• Nie Znaleziono Wyników

on the boundary

N/A
N/A
Protected

Academic year: 2021

Share "on the boundary"

Copied!
7
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI LXXIV (2000)

Harmonic functions in a cylinder with normal derivatives vanishing

on the boundary

by Ikuko Miyamoto and Hidenobu Yoshida (Chiba)

Dedicated to the memory of Professor Bogdan Ziemian

Abstract. A harmonic function in a cylinder with the normal derivative vanishing on the boundary is expanded into an infinite sum of certain fundamental harmonic functions.

The growth condition under which it is reduced to a finite sum of them is given.

1. Introduction. Let R

n

(n ≥ 2) denote the n-dimensional Euclidean space. The solution of the Neumann problem for an infinite cylinder

Γ

n

(D) = {(X, y) ∈ R

n

: X ∈ D, −∞ < y < ∞},

with D a bounded domain of R

n−1

, is not unique, because we can add to each solution harmonic functions in Γ

n

(D) with normal derivatives vanishing on the boundary. Hence, to classify general solutions we need to characterize such functions. If D = (0, π) and Γ

n

(D) is the strip

H = {(x, y) ∈ R

2

: 0 < x < π, −∞ < y < ∞},

then by applying a result of Widder [6, Theorem 2] which characterizes a harmonic function in H vanishing continuously on the boundary ∂H of H, we can obtain the following result:

Theorem A. Let h(x, y) be a harmonic function in H such that ∂h/∂x vanishes continuously on ∂H. Then

h(x, y) = A

0

y + B

0

+

X

k=1

(A

k

e

ky

+ B

k

e

−ky

) cos kx,

where the series converges for all x and y, and A

0

, B

0

, A

1

, B

1

, A

2

, B

2

, . . . are

2000 Mathematics Subject Classification: Primary 31B20.

Key words and phrases : Neumann problem, harmonic functions, cylinder.

[229]

(2)

constants such that

A

k

e

ky

+ B

k

e

−ky

= 2 π

π

\

0

h(x, y)kx dx (k = 1, 2, . . .).

Although this theorem is easily proved, we cannot proceed similarly in the case where Γ

n

(D) is a cylinder in R

n

(n ≥ 3). This kind of problem was originally treated by Bouligand [1] in 1914.

Theorem B (Bouligand [1, p. 195]). Let h(X, y) be a harmonic function in Γ

n

(D) such that the normal derivative of h vanishes continuously on the boundary ∂Γ

n

(D) of Γ

n

(D). If h(X, y) tends to zero as |y| → ∞, then h(X, y) is identically zero in Γ

n

(D).

In this paper we shall prove a cylindrical version of Theorem A (The- orem). As corollaries we shall obtain two results generalizing Theorem B (Corollaries 1 and 2).

2. Preliminaries. Let D be a bounded domain in R

n−1

(n ≥ 3) having a sufficiently smooth boundary ∂D. For example, D can be a C

2,α

-domain (0 < α < 1) in R

n−1

bounded by a finite number of mutually disjoint closed hypersurfaces (see Gilbarg and Trudinger [3, pp. 88–89] for the definition of C

2,α

-domain). Consider the Neumann problem

(2.1) (∆

n−1

+ µ)ϕ(X) = 0

for any X = (x

1

, . . . , x

n−1

) ∈ D,

(2.2) lim

X→X, X∈D

(∇

n−1

ϕ(X), ν(X

)) = 0 for any X

∈ ∂D, where

n−1

= ∂

2

∂x

21

+ . . . + ∂

2

∂x

2n−1

, ∇

n−1

=

 ∂

∂x

1

, . . . , ∂

∂x

n−1

 and ν(X

) is the outer unit normal vector at X

∈ ∂D.

Let {µ

k

(D)}

k=0

be the non-decreasing sequence of non-negative eigen- values of this Neumann problem. In this sequence we write µ

k

(D) the num- ber of times equal to the dimension of the corresponding eigenspace. If the normalized eigenfunction corresponding to µ

k

(D) is denoted by ϕ

k

(D)(X), the set of consecutive eigenfunctions corresponding to the same value of µ

k

(D) in the sequence {ϕ

k

(D)(X)}

k=0

forms an orthonormal basis for the eigenspace of the eigenvalue µ

k

(D). It is evident that µ

0

(D) = 0 and

ϕ

0

(D)(X) = |D|

−1/2

(X ∈ D), |D| =

\

D

dX.

In the following we shall denote {µ

k

(D)}

k=0

and {ϕ

k

(D)(X)}

k=0

by

{µ(k)}

k=0

and {ϕ

k

(X)}

k=0

respectively, without specifying D. For each D

(3)

there is a sequence {k

i

} of non-negative integers such that k

0

= 0, k

1

= 1, µ(k

i

) < µ(k

i+1

),

µ(k

i

) = µ(k

i

+ 1) = µ(k

i

+ 2) = . . . = µ(k

i+1

− 1)

and {ϕ

ki

, ϕ

ki+1

, . . . , ϕ

ki+1−1

} is an orthonormal basis for the eigenspace of the eigenvalue µ(k

i

) (i = 0, 1, 2, . . .). Since D has a sufficiently smooth boundary, we know that

µ(k) ∼ A(D, n)k

2/(n−1)

(k → ∞) and

X

µ(k)≤t

k

(X)}

2

∼ B(D, n)t

(n−1)/2

(t → ∞)

uniformly with respect to X ∈ D, where A(D, n) and B(D, n) are constants depending on D and n (e.g. see Carleman [2], Minakshisundaram and Plei- jel [4], Weyl [5]). Hence there exist positive constants M

1

, M

2

such that

M

1

k

2/(n−1)

≤ µ(k) (k = 1, 2, . . .) and

k

(X)| ≤ M

2

k

1/2

(X ∈ D, k = 1, 2, . . .).

3. Statement of our results. The gradient of a function f (P ) defined on Γ

n

(D) is

n

f (P ) =  ∂f

∂x

1

(P ), . . . , ∂f

∂x

n−1

(P ), ∂f

∂y (P )

 (P = (x

1

, . . . , x

n−1

, y) ∈ Γ

n

(D)). We first remark that

I

k

(P ) = e √

µ(k)y

ϕ

k

(X) and J

k

(P ) = e

µ(k)y

ϕ

k

(X) (P = (X, y) ∈ Γ

n

(D)) are harmonic functions on Γ

n

(D) satisfying

P →Q, P ∈Γ

lim

n(D)

(∇

n

I

k

(P ), ν(Q)) = 0 and

P →Q, P ∈Γ

lim

n(D)

(∇

n

J

k

(P ), ν(Q)) = 0, where ν(Q) is the outer unit normal vector at Q ∈ ∂Γ

n

(D).

Theorem. Let h(P ) be a harmonic function on Γ

n

(D) satisfying

(3.1) lim

P →Q, P ∈Γn(D)

(∇

n

h(P ), ν(Q)) = 0 for any Q ∈ ∂Γ

n

(D). Then

h(P ) = A

0

y + B

0

+

X

k=1

(A

k

I

k

(P ) + B

k

J

k

(P ))

(4)

for any P = (X, y) ∈ Γ

n

(D), where the series converges uniformly and absolutely on any compact subset of the closure Γ

n

(D) of Γ

n

(D), and A

k

, B

k

(k = 0, 1, 2, . . .) are constants such that (3.2) A

k

e √

µ(k) y

+ B

k

e

µ(k) y

=

\

D

h(X, y)ϕ

k

(X) dX (k = 1, 2, . . .).

Corollary 1. Let p and q be non-negative integers. If h(P ) is a har- monic function on Γ

n

(D) satisfying (3.1) and

(3.3) lim

y→∞

e

µ(kp+1) y

M

h

(y) = 0, lim

y→−∞

e √

µ(kq+1) y

M

h

(y) = 0, where

M

h

(y) = sup

X∈D

|h(X, y)| (−∞ < y < ∞), then

h(P ) = A

0

y + B

0

+

kp+1−1

X

k=1

A

k

I

k

(P ) +

kq+1−1

X

k=1

B

k

J

k

(P )

for any P = (X, y) ∈ Γ

n

(D), where A

k

(k = 0, 1, . . . , k

p+1

− 1) and B

k

(k = 0, 1, . . . , k

q+1

− 1) are constants.

Corollary 2. Let h(P ) be a harmonic function on Γ

n

(D) satisfying (3.1) and

M

h

(y) = o(e √

µ(1)|y|

) (|y| → ∞).

Then h(P ) = A

0

y + B

0

for any P = (X, y) ∈ Γ

n

(D), where A

0

and B

0

are constants.

4. Proofs of Theorem and Corollaries 1, 2. Let f (X, y) be a function on Γ

n

(D). The function c

k

(f, y) of y (−∞ < y < ∞) defined by

c

k

(f, y) =

\

D

f (X, y)ϕ

k

(X) dX

is simply denoted by c

k

(y) in the following, without specifying f .

Lemma 1. Let h(P ) be a harmonic function on Γ

n

(D) satisfying (3.1).

Then

c

0

(y) = A

0

y + B

0

, (4.1)

c

k

(y) = A

k

e √

µ(k) y

+ B

k

e

µ(k) y

(k = 1, 2, . . .) (4.2)

with constants A

k

, B

k

(k ≥ 0) and

(5)

c

k

(y) = {e √

µ(k) (y−y2)

− e √

µ(k) (y2−y)

}c

k

(y

1

) e √

µ(k) (y1−y2)

− e √

µ(k) (y2−y1)

(4.3)

+ {e √

µ(k) (y1−y)

− e √

µ(k) (y−y1)

}c

k

(y

2

) e √

µ(k) (y

1−y2)

− e √

µ(k) (y

2−y1)

for any y

1

and y

2

, −∞ < y

1

< y

2

< ∞ (k = 1, 2, 3, . . .).

P r o o f. First of all, we remark that h ∈ C

2

n

(D)) (Gilbarg and Trudin- ger [3, p. 124]). Since

\

D

(∆

n−1

h(X, y))ϕ

k

(X) dX =

\

D

h(X, y)(∆

n−1

ϕ

k

(X)) dX (−∞ < y < ∞), from Green’s identity, (2.2) and (3.1), we have

2

c

k

(y)

∂y

2

=

\

D

2

h(X, y)

∂y

2

ϕ

k

(X) dX = −

\

D

n−1

h(X, y)ϕ

k

(X) dX

= −

\

D

h(X, y)(∆

n−1

ϕ

k

(X)) dX

= µ(k)

\

D

h(X, y)ϕ

k

(X) dX = µ(k)c

k

(y)

from (2.1) (k = 0, 1, 2, . . .). With constants A

k

and B

k

(k = 0, 1, 2,. . .) these give

c

0

(y) = A

0

y + B

0

and

c

k

(y) = A

k

e √

µ(k) y

+ B

k

e

µ(k) y

(k = 1, 2, . . .),

which are (4.1) and (4.2). When we solve for A

k

and B

k

the equations c

k

(y

i

) = A

k

e √

µ(k) yi

+ B

k

e

µ(k) yi

(i = 1, 2), we immediately obtain (4.3).

Remark . From (4.2) we have, for k = 1, 2, . . .

y→∞

lim c

k

(y)e

µ(k) y

= A

k

and lim

y→−∞

c

k

(y)e √

µ(k) y

= B

k

.

Lemma 2. Let h(P ) be a harmonic function on Γ

n

(D) satisfying (3.1).

Let y be any number and y

1

, y

2

be two any numbers satisfying −∞ < y

1

<

y − 1, y + 1 < y

2

< ∞. For two non-negative integers p and q,

X

k=kp+q+1

|c

k

(y)| · |ϕ

k

(X)| ≤ L(p)M

h

(y

1

) + L(q)M

h

(y

2

),

(6)

where

L(j) = M

22

|D|

X

k=kj+1

k exp(− pM

1

k

1/(n−1)

).

P r o o f. From Lemma 1, we see that

c

k

(y) = exp{−pµ(k)(y − y

1

)} 1 − exp{2pµ(k)(y − y

2

)}

1 − exp{2 pµ(k)(y

1

− y

2

)} c

k

(y

1

) + exp{pµ(k)(y − y

2

)} 1 − exp{2 pµ(k)(y

1

− y)}

1 − exp{2 pµ(k)(y

1

− y

2

)} c

k

(y

2

).

Hence (4.4)

X

k=kp+q+1

|c

k

(y)| · |ϕ

k

(X)| ≤ I

1

+ I

2

, where

I

1

=

X

k=kp+1

exp{−pµ(k)(y − y

1

)}|c

k

(y

1

)| · |ϕ

k

(X)|

I

2

=

X

k=kq+1

exp{− pµ(k)(y

2

− y)}|c

k

(y

2

)||ϕ

k

(X)|.

For I

1

, we have

I

1

≤ M

22

|D|M

h

(y

1

)

X

k=kp+1

k exp(− pµ(k)) (4.5)

≤ M

22

|D|M

h

(y

1

)

X

k=kp+1

k exp(− pM

1

k

1/(n−1)

), because y − y

1

> 1.

For I

2

, we also have

(4.6) I

2

≤ M

22

|D|M

h

(y

2

)

X

k=kq+1

k exp(− pM

1

k

1/(n−1)

).

Finally (4.4)–(4.6) give the conclusion of the lemma.

Proof of Theorem. Take any compact set T ⊂ Γ

n

(D) and two numbers y

1

, y

2

satisfying

max{y : (X, y) ∈ T } + 1 < y

2

, min{y : (X, y) ∈ T } − 1 > y

1

.

Let (X, y) be any point in T . Since c

k

(y) is the Fourier coefficient of the

function h(X, y) of X with respect to the orthonormal sequence {ϕ

k

(X)}

k=0

,

(7)

we have

h(X, y) =

X

k=0

c

k

(y)ϕ

k

(X)

where the series converges uniformly and absolutely on T by Lemma 2.

Further (4.1) and (4.2) of Lemma 1 give (3.2). The proof of the Theorem is complete.

Proof of Corollaries 1 and 2. From (3.3) and the Remark, it follows that A

k

= 0 for any k ≥ k

p+1

and B

k

= 0 for any k ≥ k

q+1

. Hence the Theorem immediately gives the conclusion of Corollary 1. By putting p = q = 0 in Corollary 1, we obtain Corollary 2 at once.

References

[1] M. G. B o u l i g a n d, Sur les fonctions de Green et de Neumann du cylindre, Bull.

Soc. Math. France 42 (1914), 168–242.

[2] T. C a r l e m a n, Propri´et´es asymptotiques des fonctions fondamentales des mem- branes vibrantes , C. R. Skand. Math. Kongress 1934, 34–44.

[3] D. G i l b a r g and N. S. T r u d i n g e r, Elliptic Partial Differential Equations of Second Order, Springer, 1977.

[4] S. M i n a k s h i s u n d a r a m and ˚ A. P l e i j e l, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256.

[5] H. W e y l, Das asymptotische Verteilungsgestez der Eigenwerte linearer partieller Dif- ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441–479.

[6] D. V. W i d d e r, Functions harmonic in a strip, Proc. Amer. Math. Soc. 12 (1961), 67–72.

Department of Mathematics and Informatics Chiba University

Chiba 263-8522, Japan

E-mail: miyamoto@math.s.chiba-u.ac.jp yoshida@math.s.chiba-u.ac.jp

Re¸ cu par la R´ edaction le 25.4.1999

Cytaty

Powiązane dokumenty

COMMENTATIONES MATHEMATICAE XXI (1979) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria

We shall construct the Green function by the method of symmetric images for the half-plane x 2 &gt; 0... Let &lt;p(yx) be a function defined on the real axis

In this paper we prove that bounded Hua-harmonic functions on tube domains that satisfy some boundary regularity condition are necessarily pluriharmonic1. In doing so, we show that

Lappan, Criteria for an analytic function to be Bloch and a har- monic or meromorphic function to be normal, Complex Analysis and its Applica- tions (Harlow), Pitman Research Notes

Inequality (5) is only a special case of the following more general result [5, Corollary 1] which applies to all polynomials of degree at most n not vanishing in the open unit

On other properties of functions of the classes HS(α, p) and HS 0 (α, p). The very well-known Alexander theorem for univalent holo- morphic functions shows relationships

[9] _____ , Conical Fourier-Borel transformation for harmonic functionals on the Lie ball, Generalizations of Complex Analysis and their Applications in Physics, Banach

Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann.. Marie-Curie