• Nie Znaleziono Wyników

Effective interactions between colloidal particles at the surface of a liquid drop

N/A
N/A
Protected

Academic year: 2021

Share "Effective interactions between colloidal particles at the surface of a liquid drop"

Copied!
61
0
0

Pełen tekst

(1)

Effective interactions between colloidal particles at the surface of a liquid drop

Jan Guzowski

Instytut Chemii Fizycznej PAN, Warszawa

IPPT, Warszawa, 09.11.2011

(2)

Pickering Emulsions

emulsion + colloidal particles

particles get trapped at the surface of droplets

applications: stabilization of emulsions, engineering of functional particles

(3)

Pickering Emulsions

emulsion + colloidal particles

particles get trapped at the surface of droplets

applications: stabilization of emulsions, engineering of functional particles

(4)

Pickering Emulsions

emulsion + colloidal particles

particles get trapped at the surface of droplets

applications: stabilization of emulsions, engineering of functional particles

(5)

Stability of a colloidal particle at the interface

macroscopic picture: interplay of surface energies

contributions from three possible interfaces: F = γplSpl+ γpgSpg + γlgSlg

rough estimate: undeformable flat interface ⇒ F (h) = πγa2(h/a + cos θp)2, where cos θp= (γpg− γpl)/γlg

a ΔF [kBT]

10nm 100nm 1μm

103 105

107 h/a

F

1

-1 -cosθp

ΔF h

a

β β

liquid gas

(6)

Stability of a colloidal particle at the interface

macroscopic picture: interplay of surface energies

contributions from three possible interfaces: F = γplSpl+ γpgSpg + γlgSlg

rough estimate: undeformable flat interface ⇒ F (h) = πγa2(h/a + cos θp)2, where cos θp= (γpg− γpl)/γlg

a ΔF [kBT]

10nm 100nm 1μm

103 105

107 h/a

F

1

-1 -cosθp

ΔF h

a

β β

liquid gas

(7)

Stability of a colloidal particle at the interface

macroscopic picture: interplay of surface energies

contributions from three possible interfaces: F = γplSpl+ γpgSpg + γlgSlg

rough estimate: undeformable flat interface ⇒ F (h) = πγa2(h/a + cos θp)2, where cos θp= (γpg− γpl)/γlg

a ΔF [kBT]

10nm 100nm 1μm

103 105

107 h/a

F

1

-1 -cosθp

ΔF h

a

β β

liquid gas

(8)

Generic case: single particle at a flat interface

particle pulled by the force f = weight - buoyancy

interface effectively pinned by gravity at the distance λ =pγ/∆ρg (capillary length)

g θp

θp

θp β

λ

g=0

u

(9)

Generic case: single particle at a flat interface

particle pulled by the force f = weight - buoyancy

interface effectively pinned by gravity at the distance λ =pγ/∆ρg (capillary length)

g θp

θp

θp β

λ

g=0

u

(10)

Generic case: single particle at a flat interface

the capillary equation for |∇ku| ≪ 1 (balance of capillaryandhydrostatic pressures across the interface)

−γ∇2ku+ γ λ2u= 0

the corresponding Green’s function G (x, x) = G (|x, x|) obeying the condition G (r → ∞) = 0 reads

G(r ) = (1/2π)K0(r /λ) ∼

 ln(λ/r ) for r ≪ λ r−1/2e−r /λ for r ≫ λ

(11)

Generic case: single particle at a flat interface

the capillary equation for |∇ku| ≪ 1 (balance of capillaryandhydrostatic pressures across the interface)

−γ∇2ku+ γ λ2u= 0

the corresponding Green’s function G (x, x) = G (|x, x|) obeying the condition G (r → ∞) = 0 reads

G(r ) = (1/2π)K0(r /λ) ∼

 ln(λ/r ) for r ≪ λ r−1/2e−r /λ for r ≫ λ

(12)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(13)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(14)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(15)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(16)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(17)

Effective description, limit λ → ∞

particle replaced by an effective pressure distribution Π(x) for λ → ∞ Poisson equation −γ∇2ku= Π(x)

in terms of complex variables u(x) = ReV (z) with V(z) = (2πγ)−1R d2xΠ(z) ln[λ/(z − z)]

for Π(z) localized around the origin one can use the Taylor expansion 2πγV (z) = ˜Q0ln(λ/z) +

X

n=1

nn−1z−n

with the multipoles ˜Qn:=R d2xΠ(z)z′ n= Qnen so that Q0= total external force, Q1= total external torque; Qn≥2correspond to free particles residue theorem ⇒ all multipoles fully determined by the deformation around an arbitrary contour C enclosing the origin: ˜Qn= iγH

Cdz zn(dV /dz)

(18)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(19)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(20)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(21)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(22)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(23)

Capillary interactions

two particles at distance d, effective pressure Π = Π1+ Π2

free energy F =

Z d2xhγ

2(∇ku)2− Π(x)u(x)i

= − 1 2γ

Z d2x

Z

d2xΠ(x)G (x, x)Π(x)

F = F1,self + F2,self + ∆F (d) multipole expansion yields

∆F (d) = −1 γ

X

n=0

X

n=0

Q1,nQ2,ngnncos(nϕ1n+ nϕ2n) ×

 ln(λ/d) n= n= 0, d−n−n otherwise

in general Qi,n = Qi,n(d) (feedback u → Π), many-body interactions!

but Q0and Q1can be fixed by external forces and torques

(24)

Spherical interfaces

assume small radial deformations v (Ω) = (r (Ω) − R0)/R0and incompressibility of liquid ⇒ free energy functional:

F[{v (Ω)}] = γR02 Z

0

dΩ 1

2(∇av)2− v2− π(Ω) + µv



+ O(v3, (∇av)3)

withR dΩ v(Ω) = 0; condition δF= 0 yields −∇! 2av− 2v = π(Ω) + µ free energy F = min{v(Ω)}F in terms of the corresponding Green’s function G reads

F = −γR02 2

Z dΩ

Z

dΩπ(Ω)G (Ω, Ω)π(Ω).

at small separations G (¯θ) −−−→

θ→0¯ −(2π)−1ln(¯θ) = −(2π)−1ln(r /R0)

(25)

Spherical interfaces

assume small radial deformations v (Ω) = (r (Ω) − R0)/R0and incompressibility of liquid ⇒ free energy functional:

F[{v (Ω)}] = γR02 Z

0

dΩ 1

2(∇av)2− v2− π(Ω) + µv



+ O(v3, (∇av)3)

withR dΩ v(Ω) = 0; condition δF= 0 yields −∇! 2av− 2v = π(Ω) + µ free energy F = min{v(Ω)}F in terms of the corresponding Green’s function G reads

F = −γR02 2

Z dΩ

Z

dΩπ(Ω)G (Ω, Ω)π(Ω).

at small separations G (¯θ) −−−→

θ→0¯ −(2π)−1ln(¯θ) = −(2π)−1ln(r /R0)

(26)

Spherical interfaces

assume small radial deformations v (Ω) = (r (Ω) − R0)/R0and incompressibility of liquid ⇒ free energy functional:

F[{v (Ω)}] = γR02 Z

0

dΩ 1

2(∇av)2− v2− π(Ω) + µv



+ O(v3, (∇av)3)

withR dΩ v(Ω) = 0; condition δF= 0 yields −∇! 2av− 2v = π(Ω) + µ free energy F = min{v(Ω)}F in terms of the corresponding Green’s function G reads

F = −γR02 2

Z dΩ

Z

dΩπ(Ω)G (Ω, Ω)π(Ω).

at small separations G (¯θ) −−−→

θ→0¯ −(2π)−1ln(¯θ) = −(2π)−1ln(r /R0)

(27)

Spherical interfaces

assume small radial deformations v (Ω) = (r (Ω) − R0)/R0and incompressibility of liquid ⇒ free energy functional:

F[{v (Ω)}] = γR02 Z

0

dΩ 1

2(∇av)2− v2− π(Ω) + µv



+ O(v3, (∇av)3)

withR dΩ v(Ω) = 0; condition δF= 0 yields −∇! 2av− 2v = π(Ω) + µ free energy F = min{v(Ω)}F in terms of the corresponding Green’s function G reads

F = −γR02 2

Z dΩ

Z

dΩπ(Ω)G (Ω, Ω)π(Ω).

at small separations G (¯θ) −−−→

θ→0¯ −(2π)−1ln(¯θ) = −(2π)−1ln(r /R0)

(28)

Spherical interfaces

assume small radial deformations v (Ω) = (r (Ω) − R0)/R0and incompressibility of liquid ⇒ free energy functional:

F[{v (Ω)}] = γR02 Z

0

dΩ 1

2(∇av)2− v2− π(Ω) + µv



+ O(v3, (∇av)3)

withR dΩ v(Ω) = 0; condition δF= 0 yields −∇! 2av− 2v = π(Ω) + µ free energy F = min{v(Ω)}F in terms of the corresponding Green’s function G reads

F = −γR02 2

Z dΩ

Z

dΩπ(Ω)G (Ω, Ω)π(Ω).

at small separations G (¯θ) −−−→

θ→0¯ −(2π)−1ln(¯θ) = −(2π)−1ln(r /R0)

(29)

Expansion in spherical harmonics

capillary equation

[l(l + 1) − 2]vlm= πlm+ µδl0with Xlm=R dΩ X (Ω)Ylm(Ω)

l= 0: incompressibility v00= 0 ⇒ µ = π00

l= 1: translations v1m undefined, assume fixed center of mass v1m= 0

free energy in terms of irreducible representation of rotation group

∆F = −γR02X

l≥2 l

X

m=−l l

X

m=−l

π1,lmπ2,lm

(−1)m

l(l + 1) − 1dm,−ml (¯θ) ei(mφ1+mφ2)

(30)

Expansion in spherical harmonics

capillary equation

[l(l + 1) − 2]vlm= πlm+ µδl0with Xlm=R dΩ X (Ω)Ylm(Ω)

l= 0: incompressibility v00= 0 ⇒ µ = π00

l= 1: translations v1m undefined, assume fixed center of mass v1m= 0

free energy in terms of irreducible representation of rotation group

∆F = −γR02X

l≥2 l

X

m=−l l

X

m=−l

π1,lmπ2,lm

(−1)m

l(l + 1) − 1dm,−ml (¯θ) ei(mφ1+mφ2)

(31)

Expansion in spherical harmonics

capillary equation

[l(l + 1) − 2]vlm= πlm+ µδl0with Xlm=R dΩ X (Ω)Ylm(Ω)

l= 0: incompressibility v00= 0 ⇒ µ = π00

l= 1: translations v1m undefined, assume fixed center of mass v1m= 0

free energy in terms of irreducible representation of rotation group

∆F = −γR02X

l≥2 l

X

m=−l l

X

m=−l

π1,lmπ2,lm

(−1)m

l(l + 1) − 1dm,−ml (¯θ) ei(mφ1+mφ2)

(32)

Expansion in spherical harmonics

capillary equation

[l(l + 1) − 2]vlm= πlm+ µδl0with Xlm=R dΩ X (Ω)Ylm(Ω)

l= 0: incompressibility v00= 0 ⇒ µ = π00

l= 1: translations v1m undefined, assume fixed center of mass v1m= 0

φ1

¯θ

φ2

1= (0, 0) 2

y x x y

z, z

x′′ y′′ z′′

free energy in terms of irreducible representation of rotation group

∆F = −γR02X

l≥2 l

X

m=−l l

X

m=−l

π1,lmπ2,lm

(−1)m

l(l + 1) − 1dm,−ml (¯θ) ei(mφ1+mφ2)

(33)

Limit of small particles

in the limit a, a ≪ R0one has ∆F =P

n,n=0∆Fnn with n = |m| and

∆Fnn = γa2 Q1,nQ2,n

(−2)n+n+1n!n

 a R0

n+n

X

l≥max{2,n,n}

(2l + 1) (l + 2)(l − 1)

×

(l + n)!

(l − n)!

"

(−1)ncos(nφ1+ nφ2)

 cosθ¯

2

n−n sinθ¯

2

n+n

Pl−n(n+n,n −n)(cos ¯θ)

+cos(nφ1nφ2)

 cosθ¯

2

n+n sin¯θ

2

n−n

Pl−n(n−n,n +n)(cos ¯θ)

#

, n >0, n>0, (−1)ncos(nφ1)Pln(cos ¯θ), n >0, n= 0,

2−1Pl(cos ¯θ), n= 0, n= 0,

Qi,n are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ωi

R0sets both the spatial separation and the capillary length more complex dependence on orientations

(34)

Limit of small particles

in the limit a, a ≪ R0one has ∆F =P

n,n=0∆Fnn with n = |m| and

∆Fnn = γa2 Q1,nQ2,n

(−2)n+n+1n!n

 a R0

n+n

X

l≥max{2,n,n}

(2l + 1) (l + 2)(l − 1)

×

(l + n)!

(l − n)!

"

(−1)ncos(nφ1+ nφ2)

 cosθ¯

2

n−n sinθ¯

2

n+n

Pl−n(n+n,n −n)(cos ¯θ)

+cos(nφ1nφ2)

 cosθ¯

2

n+n sin¯θ

2

n−n

Pl−n(n−n,n +n)(cos ¯θ)

#

, n >0, n>0, (−1)ncos(nφ1)Pln(cos ¯θ), n >0, n= 0,

2−1Pl(cos ¯θ), n= 0, n= 0,

Qi,n are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ωi

R0sets both the spatial separation and the capillary length more complex dependence on orientations

(35)

Limit of small particles

in the limit a, a ≪ R0one has ∆F =P

n,n=0∆Fnn with n = |m| and

∆Fnn = γa2 Q1,nQ2,n

(−2)n+n+1n!n

 a R0

n+n

X

l≥max{2,n,n}

(2l + 1) (l + 2)(l − 1)

×

(l + n)!

(l − n)!

"

(−1)ncos(nφ1+ nφ2)

 cosθ¯

2

n−n sinθ¯

2

n+n

Pl−n(n+n,n −n)(cos ¯θ)

+cos(nφ1nφ2)

 cosθ¯

2

n+n sin¯θ

2

n−n

Pl−n(n−n,n +n)(cos ¯θ)

#

, n >0, n>0, (−1)ncos(nφ1)Pln(cos ¯θ), n >0, n= 0,

2−1Pl(cos ¯θ), n= 0, n= 0,

Qi,n are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ωi

R0sets both the spatial separation and the capillary length more complex dependence on orientations

(36)

Limit of small particles

in the limit a, a ≪ R0one has ∆F =P

n,n=0∆Fnn with n = |m| and

∆Fnn = γa2 Q1,nQ2,n

(−2)n+n+1n!n

 a R0

n+n

X

l≥max{2,n,n}

(2l + 1) (l + 2)(l − 1)

×

(l + n)!

(l − n)!

"

(−1)ncos(nφ1+ nφ2)

 cosθ¯

2

n−n sinθ¯

2

n+n

Pl−n(n+n,n −n)(cos ¯θ)

+cos(nφ1nφ2)

 cosθ¯

2

n+n sin¯θ

2

n−n

Pl−n(n−n,n +n)(cos ¯θ)

#

, n >0, n>0, (−1)ncos(nφ1)Pln(cos ¯θ), n >0, n= 0,

2−1Pl(cos ¯θ), n= 0, n= 0,

Qi,n are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ωi

R0sets both the spatial separation and the capillary length more complex dependence on orientations

(37)

Limit of small particles

in the limit a, a ≪ R0one has ∆F =P

n,n=0∆Fnn with n = |m| and

∆Fnn = γa2 Q1,nQ2,n

(−2)n+n+1n!n

 a R0

n+n

X

l≥max{2,n,n}

(2l + 1) (l + 2)(l − 1)

×

(l + n)!

(l − n)!

"

(−1)ncos(nφ1+ nφ2)

 cosθ¯

2

n−n sinθ¯

2

n+n

Pl−n(n+n,n −n)(cos ¯θ)

+cos(nφ1nφ2)

 cosθ¯

2

n+n sin¯θ

2

n−n

Pl−n(n−n,n +n)(cos ¯θ)

#

, n >0, n>0, (−1)ncos(nφ1)Pln(cos ¯θ), n >0, n= 0,

2−1Pl(cos ¯θ), n= 0, n= 0,

Qi,n are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ωi

R0sets both the spatial separation and the capillary length more complex dependence on orientations

(38)

Numerical calculations

surface free energy minimized by using software Surface Evolver based on the gradient descent method

minimized expression:

F[{r(Ω)}, hi, ψi; ¯θ, φi, fi, Ti, θp,i, ai, Vl, λ0] =

= γSlg+X

i=1,2

(−γ cos θp,iSpl ,i− fihi− Ti·ψi) − λ0(V− Vl).

(39)

Numerical calculations

surface free energy minimized by using software Surface Evolver based on the gradient descent method

minimized expression:

F[{r(Ω)}, hi, ψi; ¯θ, φi, fi, Ti, θp,i, ai, Vl, λ0] =

= γSlg+X

i=1,2

(−γ cos θp,iSpl ,i− fihi− Ti·ψi) − λ0(V− Vl).

(40)

Results: monopoles

smooth spherical particles, external radial forces f = γaQ0, fixed CM

θ¯ θp

CM

f er

θp

∆F00(¯θ)

γa2 = −Q02G(¯θ) = Q02

 1 2+4

3cos ¯θ + 2 cos ¯θ ln

 sinθ¯

2



(41)

Results: monopoles

smooth spherical particles, external radial forces f = γaQ0, fixed CM

θ¯ θp

CM

f er

θp

∆F00(¯θ)

γa2 = −Q02G(¯θ) = Q02

 1 2+4

3cos ¯θ + 2 cos ¯θ ln

 sinθ¯

2



-0.4 -0.2 0

R0/a = 4 R0/a = 6 R0/a = 8

∆F00/(γa2 Q

2 0)

(42)

Results: dipoles

three metastable branches for three different orientational configurations

∆F11(¯θ, φ1, φ2) = γa2Q12

 a R0

2





−f+(¯θ) + f(¯θ), for θ < ¯¯ θ0, ↑ ↑

−f+(¯θ) − f(¯θ), for θ¯0< ¯θ < ¯θ1, ← → f+(¯θ) − f(¯θ), for θ > ¯¯ θ1, ↑ ↓

where f(¯θ0) = 0 and f+(¯θ1) = 0 and

f+(θ) := 1

sin2(θ/2)− 4 sin2θ 2ln

 sinθ

2



−20 3 sin2θ

2 + 2, f(θ) :=4

 cosθ

2

2

ln

 sinθ

2

 +20

3 cos2θ 2

(43)

Results: dipoles

three metastable branches for three different orientational configurations

∆F11(¯θ, φ1, φ2) = γa2Q12

 a R0

2





−f+(¯θ) + f(¯θ), for θ < ¯¯ θ0, ↑ ↑

−f+(¯θ) − f(¯θ), for θ¯0< ¯θ < ¯θ1, ← → f+(¯θ) − f(¯θ), for θ > ¯¯ θ1, ↑ ↓

where f(¯θ0) = 0 and f+(¯θ1) = 0 and

f+(θ) := 1

sin2(θ/2)− 4 sin2θ 2ln

 sinθ

2



−20 3 sin2θ

2 + 2, f(θ) :=4

 cosθ

2

2

ln

 sinθ

2

 +20

3 cos2θ 2

(44)

Results: dipoles

pinned contact lines, external torques T = γa2Q1, fixed CM

0 1 2

θ¯ (R0/a)2F11/(γa2Q2 1)

(R0

a= 4

Q1= 2

(5 1

(5 2

(45)

Results: free spheroidal particles

free, smooth prolate spheroids;approximation:

Q2= Q2(R0) ≃ 2π∆r |θ=a/R0/a

∆F22(¯θ, φ1, φ2) = −γa23Q22 64π

 a R0

4

1 sin4(¯θ/2).

1 2 3

-1.8 -1.2 -0.6 0

R0/b = 5 R0/b = 5

R0/b = 6 R0/b = 6 R0/b = 8

(R0/a)4F22/(γa2Q2 2)

)

o

2R0

r(x,y)/b

y/b 2a 2b

ψi

i

hi

θp

R0

x y

φi

(46)

Results: free spheroidal particles

free, smooth prolate spheroids; approximation:

Q2= Q2(R0) ≃ 2π∆r |θ=a/R0/a

∆F22(¯θ, φ1, φ2) = −γa23Q22 64π

 a R0

4

1 sin4(¯θ/2).

1 2 3

-1.8 -1.2 -0.6 0

R0/b = 5 R0/b = 5

R0/b = 6 R0/b = 6 R0/b = 8

(R0/a)4F22/(γa2Q2 2)

)

o

2R0

r(x,y)/b

y/b 2a 2b

ψi

i

hi

θp

R0

x y

φi

(47)

Sessile drops

free energy depends on the contact angle θ0 and boundary conditions of either a free (σ = A) or a pinned (σ = B) contact line at the substrate

f

2

e

r

f

1

e

r

α

1

α

2

β

2

x

y

z θ

0

(48)

Sessile drops: free energy

after subtracting self-energies Fi,self one gets

∆Fσ(N):= Fσ(N)(Ω1, . . . , ΩN, θ0) −

N

X

i=1

Fi,self =

=

N

X

i=1

∆Fσ(1)i, θ0) +X

i<j

Vσ(Ωi, Ωj, θ0)

substrate potential ∆Fσ(1) and pair-potential Vσ:

∆Fσ(1)= −fi2

2γ[Gσ,reg(Ωi, Ωi) − Gσ,reg(0, 0)]

Vσ= −fifj

2γ[Gσ(Ωi, Ωj) + Gσ(Ωj, Ωi)],

(49)

Sessile drops: free energy

after subtracting self-energies Fi,self one gets

∆Fσ(N):= Fσ(N)(Ω1, . . . , ΩN, θ0) −

N

X

i=1

Fi,self =

=

N

X

i=1

∆Fσ(1)i, θ0) +X

i<j

Vσ(Ωi, Ωj, θ0)

substrate potential ∆Fσ(1) and pair-potential Vσ:

∆Fσ(1)= −fi2

2γ[Gσ,reg(Ωi, Ωi) − Gσ,reg(0, 0)]

Vσ= −fifj

2γ[Gσ(Ωi, Ωj) + Gσ(Ωj, Ωi)],

(50)

Sessile drops: Green’s functions

for Ω ∈ Ω0 Green’s functions Gσ satisfy

−(∇2a+ 2)Gσ(Ω, Ω, θ0) = δ(Ω, Ω) + ∆σ(Ω, Ω, θ0)

functions ∆σ(Ω, Ω, θ0) corresponding to µ and πCM determined from the force balance and incompressibility conditionR

0dΩ Gσ(Ω, Ω) = 0 with boundary conditions:

(sin θ0θGA(Ω, Ω) − cos θ0GA(Ω, Ω))|Ω∈∂Ω0 = 0, GB(Ω, Ω)|Ω∈∂Ω0 = 0.

(51)

Sessile drops: Green’s functions

for Ω ∈ Ω0 Green’s functions Gσ satisfy

−(∇2a+ 2)Gσ(Ω, Ω, θ0) = δ(Ω, Ω) + ∆σ(Ω, Ω, θ0)

functions ∆σ(Ω, Ω, θ0) corresponding to µ and πCM determined from the force balance and incompressibility conditionR

0dΩ Gσ(Ω, Ω) = 0 with boundary conditions:

(sin θ0θGA(Ω, Ω) − cos θ0GA(Ω, Ω))|Ω∈∂Ω0 = 0, GB(Ω, Ω)|Ω∈∂Ω0 = 0.

(52)

Sessile drops: Green’s functions

for Ω ∈ Ω0 Green’s functions Gσ satisfy

−(∇2a+ 2)Gσ(Ω, Ω, θ0) = δ(Ω, Ω) + ∆σ(Ω, Ω, θ0)

functions ∆σ(Ω, Ω, θ0) corresponding to µ and πCM determined from the force balance and incompressibility conditionR

0dΩ Gσ(Ω, Ω) = 0 with boundary conditions:

(sin θ0θGA(Ω, Ω) − cos θ0GA(Ω, Ω))|Ω∈∂Ω0 = 0, GB(Ω, Ω)|Ω∈∂Ω0 = 0.

(53)

Sessile drops: special case θ

0

= π/2

f images

free c.l. pinned c.l.

x z

- f sinα - f sinα

f

f

α

x z

f

-f

α

(54)

Sessile drops: special case θ

0

= π/2

γ∆FA(2)/(f1f2) =

(55)

Sessile drops: special case θ

0

= π/2

γ∆FB(2)/(f1f2) =

(56)

Summary

interactions betweenmonopoles anddipoleson spherical interface are non-monotonic and much different than on a flat interface

interactions betweenspheroidsare quite similar importance ofcurvature only in case of external fields

the effects ofboundary conditionson the substrate for monopoles are long-ranged and independent of R0

the effectiveconfining potentialdepends qualitatively on the boundary conditions

THANK YOU!

(57)

Summary

interactions betweenmonopoles anddipoleson spherical interface are non-monotonic and much different than on a flat interface

interactions betweenspheroidsare quite similar importance ofcurvature only in case of external fields

the effects ofboundary conditionson the substrate for monopoles are long-ranged and independent of R0

the effectiveconfining potentialdepends qualitatively on the boundary conditions

THANK YOU!

(58)

Summary

interactions betweenmonopoles anddipoleson spherical interface are non-monotonic and much different than on a flat interface

interactions betweenspheroidsare quite similar importance ofcurvature only in case of external fields

the effects ofboundary conditionson the substrate for monopoles are long-ranged and independent of R0

the effectiveconfining potentialdepends qualitatively on the boundary conditions

THANK YOU!

Cytaty

Powiązane dokumenty

Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature.. Burek, Bastien O.;

In the second stage, the task of the various groups of experts was to formulate 3 research thesis in each of the two research areas, randomly selected from the fol- lowing six

[r]

cations we were not able to describe well the capacity coefficients of the solutes: Nitrobenzene and benzyl acetate, chromatographed in the two mixed mobile phases:

Experimental data and many successful calculations in different versions of the interacting model confirm that for low excitation energy the nucleon pairs can be

The second condition pertains to the necessary differentiation of the velocity of the signal carrier (the carrier of information) and the carrier of the signalled action, the

The results from the flotation tests indicated that the floatability of pyrite clearly improved under strongly alkaline pH conditions (pH &gt; 10) with the