• Nie Znaleziono Wyników

ntent [at. %]Zn con

N/A
N/A
Protected

Academic year: 2022

Share "ntent [at. %]Zn con"

Copied!
35
0
0

Pełen tekst

(1)

diffusion process at migrating interface of discontinuous precipitates

of discontinuous precipitates

(2)

1. Introduction

2. Global characterization of the DP reaction 3. Unsolved problems

4. Local characterization of the DP reaction via AEM

5. Principles of high resolution microchemical analysis of lamellar structures

6. Grain boundary diffusivities via AEM

4. Local characterization of the DP reaction via AEM

7. Concluding remarks

(3)

Discontinuous Precipitation (DP) Reaction

L

T

αo

α β

v RF

δ

λα

The solute redistribution occurs at the moving RF.

α+β α β

xo

A xexav xB B

GB

α

o

α+β

1. There exists an excess of solute atoms within the α lamella compared to the equilibrium state

(4)

Global Concept of DP Reaction

All the parameters represent the average values for the whole population of the cells in the sample

Quantitative metallography: λλλλαααα,,,, vav

X-ray diffraction: average solute concentration in the α lamellae: xav

w

Time

vav

w w=πw/4

(5)

Cahn´s model

Diffusion Models - Global Concept

tanh 2

2 C

x C x

x x

e o

av

o =

C D v

s b av

α2

δ

=

λ

Petermann- Hornbogen (P-H) model

Z. Metallkde 59 (1968) 814 G

RT D v

s b av

= 8

2

λα

δ

Db-grain boundary (GB) chemical diffusion coefficient s-segregation factor

G-driving force for the DP reaction: G = f(xav, xo, xe) R-gas constant

T-absolute temperature of the DP reaction

xo,xe-solute content in the alloy and at the α/β interface

(6)

Questions

Why?

(Petermann-Hornbogen model) (Cahn´s model) sδDb ≈ 102...104 x sδDb

Does diffusivity at the migrating grain boundary (GB) occur at the same speed as for the stationary GB?

(7)

Local Concept of DP Reaction

All the parameters are relevant for the individual set of α α α α and β β β lamellae (single cell) β

x(y)

λ λ λ λαααα

y

0 1

DP - Solute concentration profile across the αααα lamella

λ λ λ λαααα

vins

RF

(8)

( )

[ ]

o o

e x

C

C x y

x y

x +

= cosh( /2)

5 . 0 ) cosh

( ) (

b ins

D s C v

δ λ

α2

=

o b

x s = x

J.W. Cahn: Acta Metallurgica 7 (1959) 18

[ ( ) ] 0

2 2

=

o

b

b v x y x

dx x D d

δ Boundary conditions: For y=0 and y=1 y(x) = xe

x(y)

λ λλ λαααα

y

0 1

C /2)

cosh( o

vins – instantaneous growth rate, λ

λλ

λαααα – thickness of αααα lamella,

xe – equilibrium concentration at α/βα/βα/βα/β interface, xo – solute content in alloy,

δδδ

δ – width of grain boundary, s - segregation factor,

δδδDb – diffusivity at moving grain boundary

(9)

Growth velocity of the DP reaction

0 s RF 4 s

In-situ observation in TEM

w

vav vins

Al-22 at.% Zn aged at 450 K 12 s

0.2 µm 15 s

Stop- and –Go  vav

only Go  vins

vins >>vav

Czas

(10)

Two-step ageing procedure

T2 >T1 w T1

(11)

725K

P. Zięba, W. Gust, Acta mater. 47, (1999) 2641 Ni-4 at.% Sn alloy aged for 250 h at 725 K

followed by 60 h at 775 K.

775 K

(12)

 The α lamellae exhibited approximately the same thickness for a sufficiently long distance;

 The thickness of several neighbouring α lamellae within the same colony remained more or less the same;

 No distinct changes of the reaction front velocity within the same colony

within the same colony

 Any case of increasing the α lamella spacing, preceding branching or re-nucleation of the new β lamella, is not taken into account;

 The influence of the stop- and -go fashion of the

reaction front movement on the solute

concentration profiles is avoided.

(13)

L

Al-Zn system

α

β

xo

(14)

4 6 8 10

α α α α

οοοο

RF

Al-22 At.% Zn

0 40 80 120 160

2 4

Spacing [nm]

0.2 µm

EDX analysis after DP reaction in the temperature range 350-475 K and for 5 different colonies.

(15)

Region of cells

Lamella analysed

λα (nm)

C xi

(at.% Zn)

y(x=0.5) (at.% Zn)

v (nm/s)

sδDb (m3/s)

1 1

2 3 4 5

210 225 205 195 240

2.14 1.66 2.51 1.95 2.21

3.28 4.32 3.74 3.51 4.07

7.38 7.44 8.27 7.29 8.08

86 1.8 × 10-21 2.6 × 10-21 1.4 × 10-21 1.7 × 10-21 2.2 × 10-21

Details of the a lamellae examined after ageing at 400 K in Al-22 at.% Zn alloy

2 1

2 3 4 5

308 289 280 295 300

2.74 2.92 3.11 3.01 2.87

4.02 3.84 3.87 3.69 4.11

8.80 8.91 9.18 8.93 9.04

121 4.2 × 10-21 3.5 × 10-21 3.1 × 10-21 3.5 × 10-21 3.8 × 10-21

3 1

2 3 4 5

154 167 143 148 159

1.84 1.75 1.71 1.68 1.62

3.54 3.76 3.91 3.62 3.82

7.10 7.13 7.19 6.90 6.97

57 0.7 × 10-21 0.9 × 10-21 0.7 × 10-21 0.7 × 10-21 0.9 × 10-21

(16)

10 10-18 10-19 10-20 10-21

Cahn

Global approach

P-H Stationary GB

Al 4.33 Zn

9.39 Zn 16.77 Zn

49.4 Zn Local approach

16 20 24 28 32

104/T [1/K]

10-21 10-22 10-23 10-24 10-25

Al

(17)

Al-22 at.% Zn

10

ntent [at. %]

10 20 30 40 50

DD

EDX analysis after DP reaction at 400 and 450 K and then after DD reaction at 560 K and 570 K, for 3 single cells of different colonies

0.0 0.2 0.4 0.6 0.8 1.0

Spacing [arbitrary units]

5 6 7 8 9

Zn con

p = 8.14x106 m-1 xi = 6.44 at.% Zn λα= 180 nm

DP

(18)

v

λ λλ λαααα

x´(y)

λ λ λ λαααα

0 y 1

x*

DD-diffusion model

0 y 1

K.N.Tu, D.B. Turnbull: Metall. Trans. A2 (1971) 2509 Assumption: p=z (small difference between DP and DD

temperatures)

P. Zięba, A. Pawłowski: Scripta Metall. 20 (1986) 1653 Separate description of p and z parameters (p≠z)

(19)

A,B,a,b = f(xo, xe, λα, p, x*, z)

xo

py z

p py b

z p zy a

B zy

A y

x +

+

+

= sinh( ) cosh( ) cosh( ) sinh( )

)

´( λα λα 2 2 λα 2 2 λα

2 1 2

1

, 



=





=

b inst b

inst

D s z v D

s p v

δ δ

Growth velocity of the DD reaction

•In-situ observation in the TEM

•Directly from TEM micrographs (receding distance)

(20)

δ

D b[m3 /s]

16.7Zn

9.39Zn 4.33Zn

Pure Al

No. 2 DD

Stationary GB No. 4 DP No. 4 DD No. 3 DP

10-19 10-20 10-21

14 18 22 26 30

104/T [1/K]

s

δ

10

10-22 10-23 10-24

(21)

Parameter Investigation

No. 1 No. 2 No. 3 No. 4 (This study)

vDP Average by quantitative metallography

Average by quantitative metallography

Average by quantitative metallography

Directly from in situ observation

lα Average by quantitative metallography

Directly from TEM micrographs

Directly from TEM mi- crographs

Directly from TEM micrographs

xav X-ray analysis for 30% vo- X-ray analysis for 60% - -

xav X-ray analysis for 30% vo- lume occupied by DP

X-ray analysis for 60%

volume occupied by DP

- -

p Indirectly from xav - Directly from EDX ana-

lysis

Directly from EDX analysis

x* Average by X-ray analysis Directly from EDX analysis but as average for the whole sample

- Directly from EDX

analysis

vDD Average by quantitative metallography

Average by quantitative metallography

- Directly from in situ observation

z Indirectly from x* and the formula

Indirectly from x* - Directly from EDX

analysis

(22)

α α α α

L

xo

β β β

β(Ni3Sn)

Sn [at.%]

(23)

Microstructure and EDX Analysis - Ni-4 at.% Sn

4 5 6 7

arameter C

C = 0.016λα -0.19

0.0 0.2 0.4 0.6 0.8 1.0

y

1 2 3

Sn content [at.%] λα= 320 nm

150 200 250 300 350 400

λα [nm]

2 3 4

Pa

C=(pλλλλαααα)2

0.0 0.2 0.4 0.6 0.8 1.0

y

2 3 4 5 6 7

Sn content [at.%] b

EDX analysis for the 10 lamellae randomly chosen from 10 different colonies after ageing at 775, 825 and 875 K

(24)

3 /s ]

10-19 10-20 10-21 10-18

Frebel, Predel, Klisa DD

DP Stationary GBs

DD/DP:775 K DD/DP:800 K DD/DP:825 K DD/DP:840 K Global approach Local approach

P-H Cahn This study

This study

This study

950 850 750 K

P-H

10 11 12 13 14

104/T [1/K]

sδD b [m3 10-21

10-22 10-23 10-24 10-25

Cahn

(25)

L

Cu-In System

α

δ

Atomic percent In Cu xo

(26)

Cu-4.5 At.% In

2.5 3.0

%]

0.5 µm

λλλ λαααα

0 40 80 120 160

Ort [nm]

1.0 1.5 2.0

In [At.%

Spacing [nm]

5 EDX line-scans in various colonies after ageing at 525, 550, 575, 600, 625, 650 K.

(27)

10-21 10-22 10-17 10-18 10-19 10-20

850 750 650 550 K

Global approach

Polycrystal Bicrystal Stationary GB

Local approach

Cahn Cahn P-H

P-H

10 12 14 16 18 20

10

4

/T [1/K]

10-22

10-24 10-23

10-25 10-26

(28)

Co-13 At.% Al

RF

α α α α

οοοο

4 6 8 10

[At.%]

0.2 µm

0 40 80 120

Ort [nm]

0 2

Al 4

Spacing [nm]

λ λ λ λαααα

Five EDX analysis taken in various colonies after DP reaction at 750, 800, 850, 900, 950, 1000 K.

(29)

Co-Al System

β (AlCo) 1180 °C

1495 °C L 1640 °C

0 10 20 30 40 50 60 70

Atomic percent aluminium

Co

α

Magnetic Transformation 1121 °C

422 °C

xo

Al5Co2

εCo

(30)

[m3 /s]

Koncepcja lokalna

10-19

10-20 10-21 10-18

Co-13 Al

3 /s]

9 10 11 12 13 14 15

104/T [1/K]

s

δ

D GZ [

10-22 10-23

10-24 10-25

sδD b [m3

(31)

Cu-Zn System

Chongmo-Hillert

Fe-Fe18.8 at.%Zn source

(32)

Chongmo, Hillert

DIGM:Fe-Fe18.8 at.%Zn source

Chuang et. al.: DP: Fe-13.5 at.%Zn

at.%Zn

(33)

Stationary GB Migrating GB

B

A

Db

s

δ

/

B

AB

D

b

s δ

/

B

AB

D

b

s δ

/

D

b

s δ D

b

s δ

B

AB

Db

s

δ

/

A

AB/

A

AB

D

b

s δ

/

B

A

D

b

s δ

/

A

AB

Db

s

δ

/

B

A

D

b

s δ

/

A and B- solvent and solute atom, respectively

DA/B*, DAB/B* and DAB/A*- tracer diffusion coefficients of B* in A, B in the alloy A-B, and A* in the alloy A-Bb

b b

(34)

Conclusions

Technique of analytical electron microscopy was shown as a valuable tool in characterisation of diffusion process along migrating grain boundaries of discontinuous precipitates

With careful assessment of experimental conditions, it seems likely that quantitative microanalyses of relatively high quality can be performed with an good spatial resolution approaching a few nanometers. This allows to determine the solute concentration profiles across the α lamellae (DP reaction) or left behind receding reaction front of DD and to compare them with the predictions of relevant theories

(35)

The use of the local concept of the DP reaction for Cahn´s model diminishes existing discrepancies in the diffusivity values in comparison with Petermann-Hornbogen model

Consequently, the reaction is no longer considered as mesoscopic phenomenon averaged over the whole volume of the sample but rather local event occurring in single cells

It is believed that the diffusivity values of the moving reaction front of the discontinuous precipitation and dissolution can be a source of reliable information about the diffusion rate, especially in systems and/or at temperatures where the radio- tracer data are not available

The diffusion along migrating and stationary GBs in Al-Zn, Cu- In, Ni-Sn and Ni-In systems occurs equaly fast

Cytaty

Powiązane dokumenty

In order to test the bone reaction to the endo- prosthesis, variance analysis was carried out in each age group (up to 60, 60–70, and over 70) as well as in each measuring zone

Unlike gradient methods, the algorithm examining linear separability of two sets shown below allows finding the right vector in a finite number of steps an upper estimate of the

Tragedia dobra i zła — pisze Andrzej Walicki — ma swe źródło nie w naturze ludzkiej, lecz w jej wypaczeniu przez indywidualistyczną samowolę. Dobro nie jest dobrem, gdy

Podobny ch arakter m iały w ydaw nictw a Stow arzyszenia Polskich K om batantów , najliczniejszej organizacji Polaków w Wlk. 30 tytułów), zbliżone charakterem do pism

The ENHHSMM uses dynamic diagnostic measures, which are estimated based on the training and testing CM data and adapts dynamically the trained parameters of the NHHSMM.. The

Badania objęły trzy stanowiska: pierwsze,znane wcześniej z badań niemieckich i polskich okresu powojennego, położone było w raiędzyrzeczu Warty i Powyi drugie, zlokalizowane

Ws´ród praw obywatelskich wyraz´nie wyartykułowano takz˙e prawo do ochrony z˙ycia: „Rzeczpospolita Polska zapewnia na swoim obszarze zupełn ˛ a ochrone˛ z˙ycia, wolnos´ci

In this paper, we present a case report of a severe al- lergic reaction after using the articaine and adrenaline in- jection, which suggests that close monitoring for allergic