. Karchowice li­

mestones. Kamień Śląski.

(13)

i

S. Dzulyfiski, A. K ubicz

(14)

S, D żulyński, A. K u b icz

(15)

8, D żulyński, A. K ubicz

(16)

S. D żulyński, A. K ubicz

Cytaty

Powiązane dokumenty

(These two spaces stood out because they had no history of compatibility with any demanding Σ, and because ( 5 ) The reader should note that we are not offering a slick

A theorem on generating multimodular pseudotopologies by families of filters is given.. The Orlicz topology is constructed for our

Subsequently, Gul’ko conjectured that the Lindel¨ of property of all iterated continuous function spaces actually characterizes the class of Corson compacta (Problem 1052 in [11])..

I should explain what I mean by saying the Corollary is “more or less” due to Giffen. The difference between Corollary 3.4 and the result in Giffen’s [1] is in the precise

Woodbury and Burrow specifically focus on computa- tional access to the design space and the implications of having a design space representation in reference to the premise

Theorem Assume that (M, ω) is a compact K¨ ahler manifold with boundary (possibly empty).. Weak Solutions

This paper completes the results of paper [11] in which regu- larity of solutions to equations with elliptic corner operators (i.e. n-dimensional Fuchsian operators) is studied in

The above defined Hilbert transforms H a and H (a p ) have the same properties as those mentioned in Theorem 2.3 and their proof are analogous. Though in [11] only the