• Nie Znaleziono Wyników

NONLINEAR ANALYSIS IN FEM

N/A
N/A
Protected

Academic year: 2021

Share "NONLINEAR ANALYSIS IN FEM"

Copied!
22
0
0

Pełen tekst

(1)

NONLINEAR ANALYSIS IN FEM

INTRODUCTION TO COMPUTATIONAL MECHANICS OF MATERIALS Civil Engineering, 1st cycle studies, 7th semester

elective subject academic year 2014/2015

Institute L-5, Faculty of Civil Engineering, Cracow University of Technology

Adam Wosatko

Jerzy Pamin

(2)

Lecture contents

FEM discretization

Nonlinear problems

Geometrical nonlinearity Physical nonlinearity Incremental-iterative analysis References:

R. de Borst and L.J. Sluys.

Computational methods in nonlinear solid mechanics.

Lecture Notes, Delft University of Technology, Delft, 1999.

DIANA Finite Element Analysis - User’s manual, release 7.2.

TNO Building and Construction Research, Delft, 1999.

(3)

Equilibrium equations for deformable continuum

Equilibrium equations + static boundary conditions:

L T σ + ˆ b = 0 w V , σν = ˆ t na S where:

L – differential operator matrix

σ – tensor/vector of generalized stresses b – body force vector

ν

V S ˆ t

Weak form of equilibrium equations:

Z

V

δu T (L T σ + ˆ b) dV = 0 ∀δu Virtual work principle δW int = δW ext :

Z

V

(Lδu) T σ dV = Z

V

δu T ˆ b dV + Z

S

δu T ˆ t dS

where

(4)

FEM discretization

Displacement-based finite elements:

u h =

n w

X

i =1

N i (ξ, η, ζ)q i = Nq e

where: N - shape function matrix

q e - element vector of degrees of freedom (dofs) n w - number of element nodes

Transformation of nodal degrees of freedom:

q e = I T e Q where: Q - global vector of dofs.

Weak form of equilibrium for discretized system

n e

X

e=1

I T e T

Z

V e

B T σ dV = F ext , B = LN

Isoparametric approach and numerical integration are applied.

(5)

When is FE isoparametric?

Geometry approximation:

∀P ∈ Ω e : x P (ξ, η) = N(ξ, η) x e , where:

x P =

 x P

y P



, x e =

x i

y i

x j

y j

x k

y k x l y l

 FE is isoparametric if we use the same nodes and the same shape functions for geometry and displacement field approximation.

x(ξ, η) = N(ξ, η) x e u(ξ, η) = N(ξ, η) q e

(6)

Linear elasticity

Hooke’s law

Tensor notation: σ = D : , σ ij = D ijkl  kl Matrix notation:

σ = D, σ =

σ x σ y σ z τ xy τ yz τ zx

 ,  =

 x

 y

 z γ xy γ yz γ zx

E 1 σ



Linear kinematic equations

Tensor notation:  = 1 2 [∇u + (∇u) T ],  ij = 1 2 (u i ,j + u j ,i ) Matrix notation:  = Lu

Hence stress tensor:

σ = D = DLu = DLNu = DB I T e Q Equilibrium equations for discretized system:

n e

X

e=1

I T e T

Z

V e

B T DB dV I T e Q = F ext , K Q = F ext

(7)

Numerical integration for FE

Gauss quadrature (2D)

k e = Z Z

A e

B T DB h dA =

1

Z

−1 1

Z

−1

B(ξ, η) T D B(ξ, η) h det J dξdη

n

X

i =1 m

X

j =1

w i w j B T (i ,j ) D B (i ,j ) h det J (i ,j )

Integration Q4 Q8

full (FI)

reduced (RI)

(8)

Nonlinear problem

F ext applied in increments:

t → t + ∆t σ t+∆t = σ t + ∆σ

Equilibrium at time t + ∆t:

n e

X

e=1

I T e T

Z

V e

B T σ t+∆t dV = F t+∆t ext

n e

X

e=1

I T e T

Z

V e

B T ∆σ dV = F t+∆t ext − F t int where: F t int = P n e

e=1 T I e T R

V e B T σ t dV Linearization of the left-hand side at time t:

∆σ = ∆σ(∆(∆u))

So far no assumptions about kinematics/constitutive properties!

(9)

Nonlinearity sources

Caused by change of geometry of (deformable) body:

I large strains (rubber, metal forming),

I large displacements (e.g. slender, thin-walled structures),

I contact (interaction of bodies in contact),

I follower load (varying with deformation) Caused by nonlinear constitutive relations:

I plasticity (irreversible strains)

I damage (degradation of elastic properties)

I fracture (continuous representation of cracks)

I . . .

Superposition principle does not hold.

(10)

Geometrical nonlinearity

X

u

x φ(X, t)

V V 0

S S 0

x 1 , X 1

x 2 , X 2

Initial and current configuration Motion function: x = φ(X, t)

Displacement vector: u(X, t) = x − X

Deformation gradient (main deformation measure): F = ∂φ ∂X = ∇ X x Strain tensor (one of possible strain measure):

E = 1

2 (F T F − I) = 1

2 [∇ X u + (∇ X u) T + (∇ X u) TX u]

(11)

Geometrical nonlinearity

Nonlinear kinematic equations, e.g. ε x = ε L x + ε N x = ∂u ∂x + 1 2 ∂w ∂x  2

∆σ = ∆σ(∆(∆u))

I Balance equations describe the equilibrium of deformed body. The virtual work principle can be written for the initial or current configuration.

I Different stress measures are associated with different strain measures.

I Small strains: E ≈  = 1 2 [∇u + (∇u) T ] < 2%.

I Small displacements (and rotations): V ≈ V 0 (one description,

equilibrium equations for undeformed configuration).

(12)

Geometrical nonlinearity

Equilibrium of discretized system:

K ∆Q = F t+∆t ext − F t int where tangent stiffness matrix:

K = K 0 + K u + K σ

K 0 - linear stiffness matrix K u - initial displacement matrix

(discrete kinematic relations matrix B dependent on displacements)

K σ - initial stress matrix (dependent on generalized stresses)

(13)

Physical nonlinearity

K ∆Q = F t+∆t ext − F t int Linearization of LHS at time t:

∆σ = ∆σ(∆(∆u))

∆σ = ∂σ ∂  t ∂

∂u

 t

∆u D = ∂σ ∂ , L = ∂ ∂u

Discretization: ∆u = N∆q e

Linear geometrical relations → Matrix of discrete kinematic relations

B = LN independent of displacements

(14)

Physical nonlinearity

K ∆Q = F t+∆t ext − F t int Tangent stiffness matrix

K =

n e

X

e=1

I T e T

Z

V e

B T D B dV A e

We limit interest to physical nonlinearity!

Iterative corrections necessary in order to reach equilibrium

at time t + ∆t → Newton-Raphson algorithm

(15)

Plastic state in a beam

A B C

displacement P

A

+

-

σ y

σ y

σ y

σ y

σ y

σ y

+

- -

+ C B

force

elastic material

plastified

elastic material

(16)

Incremental analysis

Explicit algorithm

u f

Real equilibrium path Numerical solution

Load increment ∆f

How can one improve the solution in subsequent increments?

(17)

Algorithm of incremental-iterative method

Iterative corrections necessary in order to reach equilibrium at time t + ∆t → Newton-Raphson algorithm

Out-of-balance (residual) forces: R j = f ext t+∆t − f int,j t+∆t → 0 f

R 1

f int,1 f ext t

f ext t+∆t

∆f ext

K ∆Q = f ext t+∆t − f int t K - tangent operator First iteration:

∆Q 1 = K −1 0 (f ext t+∆t − f int,0 ) σ 1 → f int,1 6= f ext t+∆t Corrections:

dQ j = K −1 j −1 (f ext t+∆t − f int,j −1 t+∆t ) σ j → f int,j

Convergence criterion:

kf t+∆t ext −f t+∆t

int,j k

k∆f ext k ≤ δ

(18)

Algorithm of incremental-iterative method

Iterative corrections necessary in order to reach equilibrium at time t + ∆t → Newton-Raphson algorithm

Out-of-balance (residual) forces: R j = f ext t+∆t − f int,j t+∆t → 0 f

R 1

f int,1

u u t+∆t

u t f ext t f ext t+∆t

∆u 1 du 2

∆f ext

K ∆Q = f ext t+∆t − f int t K - tangent operator First iteration:

∆Q 1 = K −1 0 (f ext t+∆t − f int,0 ) σ 1 → f int,1 6= f ext t+∆t Corrections:

dQ j = K −1 j −1 (f ext t+∆t − f int,j −1 t+∆t ) σ j → f int,j

Convergence criterion:

kf t+∆t ext −f t+∆t

int,j k

k∆f ext k ≤ δ

(19)

Algorithm of incremental-iterative method

Iterative corrections necessary in order to reach equilibrium at time t + ∆t → Newton-Raphson algorithm

Out-of-balance (residual) forces: R j = f ext t+∆t − f int,j t+∆t → 0 f

R 1

f int,1 f ext t

f ext t+∆t

∆f ext

K ∆Q = f ext t+∆t − f int t K - tangent operator First iteration:

∆Q 1 = K −1 0 (f ext t+∆t − f int,0 ) σ 1 → f int,1 6= f ext t+∆t Corrections:

dQ j = K −1 j −1 (f ext t+∆t − f int,j −1 t+∆t ) σ j → f int,j

Convergence criterion:

kf t+∆t ext −f t+∆t

int,j k

k∆f ext k ≤ δ

(20)

Algorithm of incremental-iterative method

Iterative corrections necessary in order to reach equilibrium at time t + ∆t → Newton-Raphson algorithm

Out-of-balance (residual) forces: R j = f ext t+∆t − f int,j t+∆t → 0 f

u u t+∆t

u t f ext t f ext t+∆t

∆u 1 du 2

∆f ext

R 2

f int,2

K ∆Q = f ext t+∆t − f int t K - tangent operator First iteration:

∆Q 1 = K −1 0 (f ext t+∆t − f int,0 ) σ 1 → f int,1 6= f ext t+∆t Corrections:

dQ j = K −1 j −1 (f ext t+∆t − f int,j −1 t+∆t ) σ j → f int,j

Convergence criterion:

kf t+∆t ext −f t+∆t int,j k k∆f ext k ≤ δ Modified algorithm:

K j = K 0

(21)

Newton-Raphson algorithm

Possible iteration schemes

u f

u f

Standard algorithm Modified algorithm

K j K j = K 0

Update in each iteration Update at the start of increment

(22)

Options of incremental control

Force or displacement control

Arc length control

Cytaty

Powiązane dokumenty

Model 3D ciśnienia porowego w analizowanym poziomie łupkowym został uzyskany przy wykorzystaniu opracowa- nych profili ciśnień porowych w otworach wiertniczych: L-1, O-2, O-3 i

Tytuł pracy Promotor Ocena promotora Recenzent Ocena recenzenta Średnia studiów Data obrony Wynik egzaminu Ocena końcowa 52 Magdalena Kietczewska 789

W przeszłości autorzy musieli nie tylko troszczyć się o rzetelność wykładu, lecz także unikać niektórych zagadnień lub traktować je powierzchownie, aby ustrzec

12 Ustawa o zużytym sprzęcie elektrycznym i elektronicznym.. Co istotne, przy obli- czaniu poziomów zbierania zużytego sprzętu nie uwzględnia się masy zużytego

Przydatne jest także porównanie różnych pol- skich przekładów Pisma Świętego, Neowulgaty oraz tekstu greckiego, który służy jako źródło dla dalszej analizy.. Można

W ydaje się, że odpow iedź m usi być

Pasją Stanisława Mierzwy stało się gromadzenie materiałów z historii ruchu ludo­ wego oraz pomaganie historykom i studentom w poszukiwaniu prawdy o ruchu ludowym

Różniła tym przynajmniej, że w o- kresie stalinowskim była swojego rodzaju koncentratem, który w la- tach realnego socjalizmu został mimo wszystko znacznie rozwodnio- ny;