• Nie Znaleziono Wyników

A FORCED DAMPED VIBRATIONS OF THE ANNULAR PLATE MADE OF FUNCTIONALLY GRADED MATERIAL

N/A
N/A
Protected

Academic year: 2021

Share "A FORCED DAMPED VIBRATIONS OF THE ANNULAR PLATE MADE OF FUNCTIONALLY GRADED MATERIAL"

Copied!
12
0
0

Pełen tekst

(1)

A FORCED DAMPED VIBRATIONS OF THE ANNULAR PLATE MADE OF FUNCTIONALLY GRADED MATERIAL

Artur Wirowski, Martyna Rabenda

àodz University of Technology

Abstract. The work deals with the problem of dynamics of bodies made of smart materials in which a characteristic, deterministic and microstructural construction has an inÀ uence on the macroscopic properties of the entire system. In particular, the subject of the analysis is the annular plate made of a material with functionally graded properties (FGM). On the microstructural level the structure is constructed from two materials. In the circular direc- tion the structure is periodic. In the radial direction the averaged properties of the structure are functionally variable. The study examined the issue of forced damped vibration. The starting point of discussion is the equation of motion of a thin plate based on Kirchhoff the- ory. Recently, the outcome of the modeling has been obtained as a partial differential equa- tion for the unknown slowly varying function w0. This equation, as opposed to output equa- tions of motion with discontinuous and highly oscillating coef¿ cients, has smooth slowly varying coef¿ cients. Hence, they can be solved easily by numerical methods because of its slowly varying coef¿ cient. Moreover, the study shows the exemplary solutions of model equations for the asymptotic model. There is determined the form of the ¿ rst symmetrical mode shapes for a sample set task parameters and selected the initial-boundary conditions.

Key words: tolerance averaging technique, vibration plates, FGM

INTRODUCTION

The dynamic behavior of the plate with heterogeneous microstructure is described by equations with discontinuous coef¿ cients. In the last decade the new approach to the mathematical modeling of FGM has been proposed. This approach is referred to as the tolerance modeling of FGM and the overview of the results in this ¿ eld was summarized in WoĨniak et al. [2008]. There are two main reasons for applying the tolerance modeling of differential equations as an alternative to the asymptotic non-uniform homogenization.

Firstly, for many microheterogeneous media the space distribution of material properties is not uniquely described by means of locally periodic functions. Secondly, the asymp- Corresponding author – Adres do korespondencji: Martyna Rabenda, Politechnika àódzka, Wydziaá Budownictwa Architektury i InĪynierii ĝrodowiska, Katedra Mechaniki Konstrukcji, al. Politechniki 6, 90-924 àódĨ, e-mail: martynarabenda@gmail.com

(2)

totically homogenized (taking into account the homogenisation of the ¿ rst order) equa- tions are independent of the microstructure size length parameter. Hence, they are unable to describe the effect of the length scale on the overall behavior of FGM. The tolerance averaging of differential equations overcomes the aforementioned restrictions.

The subject of this paper considers the dumping forced vibration analysis of a thin plate made of functionally graded material. The considered material has periodic prop- erties in the circular direction [and slow functionally graded properties in the radial direction [.

The main objective of the research is to derive and apply a deterministic macroscopic model describing the dynamic behaviour of micro-heterogeneous annular plate made of two components (Fig. 1). The general assumption of the research is that the generalized period Ȝ is suf¿ ciently small comparing to the size of the plate L. The main attention is given to describe the effect of the material distribution on the overall response of the composite.

The problems of the plates of this kind have been investigated by means of different methods. However, the exact analysis of those plates within solid mechanics is too com- plicated to constitute the basis for solving most of the engineering problems. Thus, many different approximate modeling methods for functionally graded material plates have been formulated [Rhee 2007, Hui-Shen 2009], The proposed modeling approach is the generalization of the tolerance averaging technique (TAT). This technique was presented in detail in WoĨniak and Wierzbicki [2000]. By TAT we can determine the answer of the analyzed structure on the forced of the vibration and the inÀ uence of microstructure size on the damping factor.

MODELLING

The general way to create equations of motion is the same as in Michalak and Wirowski [2012] which is discussed in detail. The starting point for modelling is well known equa- tions of linear elasticity theory, which are used to write equations on the micro scale.

Fig. 1. Scheme (top view) of the analyzed composite: a – microstructure level (black color – ribs, white color – matrix), b – averaged properties of the structure

Rys. 1. Schemat (widok z góry) analizowanego kompozytu: a – poziom mikrostrukturalny (czar- ny kolor – Īebra, biaáy kolor – matrycĊ), b – uĞrednione wáasnoĞci struktury

(3)

The base of modeling procedure are:

strain-displacements relations w|

NDE  DE (1)

where: țĮȕ is curvature, w is displacement ¿ eld, constitutive equations

mDE DHDEJG NJG (2)

where:

1 2

g g g g

H

DP EJ DJ EP

DEJG X DJ EP DP EJ

­   ½

° °

® ¾

     

° °

¯ ¿

(3)

3

12 1 2

D EG X

 (4)

E – Young modulus, į – thickness of the plate, ȣ – Poisson number, ij – component of Ricci tensor, gĮȕ – component of contravariant metric tensor.

After applying formulas (1)–(4) we can write the equation of motion for the band plate under consideration as:

| 0

mDEDE  p UwBw (5)

where: p – the external load, B – dumping coef¿ cient, the symbol " "| is the covariant derivative.

Subsequently, we use tolerance averaging technique (TAT) for modeling the dynamic behavior of thin plates, as it is presented in WoĨniak and Wierzbicki [2000]. More ex- tensive discussion about TAT and the bibliography containing various examples of ap- plications of this theory can be found in the monograph WoĨniak et al. (ed.) [2008]. For the purpose of this paper we shall quote only brieÀ y some of the concepts de¿ ned by this theory:

The most important operators and lemates are:

an averaging operator

1

1

2 2

2

1 ,

f f y dy

[ O D

[ O

[ [

O





³

(6)

(4)

where: y is a local coordinate,

a slowly varying function F ˜ SV T'

, DF

x y x y DF x DF y H

  3   ' Ÿ   (7)

where: eDF is a tolerance parameter,

^ , , , ...`

DF F F F’ (8)

the displacement ¿ eld disjoint (this is the modeling assumption which is called as micro-macro decomposition)

, 0 , A A ,

w t˜ w ˜ t h ˜V ˜t (9)

where: w0 ˜ ,t SV T' , VA ˜ ,t SV T' are the basic unknowns, and hA(·) are the known shape functions,

the most important theorems

fF x # f F x (10)

f’hF x # fF h x’ (11)

f’’ hF x # fF’’h x (12)

These de¿ nitions and theorems will be used to build the equations of the averaged model. A wider discussion on the derivation and the proof of these associations has been summarized in the monographs WoĨniak et al. (ed.) [2008].

The modelling procedure is based on two steps. At ¿ rst, we put into the equations of motion (5) the assumption of the decomposition of the displacement ¿ eld (9) and we obtain the equation with N+1 unknowns w0 i VA, where A=1 ... N

0

0

|

A A

A A

mDEDE  p U w h V B w h V R (13) We obtain the missing equations by orthogonalization method, multiplying the equa- tion of motion by the functions hA and we get the equations:

0, A 0

R h R (14)

After substituting the constitutive equations, the strain-displacements relations, the displacement ¿ eld disjoint and many mathematical transformations, we get the averaging equations:

(5)

0 11 22

| } |11 | |22 |

0 0

A A

A A

A A

DH w DH h V DH h V

w B w Bh V p

DEJG DE DE

JG DE DE DE

U

  

     

(15)

11 0 1111 1122

|11 | |11 |11 |11 |22

22 0 2211 2222

|11 | |11 |22

|22 |22 |22

0

A A B A B

B B

A A B A B

B B

A B B B A A

B A

h DH w h DH h V h DH h V

h DH w h DH h V h DH h V

h h V h B w h Bh V h p

JG JG

JG JG

U

  

   

     

(16) The coef¿ cients in the above system are described by continuous and slowly varying functions.

THE ASSYMPTOTIC MODEL

A model in which the coef¿ cients in equations describing the annular plate will not depend on the parameter of the microstructure size we call an asymptotic model. If in for- mulas (15) and (16) we make the passing limit with the parameter of the microstructure,we assume that the cell is in¿ nitely small comparing to the size of the body. Then concerned modules which depend on the parameter Ȝ will tend to zero. Note that if hA shape func- tions are dependent on the parameter Ȝ2, some of the averaged modules in equations (15) and (16) also depends on the microstructure parameter, namely:

2211 2222 2222 2211

, , , |11

A A B A A B

h DH h DH h h DH h DH h ,

1212 1212

|1 |1 |1

A B , , A B A B B A

h Uh DH h h DH h ˜ h B h Bh

Let us note that for the asymptotic model the equations simpli¿ ed considerably be- cause of the slackness of the system of equations (15) and (16). We can determine the unknown VA from equation (16) as:

1111 2211 1122

|11 |11 22 |11

0 0

11 1111 22 1111

|11 |11 |11 |11

|11 1111

0 2

2 1111

|11 |11

, , ,

,

A A A

A A B A B

A

A B

q DH q DH q DH

V w w

q DH q q DH q

q DH w [ q DH q

   

 (17)

(6)

After many mathematic transformations a 4-th row partial differential equation is built as:

4 3 2

2 2 2 2

4 3 2 2

2 2 2

2 2 2 2

2 ( , )

w w w w

A B C D

wE wF G t

t t

[ [ [ [

[ [ [ [

[ [ [

w  w  w  w 

w w w w

w w

 

w w

(18)

where:

|11 1122

2 2222 2211

1111 |11

|11 |11

A

A

A B

h DH

A DH DH h

h DH h

[ 

2 2222 2222

2

2211 2211

1122 |11 2 |11

|11

1111 1111

|11 |11

|11

1122 1111

|11 |11

1111 1111

|11 |11 |11 |11

,2 ,2

2 2 ,

2 , 2

2

A A

A

A B

A

A A

A B A B

B DH DH

DH h DH h

h DH

h DH h DH h

h DH h DH

h DH h h DH h

[ [

[ [

[

§  ·

¨ ¸

© ¹

§  ·

§ ·¨ ¸

¨ ¸

¨¨© ¸¸¨¹©¨¨ ¸¸¸¹

§ § · ·

¨ ¨ ¸

¨ ¨¨ ©© ¨ ¸¸¹  ¸¸¸

DH2211hA|11

¹

2 2211 2 1111 2211 2222 2222

2 22 2

2211 2211

1122 |11 22 |11

|11 ,2

1111 1111 1111

|11 |11 |11 |11

,2

1122

|11

|11 1111 |11

2 , , 1 ,

, 2

2

A A

A

A B A A

A

A B

C DH DH DH DH DH

DH h DH h

h DH

h DH h DH h DH h

h DH

h DH h

[ [ [

[ [

[

    

§  ·

§ ·¨ ¸

¨ ¸¨ ¸

¨¨© ¸¨¸ ¹¨©  ¸¸¹

§ ·

¨ ¸

 ¨¨© ¸¸¹

2211

|11 2 1111

|11 2211

1111 |11

|11 |11

,2 1111

|11 1111

|11

|11 1111 |11

1111 1122

|11 |11

1111 1111

|11 |11 ,2 |11 |1

2 ,

2

2

2

A A

A

A B

A

A

A B

A A

A B A B

DH h

h DH

DH h

h DH h

DH h

h DH

h DH h

h DH h DH

h DH h h DH h

[ [

[

[

§ ·

¨ ¸

§ ·¨ ¸

¨  ¸¨  ¸

¨ ¸¨ ¸

¨ ¸¨ ¸

© ¹

¨ ¸

© ¹



 § ·

¨ ¸

 ¨¨© ¸¸¹ 

2211 |11

1 ,22

DH hA

§ ·

¨ ¸

¨ ¸

¨ ¸

¨ ¸

§ ·

¨ ¸

¨ ¸

¨ ¸

¨ ¸

¨ ¨ ¸ ¸

¨ © ¹ ¸

© ¹

(7)

2 1111 2211 2211

22

2211 2 1111 2222

2 2 2

2211 2211

1111 |11 22 |11

|11 ,2

1111 1111 1111

|11 |11 |11 |11

,2 1111

|11 |1

1111

|11 |11

3 2 ,

4 , , 1 ,

, 2

2

A A

A

A B

A A

A A

A B

D DH DH DH

DH DH DH

DH h DH h

h BH

h BH h DH h DH h

h DH h

h DH h

[ [ [

[

[ [

[ [

[

[

   

  

§  ·

¨ ¸

¨ ¸

 ¨¨©  ¸¸¹

 

2211 2211

1111 |11 2 |11

1

1111 1111

|11 |11

,2 |11

1111 1111

|11 |11 2211

1111 1111 |11

|11 |11 |11 |11

,2 ,22

2 , 2

2

A A

A B

A

A A

A

A B A B

DH h DH h

DH

h DH h

DH h

h DH h DH

DH h

h DH h h DH h

[ [

[

§ ·

§ § · ¨·  ¸

¨ ¨ ¸ ¸¨ ¸

¨ ¨ ¸ ¨¸ ¸

¨ © ¹ ¸¨ ¸

© ¹© ¹

§ · § ·

¨ ¸ ¨ ¸

 ¨ ¸  ¨ ¸

© ¹ © ¹

2 , ,

2

2,

E[ U F[ B G[ t p

The coef¿ cients in this equation are continuous, and they can be found by symbolic calculations.

THE NUMERICAL RESULTS

Let us consider the following example: the free vibrations of a thin plate band. This plate is shown in Figure 1a. in circular coordinates. We make some assumptions:

the shape function

2 cos 2 1 C

h O S[

O

§ § · ·

˜ ¨¨ ¨¨ ¸¸ ¸¸

© © ¹ ¹ (19)

where the constant C is obtained from the equation:

0

hU (20)

as

2 1 1 2 2 2 2

1 2 2 2

2 2

cos cos

C 2

d d

d d

S S

O[ U U U U

[ O [ O

S U U O[ U

§ § · § ··

   

¨ ¨ ¸ ¨ ¸¸

© © ¹ © ¹¹

  (21)

(8)

To numerical calculations there is set the plate of following geometry:

R1 = 1 m, R2 = 3 m, Ȝ Ȇh = 12 cm, d = 0.02 m

In the ¿ rst case there is examined relation between mode shapes and boundary condi- tions. It is assumed a decay factor and parabolic forced vibration of the form:

6 2 2

10 1 3 sin 2 t

p x  x  St e (22)

It is supposed that the plate consists of two materials of following properties (Table 1).

Obtained mode shapes in the case of mutual free support (Fig. 2a) and cantilever (Fig. 2b) are presented below.

Table 1. Material properties of the plate Tabela 1. WáaĞciwoĞci materiaáowe páyty

Specy¿ cation Wyszczególnienie

E [GPa] ȡ [kg·m–3] Ȟ [–]

Matrix 20/200 780/7800 0.3

Ribs 200 7800 0.3

Fig. 2. 3D diagrams that shows deÀ ection of annular plate for different boundary conditions:

a – mutual free support, b – cantilever ¿ xed on the inner edge. On the horizontal axis there is presented the time t [s] and the radial coordinate of annular plate x2 [m], whereby x2 = 1 stands for inner edge and x2 = 3 for outer edge

Rys. 2. Trójwymiarowy diagram przedstawiający ugiĊcie páyty dla róĪnych warunków brzego- wych: a – obustronne swobodne podparcie, b – wspornik utwierdzony na wewnĊtrznym brzegu. Na osiach poziomych przedstawiono czas [s] i wspóárzĊdną promieniową páyty pierĞcieniowej x2 [m], przy czym x2 = 1 oznacza brzeg wewnĊtrzny, x2 = 3 oznacza brzeg zewnĊtrzny

(9)

The boundary conditions:

cantilever

1

1

0 0; 0 0

r R r R

w w

r

§w ·

¨ ¸

¨w ¸

© ¹

free support 2 2

2

0; 1 r 0

r r R r R r

r R

M V Q M

r

M

M w

§ ·

¨  ˜ w ¸

© ¹

2 0 0 2 0

2 2 2

1 1

r w w w ;

M D

r r

r Q r

M

ªw § w w ·º

 «¬« w  ©¨¨ ˜ w  ˜ w ¸¸¹¼»»

where:

2 0 0 2 0

2 2 2

2 0 0

2

1 1 ;

1 1

1 .

r

r

w w w

Q D

r r r r r

w w

M D

r r r

M

M

Q M M

§ ·

w w w w

 w ˜¨¨© w  ˜ w  ˜ w ¸¸¹

§ w w ·

 ˜ ¨¨© ˜w w  ˜ w ¸¸¹

Subsequently, there is examined the inÀ uence of material differences on the mode of dynamic response of the composite plate with functionally graded material properties. It is assumed large (10x) differences between materials of the rib and the matrix. Obtained mode shapes at the time of t = 0.2 ... 4 s are presented below (Fig. 3).

Fig. 3. DeÀ ection of the plate for different material proportions of matrix and ribs: a – E2/E1 = 10, ȡ21 = 1, b – E2/E1 = 1, ȡ21 = 10. On the horizontal axis there is presented the radial coordinate of the annular plate x2 [m], whereby x2 = 1 stands for inner edge and x2 = 3 for outer edge

Rys. 3. UgiĊcie páyty dla róĪnych proporcji materiaáowych: a – E2/E1 = 10, ȡ21 = 1, b – E2/E1 = 1, ȡ21 = 10. Na osiach poziomych przedstawiono wspóárzĊdną promieniową páyty pier- Ğcieniowej x2 [m], przy czym x2 = 1 oznacza brzeg wewnĊtrzny, x2 = 3 oznacza brzeg

(10)

CONCLUSIONS

As the result of modelling and numerical calculation there can be drawn the conclu- sions:

tolerance averaging technique allows for dynamic modelling of the behaviour of the plate made of functionally variable material properties,

on the obtained diagrams it can be observed the area insusceptible to forced vibration as the inÀ uence of gradient effect of structural properties on the inner edge of annular plate that creates,

– –

Fig. 4. The deÀ ection of the plate for different width of the ribs at the time of t = 2 s. In all of the cases the rib is 10x denser, namely much less susceptible to forced vibrations than to matrix material

Rys. 4. UgiĊcie páyty dla róĪnych szerokoĞci Īeber w chwili czasu t = 2 s. We wszystkich przy- padkach Īebro jest 10x gĊstsze, a przez to znacznie mniej podatne na wzbudzenie drgaĔ niĪ matryca

It can be noticed that in the case of plate stiffness change the shape of dynamic response of the system remains the same as for a homogeneous plate. In the case of ribs density modi¿ cation, the shape of the vibration changes substantially showing functionally variable character of the plate. In comparison to the outer edge, there is an increase of the plate mass next to the inner edge of the plate. As the result, next to the inner edge it can be noticed an area invulnerable to forced vibration due to signi¿ cant concentration of the.

This phenomenon can be examined more precisely by analysing the inÀ uence of the rib width on the dynamic response of the system. On the Figure 4 the deÀ ection of the plate at the time of t = 2 s in cases of different ribs width d is presented. It can be observed that the area insusceptible to forced vibration appears for ribs wider than d = 0.01m and is expanding with the increase of the width of the rib.

(11)

stiffness modi¿ cation of ribs/matrix has no inÀ uence on the shape of the plate re- sponse to forced vibration.

REFERENCES

Hui-Shen S., 2009. Functionally graded materials: non-linear analysis of plates and shells. CRC Press, London.

Michalak B., Wirowski A., 2012. Dynamic modelling of thin plate made of certain functionally gra- ded materials. Meccanica 47, 6, 1487–1498 (DOI: 10.1007/s11012-011-9532-z, 2012).

Rhee R.S., 2007. Multi-scale modelling of functionally graded materials (FGMs) using ¿ nite ele- ments methods. University of Southern California, USA.

Suresh S., Mortensen A., 1998. Fundamentals of functionally graded materials. The University Press, Cambridge.

WoĨniak Cz. (ed.), 2000. Mechanika sprĊĪystych páyt i powáok. Wydawnictwo Naukowe PWN, Warszawa.

WoĨniak Cz., Michalak B., JĊdrysiak J. (ed), 2008. Thermomechanics of microheterogeneous so- lids and structures. Wydawnictwo Politechniki àódzkiej, àódĨ.

Wozniak Cz., Wierzbicki E., 2000. Averaging techniques in thermomechanics solids and structures.

Wydawnictwo Naukowe Politechniki àódzkiej, àódĨ.

DRGANIA WYMUSZONE Z TàUMIENIEM PàYTY PIERĝCIENIOWEJ WYKONANEJ Z MATERIAàU O FUNKCYJNEJ GRADACJI WàASNOĝCI

Streszczenie. Praca dotyczy zagadnienia dynamiki ciaá wykonanych z inteligentnych ma- teriaáów, w których okreĞlona, deterministyczna budowa mikrostrukturalna ma przeáoĪenie na makroskopowe wáasnoĞci caáego ustroju konstrukcyjnego. W szczególnoĞci przedmio- tem analizy jest páyta pierĞcieniowa wykonana z materiaáu o funkcyjnej gradacji makro- wáasnoĞci (FGM). Struktura ta na poziomie mikrostrukturalnym jest zbudowana z dwóch materiaáów: Īeber o staáej szerokoĞci oraz matrycy. W kierunku obwodowym struktura jest periodyczna. W kierunku promieniowym uĞrednione wáasnoĞci struktury zmieniają siĊ w sposób funkcyjnie zmienny. W pracy badane jest zagadnienie drgaĔ wymuszonych z uwzglĊdnieniem táumienia. Punktem wyjĞcia rozwaĪaĔ jest równanie ruchu páyty cienkiej wedáug teorii Kirchhoffa. Ostatecznie w wyniku procedury modelowania otrzymano ukáad równaĔ cząstkowych róĪniczkowych na niewiadome, wolnozmienne funkcje. Ukáad ten posiada ciągáe wspóáczynniki i moĪe byü rozwiązany metodami numerycznymi. W pracy pokazano takĪe przykáadowe rozwiązanie równaĔ modelu dla zagadnienia asymptotycz- nego. OkreĞlono formĊ pierwszej, symetrycznej postaci drgaĔ dla kilku przykáadowych zestawów parametrów zadania, wybranych warunków początkowo-brzegowych oraz wy- muszenia drgaĔ.

Sáowa kluczowe: metoda tolerancyjnego uĞredniania, drgania páyt, FGM

Accepted for print – Zaakceptowano do druku: 19.12.2014

(12)

Cytaty

Powiązane dokumenty

όμ[ολογώ έσχηκέναι και δεδανεΐ]σθαι παρά σου εις ιδίαν μου 5 και άναγκαίαν χρείαν] δια χειρός έξ οϊκου παρα- χρήμα αργυρίου] σεβαστών

Co więcej, jeżeli w y ­ obrazimy sobie d w a punkty materii w stanie rów now agi trw ałej (przy bardzo sil­ nym wiązaniu), wówczas dla trzeciego punktu materii

Full-scale identification of the wave forces exerted on a floating bridge using inverse methods and directional wave spectrum estimation.. Petersen, Øyvind Wiig; Øiseth, Ole;

Organiczna wada tej wspólnoty „polegała na tym, że uważa- ła się ona za jedyną prawdziwie ortodoksyjną wspólnotę na świecie, a swoją koncepcję Boskości za jedyną

W rozdziale VIII szczególnie dokładnie zostały prze- analizowane dla główne dzienniki („Hajnt” i „Moment”), w mniejszym stop- niu pozostałe grupy (prasa polityczna

Zaproponowana przez Taylora (1993) reguła stopy procentowej uzależnia wysokość stopy procentowej od stopy inflacji, odchyleń inflacji od celu infla- cyjnego, luki popytowej

Charakterystyka genetyczna ekstrahowalnej substancji organicznej w odniesieniu do typu kerogenu zawartego w próbkach anhydrytu I/F7-I oraz II/F7-II (czerwone trójk ą ty) oraz

роз’яснює сторонам мету, порядок проведення врегулювання спору за участю судді, права й обов’язки сторін; під час проведення спільних