• Nie Znaleziono Wyników

1. In this paper we construct the Green function and the solution of the equation

N/A
N/A
Protected

Academic year: 2021

Share "1. In this paper we construct the Green function and the solution of the equation"

Copied!
12
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: P RACE MATEMAT Y CZNE X IX (1976)

M. F

ilar

(Krakow)

O n a certain boundary problem for the equation (A + a2) ( A + b 2) u = 0

1. In this paper we construct the Green function and the solution of the equation

(1) {A + é ) {А + Ъ2)и{Х) = О

{ X = (aq, ..., <jcn) and а, Ъ are positive constants, а Ф b) for the domain E+ — {X: аа{€ ( — <x>, oo) for % = 1, 2, ..., n — 1, œn > 0} under the boundary conditions

и{$ог, ..., ®n- \ ) 0) = fi{$ii • • • ? œ„-i) ?

( 2 )

Au(ûff1} ..., 0) = / 2 (^ 1 ) • • •} 1 )•

2. We give now some formulae, which will be needed later. Let X and Y be two different points in n -dimensional Euclidean space E n {n > 2).

Let

П

r = = [ î > « - ÿ < ) s]ie i=l

be the distance of these points. We now consider th e function (3) U( X, Y) = U(r) = - a - 2v{br)-vY v(br) + b-2v(ar)-vY v{ar),

where v = (n — 2)/2 and Y v(z) is the r-order Bessel function of the second kind. Since U(r) is a linear combination of solutions (ar)~vY v(ar) and (br)~vY v(br) of the equations

{ А + а г) и { Х ) = 0 and {A + b2)u{X) = 0,

respectively and thus U(r) as a function of X (or Y) satisfies equation (1).

If we use the formula ([2], p. I l l )

(2)

and the expansion of Y v(z) into series ([2], p. 110 and 113) we easily obtain

(4) U(r) — | 0(r~2v)

o(r~x)

for v > 0, for v = 0,

(5) dU(r)

---= a z b(br)

dr ~vY v+i(br) —ab~2v(ar)~vY v+l(ar)

| 0 ( r - 2”+1 for v > 0, - |0 < i) for v == 0, (6) AU(r) + (a2jrb2) U(r) = 1 i

~'Y,(br) + l>‘-*'{ar)-T ,(ar) 0(r~2v) for v > 0,

o(r~l) for v — 0, (7) 4 - [ A U ( r ) + (a2 + b2)U(r)]

dr

= ba2~2v (br)~v Y v+1(br) — ab2~2v (ar)~v Y v+1(ar)

= 2r+1 r (v + 1 ) n - 4 - 2va -2v{b2 - a2)r~2v~l + H v{r), where

H v(r) = 0(r~2v+1 0

(

1

)

for v > 0, for v = 0 (the symbol 0(f(r)) (o(f(r))) refers to the case r-> 0).

Let D be a boundary domain whose boundary we denote by dD.

Let dD be of the class Gf Let w, v be functions which are of class Gi in D and of class G3 in D v d D . Using Green’s formula ([1], p. 230) to the system of two functions v and Aw, Av and w, (a2 + b2)v and (a2 + b2)w, respectively, and adding obtained equations, we get

(8) j {w[A2v + (a2jrb2)Av] — v[A2w Jr(a2-\-b2)Aw]}dD

D

f !v-^-[Aw + (a2 + b2)w] — - ^ - [ A w + (a2 + b2)w] + A w ^ — —^ - v \ d S ,

J dn dn dn dn )

dD 1

where n is the inward normal to dD.

T

heorem

1. Let и be a function of class G* in D and of class C3 in D v d D satisfying equation (1) in D. Then

1

(9)

V n dD y

/I и - Л - [ А и + (а2-{-Ь2) Щ - — [AU + (a2 + b2)U] +

dnA dn

dU + Au ——

d'il jr

dAu dn

u(X) 0

for X * D \ d D ,

for XeC( D\ j dD) ,

(3)

where yn = Qn2v+1 Г ( у 1(ab) 2v(a2 — b2) and Qn is the surface of the n-dimensional unit sphere; G(DudD) denotes complement of D u dD relative to E m.

P ro o f. Let Xe G( Du d D) . Applying (8) to the function u ( Y) and U(X, Y) as a function of Y we get (9). Let X be interior point of the domain D and K R denote the ball with the centre X and radius R, K R c D . If in formula (8) D is replaced by D \ K R and functions w and v are replaced by u ( Y) and U(X, Y), respectively, we get

r i d dU

(10) \U —— [Au + (azX b z) u1 --- -— \_Аи-\-(аг-\-Ъг)и\ +

^ J ( (л/Yb dfly

dD

л du dAU ) + AU —--- ---u\dSy

dn dn y J

dK

U [ d P + (a2 + &2) Щ du

dn [dZ7 + (<*2 + 62) U] + Au dU dAu

dni dn u ) d S y . Applying the mean value theorem to the surface integrals we obtain

d

r- = dKT? / u dn, [AU + {a* + b*) U]dSY

anBn- ' u(Qt) -[z)P (r ) + (e> + bv U(r)]Us, d

dKr> f

du

d n T7

[AU + (a* + b2) щ а в 2

, du(Qo)

= QnRn M Щг) + («2+*>2) Щг)3U n,

Z3 = j'Au dU dSY = QnBn- l Au{Qz)^-V{r)\r=R,

dK

dn dr

R

- f

dAu , dAuiQ/,)

TJ ~ — dSy = QnBn --- — U(R),

dn dn

where Q{e dKR (i — 1, 2, 3, 4). Taking into account (4), (5), (6) and (7) we obtain

h = Q bBT-'uU iJ i2v+lr{v + ±)K-l (ab)-2v(b2- a 2) R - 2v- l + H v(B)-]

(* = 2, 3, 4),

hence by (10) we obtain (9).

(4)

3. We now pass to the construction of the Green function of equation .(1) and for the set E + . Let X and Y be two different points, X e E + ,

Y e E + . Let us denote by X = (aq, ..., —æn) the symmetric image of the point X with respect to the coordinate hyperplane yn — 0. Let us write

71

— 1

71 —

1

q = 1 Г = ( ® < - y < ) 2 + (®» + y » )2] 1/2>

Q = [ £ ( V i - V i f + x l ] 1'2'

i= 1 i= 1

We are going to prove T

heorem

2. The function

'(

11

)

G(X, Y) = U ( r ) - U ( r x),

where XJ(r) is given by (3) is a Green function with the pole X for equation (1) and for E f with the boundary conditions

'(12) G(X, Г )|Уя_0 = 0, Ar G(X, Y ) |%=0 = 0.

P ro o f. U(rx) as a function of Y is defined and of class C°° in E+

and satisfies equation (1) in this set. Por Y

e

dE+ we have r = rx

q

•and G{X, Y)\yn=0 = U( q ) — U( q ) = 0 . Since AY U(r) = V"{r) + r~l {n- - l ) V' {r)

and so Ar G( X, Y ) |%=0 = [AT U(r) - Ar TJ{rx)% n^ = 0 .

4. Let u( X) be a function of class (74 in E f satisfying equation (1)

;and the boundary conditions (2). Applying formally formula (9) to func­

tions U(r) and — U{rx) and for В = E+ and adding obtained equations, we get, in view of (2), (11) and (12),

•(13) u(X) = — f \ м Т ) - £ - [ А у 9 ( Х , У ) + (ал + Ъ*)в(Х, Г)] +

У п v J i д У п

д 11

+ М Т ) — в ( Х , Y)

дуп 1 d Y ’,

Vn -

where Y ' = {yx, ..., yn_x) denotes a point in (n — 1)-dimensional Euclidean -space Е п_г. I t is easily shown, using formulae (6) and (7), th at

' (

11

)

d dyn

d

дУп ? )\Vn=o 0пя я(е),

[Ar G( X, Y) + (a* + b*)G(X, Y)]|%=0 = x nX x(6),

(5)

N ^ q ) = 2b2- 2va2(aer v~1Y r+1(aQ )-2a2- 2vb2(ber v- 1 Y v+1(b6), N 2( q ) = - 2 b 2a - 2v(bQ)-v~1Y v+1(bQ) +2 a 2b-2v(aQr v- 1Y v+1(aQ).

w h e r e

Substituting expressions (14) into (13) we obtain

X г

<15) u { X ) = - ^ - [ /1( Г /)ДГ1(е) + Л ( Г ) ^ а(Р)]й Г .

У п „ J __

1

L

emma

1. Lei \fi(Y')\ ( i = 1, 2) be a function which is Lebesgue inté­

grable over E n_1. Then the function u(X) given by formula (15) is of class C°°

in E f and satisfies equation (1) in this set.

P ro o f. We shall prove th a t the integral on the right-hand side of formula (15) as well as the integrals we get by differentiating /г-times (/г = 1, 2, 3, ...) with respect to xi (i = 1, 2, ..., n) the functions under the sign of integral (15) exist and are uniformly convergent for X belonging to the set

Q = {X: \Xi\ < 0 , i = 1, 2, ..., n — 1, A < xn < B ) ,

where A, B G are arbitrary positive constants. The functions we obtain by /г-times differentiation of the kernels N x( q ) and N 2( q ) with respect to xt (i = 1, 2, ..., n) are linear combinations of the functions

71

— 1

ф = [ J

П : 1

where £ аг- < // and /9 > 0, a{ > 0 (i = 1, ..., n — 1), h = a, b. I t is enough to know th a t the integrals ill

(16) J f t( T ) 0 d Y ' (i = 1 ,2 )

E n- 1

exist and are uniformly convergent for Xe Q. For X e Q we have q ^> A.

N

owt

from the assymptotic properties of Bessel functions ([2], p. 145) we see th a t Y v(hg) are bounded for q > A. From these results wre can obtain the inequalities

m < M av an^

for X e Q , Y e E n_Y, where M a f0lntp are positive constants. I t follows fiom this th a t

I / / , ( г ' ) « 1 ' к ж ( En— 1

I Ш Г ) \ Л Г

E n - 1

(i = 1 , 2 ) .

Hence and by assumption of Lemma 1 integrals (16) exist and are

uniformly convergent for Xe Q.

(6)

The function u( X) defined by formula (15) or (13) is of class C00 in the domain E£ and its derivatives may be found by differentiation under the sign of the integral.

We shall prove now th a t the function defined by formula (13) satisfies equation (1). Taking into consideration the above properties and the fact th a t the function G(X, Y) as a function of the point of X, X Ф Y satisfies equation (1), we have

L

emma

2. Let |/ ( Y ' ) | be a function which is Lebesgue integrable over Е п_г. Let /( Y') be continuous at the poit the X'0 — (#$, ..., Then the function

is defined for X e E+ and convergent to f(X'0) when X~>(X'0, 0-f).

P ro o f. If we use the formula

{Qn is the surface of the ^-dimensional unit sphere, n > 2) we easily find th a t [3]

+ h ( T ) (а? + Ьг) Х ( А х + а?)(Лх + Ъг) в { Х , Y) + dyn

(17)

Multiplying both sides of (17) by f(X'Q) we obtain

We now present the function L ( X) in the form

(7)

w h e r e

2$ f*

° {X)==~Q~ J U ( ^ ) - f ( ^ ô ) ] Q - ndY'.

I t is enough to show th a t C(X) is convergent to zero if X-+(X'Q, O-f).

Let s > 0 be given. I t follows from the continuity of the function /( Y') a t the point X'0 th a t there exists the (n — l)-dimensional ball K R(X'0) with the centre X'0 and radius В > 0 such th at

<18) If ( Y ' ) - f ( X ' 0)\< 812 for Т е K R(X').

Let

{19) G(X) = Сг(Х) + С9(Х),

where

2cc г

Сг( Х ) ^ ^ [ f ( Y ' ) - f ( X ' 0) l Q- nd Y ,

^n J , Krtx0)

2x г

°2{X)==lf J U ( Y ' ) - f ( X ' ) l Q- nd T , C[KR(x'0)\

where C[KR(X'0)] denotes complement of K R(X'0) relative to Bn_l . I t follows from (17) and (18) th at

{20) |C ,(X )|< e/2 for X e E + . '

Let X ' X'0< В /2 and Y ' X ' > B. Then X ' T > Y'X'0- X ' 0X ' ^ E/2 and C[KR(X'0)\ cz C[KRI2(X')-}. Hence

{21) \Ca( X ) \ ^ C t (X) + Ct (X),

where

Cz(X) = ^ \ f ( X ' ) \ f Q~nd T , n C[KRI2(X')]

G l ( X ) = l i ï ~ / l/( y ')l n C[KRj2(X’)\

Introducing the spherical coordinates in C3(X) Vi =<»! + »* cos 9?!, y 2 — a^ + rsin^cos^g?

п- 1

= ®„_irsinç>1...sinç?n_2,

(8)

where JR/2 <

у

* < <x>, 0 < y{ < -к (i = 1. ..., n — 3), 0 < <pn_2 < 27c, |J |

= V * ~ 2 V>{ <P l, < P n - b ) l w e g e t

OO О

C 3 { X ) = M æ n

J

r n - 2 ( r 2 + 0 " w /2 ^ < Ж я п j

RI2 Rl2

Г 7T Z 1

= Ж ---arctan —— ,

L 2 2®nJ

dr r2 + <

where i f is a positive constant.

Since the last integral is convergent to zero for æn~>0+, there exists a number rj > 0 such th a t the conditions 0 < con < rj and X' X' 0< В / 2 imply

(22) C3( X ) < e / ± .

Let us now take into consideration the integral C4(X). For Y 'X ' < В /2 we have B j 2 and thus

2&„ Г

J

n С[ХД|2(Х')]

|/( Y ') |d Y '< 2a?n Jf,

/ l / ( V ) | d r ' , E n - l

where J f x is a positive constant.

From this result and by assumption of Lemma 2 it follows, th at there exists a number y 1 > 0 such th at

(23) C4( X ) < e / 4 for X' X' 0< B]2 and 0 < a?n < î? x.

I t follows from (19), (20), (21), (22) and (23) th at

\ G( X ) \ <s for X ' X ’0< B / 2 and 0 < wn < min(^, ?yx).

L

emma

3. |/t-( Y')| (i = 1, 2) a function which is Lebesgue inté­

grable over En_1. Let fi (Y' ) be continuous at the point X'Q — (a?°, ..., a?°_x).

Then the function u(X) defined by (15) satisfies the following boundary conditions :

(24) limit(X) = f 1(X'0) as X ^ ( X

q

, 0 + ) , (25) lim zl u(X) = f 2{X'Q) as (X

q

, 0 + ) .

P r o o f . We shall now prove th a t the function u(X) defined by (15) satisfies condition (24). I t is easily shown by using the expansion of Y„+1( 0 ) into the series and the asymptotic formulae for these functions ([2], p. 145) th a t the functions Wx(^») and X 2( q ) may be written in the form

(26) X ^ q ) = 2 v+2{ab)-2vr ( v + l)7i-1Q-2v- 2{a2- b 2) + P ( e),

(9)

(27)

w h e r e

P ( q ) =

o(q

m+1) as q 0 -f- j X

2

( q ) =o(Q~n+1) as e ->0 + .

\

Now let us write u(X) given by (15) in the form u(X) = Jx{ X ) + J ^ X ) + J 3{X), where

J i(X) æn2

v+2

Г (v -[-

1

){сг — b Yn(<*)*n

j 2(X) f м г ) Р ( д ) а т ,

Yn J

f u r n Em ___ i

Q~ndY',

Ern _ 1

СО Г

J

3

(X) = -* - f

2

( T ) N

2

(Q)dY'.

Ym _J

Yn

JL,n— 1

In view of Lemma 2 and definition of yn we have Ит«7х(Х) = f x{Xо) when X -> (X

q

, 0 + ).

I t is enough to show th a t integrals J { ( X ) (i = 2, 3) are convergent to zero if X->(X'0, 0 + ). We shall show this only for the integral J

2

{X)r the proof for the integral J

3

(X) being similar. Since P ( q ) = o(g~n+1) as

@->0, thus there exists a number q

3

> 0 such that (28) \P( q ) \ < Q

~ n+1

for 0 < Q< Q0.

I t follows by the continuity of the function f x(Y') at the point th a t there exists the (n — 1)-dimensional ball K S(X'0) with the centre and radius ô > 0 and a number M * > 0 such th at

(29) Let

\ Ш ' ) \ < Х д for Y ' e K d(X'0)

e .

Qo ^ S l = m m \ - , -

The integral J

2

(X) may be w ritten in the form

(30) J x(X) = B

1

(X) + B

2

(X),

where

B 1( X ) = ~ f A m ) ? ( e ) d r , k

01

( xq )

00 I*

B 2{ X ) = - ± M r ) P ( é ) d r .

Yn J ,

C[Kôl(XQ)]

N N

(10)

If X'

0

X ' < (5x/2 and then Y 'X ' > Y 'X '- X '

0

X ' > <5,/2 and 0 [Х в1(ХЙ] c C № l/2(X')]. Hence

л? /*

|Яа( Х ) | < - ^ |Л ( Г ) ||Р ( е ) |Д Г .

У п

C[Kôlj

J2

(X')]

For Y ' X ' > <5,/2 we have q ~^ ô

1

f2 and \P{ q ) \ ^ M 2, where il/2 is a positive constant. Thus

|Б 2( Х ) |< Ж 2

У п

f Ifi(Y') I dY'.

Let e > 0 be given; then by assumption of Lemma 3 there exists .a number Ç > 0 such th a t the condition 0 < xn < £ implies

Therefore

Ж о

Уп l/l (Y ')|d Y '< e/2.

(31) |P 2( X ) |< e/2 for 0 < < £ and X 'X

q

< <5

x

/2.

Let us now take into consideration the integral P x(X). Let Y 'X

q

< (5X.

If X'X'

0

< ô

1

l

2

and 0 < xn < £x = min (£, <5x/2), then X ' Y '< X^ Y' -f + X 0'X '< (5x + (5x/2 =1(5, and ^ ( X j ) с Ж3<5 (X').

2 01

From this result and from formulae (28) and (29) we have

Г

l-®i(X)| < — l/i( Y')|

У п т т У

|P ( e ) |d Y '< — xn

У п

J Q- n+

1

dY'.

к з (X')

-<5i 2 1

Introducing the spherical coordinates

Vi = «i + rcosç?,, Уп- i = «n_ 1 + rsin^1'...-sin99n_2,

\J\

=. rn~

2

\p(cp1, . . . ,q >n_3) in the last integral, we get

j Q~n+

1

dY' = xnN J rn~

2

( r ^ æ

2

J~ n+

1

)l

2

d r ^ œ nN j

к з (X') о о

-д-i

2 1

dr

where X is a positive constant.

Since the last integral is convergent to zero for xn-> 0 + , there exists a number £2 > 0 such th a t the conditions

0 < xn < min(£i, C2) and X 'X '

0

< ô

1 /2

(11)

imply

(32) \Bx{ X ) \ ^ e ! 2 .

I t follows from (30), (31) and (32) th a t

|J 2(X)| < e for 0 < œn < Cs ami X ' X

'0

< dj/2, where Cs = min(£i, C2)-

So we have proved th a t the function defined by (15) satisfies the boundary condition (24).

We shall now prove th a t the function u(X) satisfies condition (25).

In view of formulae (14) we have

- Х [ ^ в (х , Y)]|%=0 ^ ~ [ А г в ( Х , Г)]|%=0

=

2

b

4

a~

2

v(bQ

) - v~ 1

Yv+l{bQ)æn -

2

ctb-

2

v{aQ)-v- l Yv+l{aQ)<fin

= [2'+a (ab)~

2

vr (v + 1 ) тГ1 q

~ 2v~ 2

(a

2

- b2) + W(e)]®ni where

TT(£) = o(g-n+1) when q ->0.

~ [ A x AT0 ( X , 7) + (а* + Ъ*)Ах в ( Х , Y)]|„n_0 УУп

ç\

= — - [ A

2

YG(X, Y) + (a

2

+ b

2

)A TG ( X , Y )]|%=0

™Уп

= - 2 a i b2- > (ag) - ’- 1 Y,+1(«e)æ„+26‘ a2- 2’(6 g )-'-1 Y,+,(&£>)*„

= - ( b a ) 2X 2(e)æn.

We have then

Au(X) =* А г( Х ) + А г(Х) + А а(Х), where

A A X )

M X )

M X )

7 n

>2

j

>

/ и ( Х ' ) ( - а 2Ъ*Х2(в))йХ',

2 2

vT(v + 1) {a

2

- b

2

)æri

xn

Yn

(ab)v Tzyn

J f , m V ( g ) d T '

f h ( T ) g -

2

’-

2

dY', En-X

n— 1

5 — Roczniki PTM — Prace Matematyczne XIX

(12)

In view of Lemma 2 and definition of yn we have limA

2

(X) = M X ' 0) when 0 + b I t is enough to show that

(33) A<{X)-+0 (i = 1 ,3 ) if X->{X'0, 0 + ) .

Now the proof th a t (33) is satisfied is similar to th at of the proof for the integral J Z{X).

From Lemmas 1 and 3 we get

T

heorem

3. By the assumptions of Lemma 3 the function u(X) defined by formula (15) is the solution of equation (1 ) in the set LJf with the boundary conditions (24) and (25).

References

[1] M. K rzy za n sk i, Bownania rozniczhowe czqstkowe rzçdu drugiego, cz. I, Warszawa 1967.

[2] N. L eb ied iew , FunTccje specjalne i ich zastosowania, Warszawa 1957.

[3] J. M u sialek, The Green's function and the solutions of the Neumann and Dirichlet

problem, Comm. Math. 16 (1972), p. 1-35.

Cytaty

Powiązane dokumenty

On the other hand, technology Is used to improve education and accelerate the process of learning.. It can provide more job opportunities as new branches of science are created,

The levels of such parameters characterizing dynamic loads and overloads of examined movement structures as: maximal and average values of vertical ground reaction forces, total

Theorem 1.1 was proved for a variety of nonlinear differential equations under homogeneous Dirichlet boundary conditions in [2, 4, 7, 8] and for a system of differential equations

More- over, our results and methods used in the proof suggest that in the class of bounded pseudoconvex complete Reinhardt domains the symmetry of the Green function is equivalent

Sketch the graph of the function f n (x) and the graph of the derivative.. (4) Compute the derivative of the

Sketch the graph of the function f n (x) and the graph of the derivative.. (4) Compute the derivative of the

Sketch the graph of the function f n (x) and the graph of the derivative.. (4) Compute the derivative of the

The solution of Dirichlet problem for the region was obtained in the monograph [3], p.. First let us show that the integral I x{X) exists.. In this paragraph we