• Nie Znaleziono Wyników

On a certain boundary problem for the equation A2u-C*u = f(X)

N/A
N/A
Protected

Academic year: 2021

Share "On a certain boundary problem for the equation A2u-C*u = f(X)"

Copied!
7
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I. COMMENTATIONES MATHEMATICAE XXI (1979) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I. PRACE MATEMATYCZNE XXI (1979)

M. Filar (Krakôw)

On a certain boundary problem for the equation

A 2 u - C * u = f ( X )

1. In this paper we construct the solution of the equation (1) A2u ( X ) - C * u ( X ) = f ( X ) ,

where X = (xl 5x 2) and C is a positive constant, for the half-plane D = {X: IxJ < o o,x2 > 0}

with the Riquier conditions:

м(х!,0) = / 1(x1), Au{xx,0) = f 2{xx).

The functions f (i = 1 , 2 ) are defined for x x edD, where ÔD denotes the boundary of D. f is a given function on the set D.

2. We give now some formulae and theorems which will be needed later. Let X and У be two different points in 2-dimensional Euclidean space E2. Let

r = Х У = l ^ - y t f + i x . - y j y i 2.

As we know [5], the fundamental solution of the equation

(la) A2u ( X ) - C * u ( X ) = 0

is the function

(2) U(r) = nY0(Cr)+2K0(Cr),

where Y0(z) is the Bessel function of order zero of the second kind and K 0{z) is the Mac Donald function of order zero [3]. Let X e D , Y e D

= DkjôD. Let us denote by X x = (xl5 — x2) the symmetric image of the point X with respect to the axis y2 = 0. Further let us write

rx = X x У = [(xi — y i )2 + (x2 + y2)2] 1/2, Q = [ ( X i - y ^ + x i ] 172.

The following theorems are true (see [1]).

Theorem 1. The function

G( X, Y) = U ( r ) - U ( ri), (3)

(2)

where U (r) is given by (2), is a Green function with the pole X for equation (la) and for D with the boundary conditions

G ( X , Y ) = 0, AyG ( X , Y ) = 0 for YedD.

Theorem 2. Let f ( i = 1,2) be two functions measurable in ÔD and

00

continuous at the point x^^edD. Let j \fiiyi)\dyi *< oo (i = 1,2). Then the

00 function

00

(4) щ( Х) = (4nC)~l x 2 J [ f i ( y i ) C2N 1(Q)+f2(yl) N 2{eï]dyl ,

00 where

Nde) = е ^ И -^ я г а о д + г х п о ? )] O’ = i ,2)

is the solution o f equation (la) in the domain D and satisfies the following boundary conditions:

lim Mi(A') = / 1(3c1), lim Au^(X) = f 2{xx) as X- +( xl t O+).

3. We shall now examine some properties of the function U (r) given by formula (2) and prove some lemmas justifying differentiation of the integral of the form V{X) = J / (Y)U(r)dY.

D

If we use the formulae [3]

~ [ z - " K „ ( z ) ] = - z - K . + 1(z), 4 L [ z - " X ( z ) ] = - z - " y . + 1(z),

dz dz

the identities

Ax Y0 (Cr) + C2 Y0 (Cr) = 0, Ax K 0( Cr ) - C2K 0(Cr) = 0,

and asymptotic properties of the Bessel functions Yn and Mac Donald functions K n, the following will easily be obtained:

(5) U(r) — о (r2 y) ) > D^Xi U(r) = o(rA v), Dxi DX2 U (f) == 0 (1), D2L^X, U(r) = o(r~y)

(i := u : о V V

1) as r - 0 , (6) Ax U (r) = o (r_v), DXl^ x \U(r) == 0 ( r - ‘)

(i = l , :ГЧ1 о V r- V 1) as r->0 , (7) Dli D'x2 U (r) = 0 (1) as r-> oo (a, = o, 1, 2 ,3 ,4 ; a +«a. V/

- L j V(r) = C3 [nYt (Cr) —2X, (Cr)] = —4C2 r ~ l +h(r), dr

where h(r) = 0 (1) as r -+0 (r-* + co).

(8)

(3)

On a boundary problem 285

We shall prove the following

Lemma 1. I f the function f is measurable and bounded in D and S\ f ( Y) \ d Y < oo, then the integrals

D

K , m = j f (Y)£T(l U (r)dY (a, fi = 0 , 1, 2; a + fi ^ 2),

D

Щ(Х) = $ f ( Y ) D KAx U(r)dY ( / = 1 , 2 )

D

are uniformly convergent at every point X 0 eD.

P ro o f. It follows from (5) and (7) that there exists a number M > 0 such that

\D*X1 Di2 U(r)\ ^ M for r > 0 (a, p = 0, 1).

Therefore

\Kp(Xy sS M S \ f ( Y) \ dY for X e D (a, = 0, 1)

D

and the common majorant of integrals VxfS(X) (a, f = 0, 1) is the convergent integral M § \ f (Y)\dY.

D

We shall now prove that the integral Wx (X) is uniformly convergent at the point X 0 e D. The proof for the integrals W2(X), V20(X), and V02{X) is similar. It follows from (6) and (7) that there exist numbers R > 0, M, > 0 (i = 1, 2) such that

(9) \DXiAx U{r)\ ^ M xr ~l

M 2

for 0 < r < 4R, for r ^ 2R.

Let K ( X 0,3R) denote a circle with the centre X 0 e D and radius 3R.

We shall write Щ (X) in the form:

Щ( Х) = W' (X)+ W?(X), where

Wi ' ( X ) = s f ( Y ) D x l Ax U(r)dY,

D n K ( X 0 , 3 R )

W? ( X ) = f f (Y)DXI Ax U(r)dY.

D\K(X0 ,3 R )

For X e K ( X 0, R) and Y e K { X 0, 3R) we have r = X Y ^ X X 0 + Y X 0 < R + + 3R = 4R. If X e K ( X 0, R ) and Ye D\ K ( X 0, 3R), then r = X Y = X 0 Y -

— X 0X ^ 2R. From these results and from formula (9) we obtain l^ i W I ^ |И ? (* )| + |И ?(Х)|

S M , J I f ( Y ) \ r ~ 4 Y + M 2 I \ f [ Y ) \ d Y

D n K ( X 0 , $ R ) D\K(X q, 3 R )

for X e K ( X 0, R) (cf. [4]).

(4)

It follows from the above inequalities that the integral Wl {X) is uni­

formly convergent at the point X 0 e D.

We get as corollaries of Lemma 1 the following

Corollary 1. I f a function f satisfies the assumptions o f Lemma 1, then the function

(10) V( X) = l f ( Y ) U ( r ) d Y

D

is of class C2 in D and

ITxl Di2 V ( X ) = Vap(X) for X e D (a ,0 = 0 ,1 ,2 ; a + 0 ^ 2).

Corollary 2. I f a function f satisfies the assumptions of Lemma 1, then the function

(11) W( X) = § f (Y)Ax U(r)dY

D

is of class Cl in D and

DXiW( X) = Wf X) for X e D (i = 1,2).

We now prove

Lemma 2. I f a function f is bounded and o f class C 1 in D and f I / (Y)\dY < oo, then the function W (X) defined by formula (11) is o f class

D

C2 in D.

P ro o f. Let the circle K ( X 0, 3 R ) <z D and conditions (9) hold true. We now present the function W (X) given by formula (11) in the form

(11a) W( X) = L{X) + H( X) ,

where

Ц Х ) = I f ( Y ) d x U(r)dY, H ( X ) = f f ( Y ) A x U{r)dY.

K (Y 0,3 R ) D\K{X0 , 3 R )

Let X e K ( X 0, R). Then by (7) the function H(X) is of class C2 in K ( X 0, R) and its derivatives up to the order two may be found by dif­

ferentiation under the sign of the integral. Taking into consideration the above properties and the fact that the function U(r) as a function of the point X (X Ф У) satisfies equation (la) we have

(12) dH (X ) = C4 J f ( Y ) U ( r ) d Y for X e K ( X 0, R).

D\K(X0 , 3 R )

Using the formula

DXi Ax U (r) = - Dyi Ax U (r) (i = 1,2) and Corollary 1, we get

DXiL ( X ) = - f f ( Y ) D yiAx U(r)dY (i = 1,2).

K (X 0,3R )

(5)

On a boundary problem 287

From the formula for integration by parts [2] we obtain (13)

Dx, L ( X) = f Ax U(r)D„f(Y)dY+ J f (Y)dx U(r) cos (nr , yt)dSY

K(x0,m ew„,iR)

for X e K ( X 0, R ) ( i — 1,2), where nY denotes the inward normal to d K ( X 0,3R). Formulae (13), Lemma 1, and Corollary 2 imply that the function L( X) is of class C2 in K ( X 0,R). Thus the function W( X) is of class C2 in K ( X 0, R) and hence also at the point X 0.

Lemma 3. I f the function f satisfies the assumptions o f Lemma 2, then (14) lim A L ( X 0) = - 8nC2f ( X 0) as 0, X 0 e D.

P ro o f. By Lemma 2 and (13) we have D l . UX ) = f D , J ( Y ) D x, Ax U(r)dY+

K(X0,iR)

+ f f ( Y ) D XiAx U(r) cos (nY, yJdSy êK{X0,3R)

2

for XgK ( X 0, R) (i = 1,2). For D2fL(X 0), according to the formulae i = 1

DXiAx U(r) = - DyiAx U(r) ( i = 1,2), we obtain

AL(X0) = i D2L ( X o) = + i= 1

where

B i(*o) = J I DyJ ( Y ) D „ d x U W x = xodY, K(X0,iR) i= 1

I Ax U(r)\x =XodSY.

SK(X0,3R) OnY

The integral B l ( X 0) is an integral of the type W* ( X0) and can be made arbitrarily small by selecting the sufficiently small radius 3R. It is enough to show that

(15) lim B2( X0) = - 8j z C2f ( X 0) as Д - 0 .

Since on the boundary d K ( X 0, 3 R ) of the circle K ( X 0,3R) we have

ô d

—— Ax U (г)|х=х0,УегК(Х0,ЗК) = — — Ax U (г)|г=зл,

cnY dr

(6)

we get by (8)

dU(r) B2(X o )= f f ( Y )

гк{х„, 3R) dr dSx

X = X o

— AC2 +h(r)

= дК(Х0, ЗЛ)J / ( y )

Applying the mean value theorem to the last integral, we obtain

— AC2

dSv .

r = 3 R

B2(X o ) = 2n3Rf{Q)

3 R + h(3R) where Q e d K { X 0,3R).

Then, by the continuity of / for X = X 0, we get (15).

Lemma 4. I f a function f satisfies the assumptions of Lemma 2, then the function — (SnC2)~1 V (X), where V (X) is given by formula (10), satisfies equation (1) in D.

P ro o f. From Corollary 1 and Lemma 2 it follows, by formula (11a), A2 [_aV{X o)] = a AW( X0)

= aAL(X0) + a AH( X0) ± C 4 J af(Y)U(r)\x=XodY,

K (Xq, 3 R )

where K ( X 0, 3R) cz D and a = —(SnC2)- 1 . By (12) we get

A2 [ aV( Xo)] = aAL ( X0)+aC4 V ( X 0) — C4a j f ( Y)U (r)\x=XodY.

K ( Xq, 3 R )

Since

lim a f f ( Y) U{r) \ x=Xod Y = 0 as R-+0,

K ( X 0, 3 R )

we have by (14)

A2 [ a V( X0])] = f ( X 0) + aC4 V ( X 0) for every X 0 e D .

Lemma 5. Let f be function measurable and bounded in D. Let {I f ( Y ) \ d Y < oo. Then the function A{X) = j / ( Y) U( r 1)dY is of class C4

D D

in D and satisfies equation (la) in this set.

P roof. We shall prove that the integrals

A ^ ( X ) = i f ( Y ) D l , D i 2 U(ri) dY («,0 = 0, 1, 2, 3, 4; ce+0 « 4) n

are uniformly convergent at every point X 0 e D. Let K { X 0, R) <^ D. For X e K ( X 0, R) and Y e D we have r1 ^ x 2 ^ S > 0, where <5 is a positive constant. From formulae (7) we see that the functions D*x tD!fc2U(rl) (a, p

= 0, 1,2, 3 ,4 ; ol + P ^ 4) are bounded for r1 ^ <5. From these results we can obtain the inequalities

K j W I H M , f $ \ f ( Y ) \ d Y . (a, 0 = 0 , 1 , 2 , 3,4; a + 0 « 4)

D

(7)

On a boundary problem 289

for X e К ( X0, R), where Млр are positive constants. It follows from the above inequalities that integrals Aap(X) (a, p = 0, 1,2, 3, 4; ot + f ^ 4) are uniformly convergent at the point X 0 eD. Thus the function A(X) is of class C4 in D and DX1 D^x2 A( X) = Aap(X) for X e D (a, jS = 0, 1,2, 3, 4;

a + /i ^ 4). Taking into consideration the above properties and the fact that the function U (rx) as a function of the point X satisfies equation (la) in D, we have

A2A { X ) - CaA( X) = \ f{Y)\_A1x U{rx) - C * U { r x) ' ]dY= 0 for X e D .

D

4. As an immediate corollary of Theorem 1 and Lemmas 4, 5 we get Theorem 3. I f a function f is bounded and o f class C 1 in D and J \ f (Y)\dY < oo, then the function

D

(16) u2(X) = - ( 8nC2) - ' J /( Y ) G ( X , Y)dY

D

is the solution of equation (1) in the domain D with the boundary conditions:

lim u2(A) = 0, \im Au2(X) = 0 as X -* X e d D , X e D . As a consequence of Theorems 2, 3 we get the following

Theorem 4. I f functions f (i = 1,2) satisfy the assumptions o f Theorem 2 and a function f satisfies the assumptions o f Theorem 3, then the Junction

u(X) = u1( X) +u2(X),

where ux (X), u2 (A) are defined by formulas (4) and (16), respectively, is the solution of equation (1) in the domain D with the boundary conditions :

lim u(X) = (xx), \\m Au{X) = f 2{xx) as Х^>(х1, 0+) , X e D .

References

[1] M. F ila r, On a certain boundary problem for the equation A2 u — C*u = 0, Comm. Math.

16 (1972), p. 83-90.

[2] M. K r z y z a n s k i, Rôwnania rôzniczkowe czqstkowe rzçdu drugiego, cz. I, Warszawa 1957 (in Polish).

[3] N. N. L e b ie d ie w , Funkcje specjalne i ich zastosowania, Warszawa 1957 (in Polish).

[4] H. M a r c in k o w sk a , Wstçp do teorii rôwnah rôzniczkowych, Warszawa 1972, p. (89 (in Polish).

[5] J. M u sia le k , Construction o f the fundamental solution for the equation A2 u + ku = i), Comm. Math. 9 (1965), p. 213-236.

Cytaty

Powiązane dokumenty

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

We shall construct the Green function by the method of symmetric images for the half-plane x 2 &gt; 0... Let &lt;p(yx) be a function defined on the real axis

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVIII (1989) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETAT1S MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVI (1986) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXIII (1983) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE