• Nie Znaleziono Wyników

II.- Exploring New Era of Higgs Physics

N/A
N/A
Protected

Academic year: 2021

Share "II.- Exploring New Era of Higgs Physics"

Copied!
103
0
0

Pełen tekst

(1)

II.- Exploring New Era of Higgs Physics

Higgs Physics (mostly) at LHC

HASCO Hadron Collider Physcis School

Marumi Kado

Laboratoire de l’Accélérateur Linéaire (LAL) and CERN

(2)

Inaugural entrance of the Higgs boson in the

PDG particle listing !

Entrance of the H 0 in the PDG!

H 0

… in 2013

(3)

h t

t Z

t t

t t t

Z

Z Z Z

Z

b s

W

h

µ µ h

W

W W

h t

t Z

t t

t t t

Z

Z Z Z

Z

b s

W

h

µ µ h

W

W W

Much  more  to  Higgs  Physics  than  LHC  

Direct  Search  Programs  

-­‐  LEP  

-­‐  TeVatron   -­‐  SLC  

-­‐  Etc…  

Indirect  cosmology  

-­‐  Vacuum  stability   -­‐  Higgs  InflaAon   -­‐  Etc…  

 

LHC  

H 0

Indirect  precision  EW    

     

Indirect  Flavor                    

       

 

(Higgs penguin)

(4)

LHC  Higgs  Physics  Landscape  Redefined    

Expansion  of  the  Higgs  Physics  Program!  

Precision  

-­‐  Mass  and  width   -­‐  Coupling  properAes  

-­‐  Quantum  numbers  (Spin,  CP)   -­‐  DifferenAal  cross  secAons   -­‐  Off  Shell  couplings  and  width   -­‐  Interferometry  

Is  the  SM  minimal?  

-­‐  2  HDM  searches  

-­‐  MSSM,  NMSSM  searches   -­‐  Doubly  charged  Higgs  bosons    

Tool  for  discovery  

-­‐  Portal  to  DM  (invisible  Higgs)   -­‐  Portal  to  hidden  sectors  

-­‐  Portal  to  BSM  physics  with  H0    in  the  final  state  (ZH0,  WH0,  H0H0)  

*Disclaimer:  Not  all  subjects   will  be  covered  in  this  talk  

Rare  decays  

-­‐  Zγ  

-­‐  Muons µµ -­‐  LFV  µτ,  eτ

-­‐  J/Ψγ, ZΥ, etc…    

H 0

…and  More!  

-­‐  FCNC  top  decays   -­‐  Di-­‐Higgs  producAon  

-­‐  Trilinear  couplings  prospects  

-­‐  Etc…   4  

(5)

g

g

t t

W, Z W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H b

b

H b

t

q q

H b

t q q

W W

Higgs Production Modes

[TeV]

s

7 8 9 10 11 12 13 14

H+X) [pb]A(pp m

10-1

1 10 102

LHC HIGGS XS WG 2013

H (NNLO+NNLL QCD + NLO EW) pp A

H (NNLO QCD + NLO EW) q

A q pp

WH (NNLO QCD + NLO EW) pp A

ZH (NNLO QCD + NLO EW) A

pp

H (NLO QCD) tt

pp A

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

Gluon fusion process

Vector Boson Fusion

W and Z Associated Production NNnLO ~O(10%)

Two forward jets and a large rapidity gap

NLO TH uncertainty ~O(5%)

NNLO TH uncertainty ~O(5%)

Top Assoc. Prod.

~0.5 M events produced

~40 k events produced

~20 k events produced

~3 k evts produced

tH

B-quark Assoc. Prod.

κ  for  mH  =  125.5  GeV  

~5 k evts produced 5  

(6)

H H

γ

γ γ

γ

W t

Higgs Decay Channels

[GeV]

MH

120 121 122 123 124 125 126 127 128 129 130

Higgs BR + Total Uncert

10-4

10-3

10-2

10-1

1

LHC HIGGS XS WG 2013

b b

o o

µ µ

c c gg

a a ZZ WW

Za

- Dominant: bb (57%)

- ττ channel (6.3%)

- The γγ channel (0.2%) - WW channel (22%)

- ZZ channel (3%)

- The µµ channel (0.02%) - cc channel (3%)

Extremely difficult

- The Zγ (0.2%)

6  

(7)

QCD

(8)

QCD

Testing predictions over 8 orders of magnitude !

(9)

) [nb]

l!

"

B( W WX ) #

"

( pp

$

0 2 4 6 8 10 12

= 7 TeV s at 36 pb-1

CMS

[with PDF4LHC 68% CL uncertainty]

NNLO, FEWZ+MSTW08 prediction 0.52 nb 10.44 ±

e!

"

W

lumi nb 0.42

syst± 0.17

stat± 0.03 10.48 ±

! µ

"

W

lumi nb 0.41

syst± 0.16

stat± 0.03 10.18 ±

(combined)

l!

"

W

lumi nb 0.41

syst± 0.13

stat± 0.02

± 10.31

) [nb]

l!

"

B( W WX ) #

"

( pp

$

0 2 4 6 8 10 12

EW

) [GeV]

µ M(µ ]-1 [GeVµµ/dM! d Z!1/

10-6

10-5

10-4

10-3

10-2

10-1

1

15 30 60 120 200 600

data

NNLO, FEWZ+MSTW08 uncertainty on modeling

CMS preliminary = 7 TeV s at 36 pb-1

µ µ

"

#* Z/

(10)

[pb] totσProduction Cross Section,

10-1

1 10 102

103

104

105

CMS

July 2013

W

1j

2j

3j

4j

Z

1j

2j

3j

4j

> 30 GeV

jet

ET

| < 2.4 η jet

|

Wγ

> 15 GeV

γ

ET

,l) > 0.7 R(γ Δ

Zγ

WW+WZ WW

WZ ZZ

WVγ

36, 19 pb-1 5.0 fb-1 5.0 fb-1 4.9 fb-1

3.5 fb-1

4.9 fb-1

19.6 fb-1

19.3 fb-1

JHEP 10 132 (2011) JHEP 01 010 (2012) SMP-12-011 (W/Z 8 TeV)

EWK-11-009 EPJC C13 2283 (2013) (WV) SMP-12-006 (WZ), 12-005 (WW7), 13-005(ZZ8) JHEP 1301 063 (2013) (ZZ7), PLB 721 190 (2013) (WW8)

SMP-013-009

CMS 95%CL limit 7 TeV CMS measurement 8 TeV CMS measurement 7 TeV Theory prediction 8 TeV Theory prediction

Overview of Cross Sections

Expected Standard Model and Higgs Productions

Theory and simulation “Next-to…” revolution :

-  NNLO PDFs sets

-  Calculations at unprecedented order in perturbation theory -  Parton Shower (and Matrix Element matching) improvements

(11)

[pb] totσProduction Cross Section,

10-1

1 10 102

103

104

105

CMS

July 2013

W

1j

2j

3j

4j

Z

1j

2j

3j

4j

> 30 GeV

jet

ET

| < 2.4 η jet

|

Wγ

> 15 GeV

γ

ET

,l) > 0.7 R(γ Δ

Zγ

WW+WZ WW

WZ ZZ

WVγ

36, 19 pb-1 5.0 fb-1 5.0 fb-1 4.9 fb-1

3.5 fb-1

4.9 fb-1

19.6 fb-1

19.3 fb-1

JHEP 10 132 (2011) JHEP 01 010 (2012) SMP-12-011 (W/Z 8 TeV)

EWK-11-009 EPJC C13 2283 (2013) (WV) SMP-12-006 (WZ), 12-005 (WW7), 13-005(ZZ8) JHEP 1301 063 (2013) (ZZ7), PLB 721 190 (2013) (WW8)

SMP-013-009

CMS 95%CL limit 7 TeV CMS measurement 8 TeV CMS measurement 7 TeV Theory prediction 8 TeV Theory prediction

Overview of Cross Sections

Expected Standard Model and Higgs Productions

0.1 1 10

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109

WJS2010

!jet(ETjet > 100 GeV)

!jet(ETjet > "s/20)

!Higgs(MH=120 GeV) 200 GeV

LHC Tevatron

events / sec for L = 1033 cm-2 s-1

!b

!tot

proton - (anti)proton cross sections

!W

!Z

!t

500 GeV

!!!!"nb#

"s (TeV) Theory and simulation “Next-to…” revolution :

-  NNLO PDFs sets

-  Calculations at unprecedented order in perturbation theory -  Parton Shower (and Matrix Element matching) improvements

(12)

Signal  (SM126  GeV)   Signal  purity  

s/b   Main  

backgrounds   ProducAon   7  &  8  TeV                

~450   2%  -­‐  60%   γγ,γj  and  jj   Hgg,  VBF,  VH   4.9  &  20.7  k-­‐1  

γγ channel basic facts sheet :

!

L dt

H → γγ Update

Since “Discovery Paper”

PLB 716

ATLAS-CONF-2013-012

(13)

Signal   Signal  Purity  

s/b   Main  

backgrounds   ProducAon   7  &  8  TeV                

~16   ~1.5   ZZ,  Z+jets,  top   ggH,  VBF  &  VH   4.9  &  20.7  k-­‐1  

4l channel basic facts sheet :

!

L dt

H → 4e candidate (m

4e

~ 124 GeV)

(14)

H → 4l Update H → 4l Single Highest Purity Candidate Event ( 2e2µ )

(15)

Signal   Sig.  Purity  s/b   Main  backgrounds   ProducAon   7  &  8  TeV                

~250   ~5%-­‐40%   WW,  W+jets,  top,  etc…   ggH  &  VBF   25k-­‐1  

WW channel basic facts sheet :

!

L dt 0,1, 2 jet Channel

 

H → WW

(

*

)

ll + 2 ν

ATLAS-­‐CONF-­‐2013-­‐030  

(16)

Signal  (SM)   Signal  purity  

s/b   Main  

backgrounds   ProducAon   7  &  8  TeV                

~330   0.3%  -­‐  30%   ZZ,  Z+jets,  top   VBF,  Hgg,  VH   4.9  &  13  k-­‐1  

ττ channel basic facts sheet :

!

L dt

H → τhadτhad candidate in VBF channel (mMMC = 131 GeV)

H → ττ

R

eoptimised 7+8 TeV analysis

ATLAS-­‐CONF-­‐2012-­‐160  

(17)

Signal  (SM)   Signal  purity  

s/b   Main  backgrounds   ProducAon   7  &  8  TeV                

~50   ~1%  -­‐  10%   Wbb,Zbb,  top,  etc…   VH   4.9  &  13  k-­‐1  

VH(bb) channel basic facts sheet :

!

L dt

VH production with H → bb

Combined and reoptimised 7+8 TeV analysis

(18)

Yet another random example!

H ! !!

(19)

Background From jets

Signal

(20)

20  

(21)

Interesting Facts about the γγ Channel

- If observed implies that it does not originate from spin 1 : Landau-Yang theorem

- Main production and decay processes occur through loops :

… Not so obviously enhanced (e.g. SM4)

known at NNnLO, still rather large uncertainty O(10%)

A priori potentially large possible enhancement…

Seldom larger yields : e.g. NMSSM (U. Ellwanger et al.) up to x6, large stau mixing (M.

Carena et al.), Fermiophobia…

- High mass resolution channel

- If observed implies that its Charge Conjugation is +1

1.6 ! A

W2

" 0.7 ! A

t

A

W

+ 0.1! A

t2

Excellent probe for new physics !

(22)

Performing analysis with categories

-  9 (central/forward and converted/not converted photons, pTt (γγ)) -  +3 (low mass di-jet, lepton and MET disentangling VH)

-  +2 (two 2-jet VBF categories MVA)

Improving Sensitivity and Probing Other Production Modes

(23)

H → 4l Update Why Categories?

Let’s take a simple example with two categories:

- C1: s=12 and b=60 - C2: s=18 and b=40

Inclusively we have a significance of 3 Separating in two categories:

- C1 2.85 σ - C2 1.55 σ

Combined significance: 3.24

(24)

Illustration of the Impact of Categories

ln(1+ s

i

b

i

)

Unweighted Weighted

Using constant weight per category (based on expected signal and background in each

category i) :

(25)

Panorama of Higgs Analyses

Channel   categories

ggF VBF VH nH

γγ ZZ  (llll) WW  (lnln)

ττ bb

µµ Invisible  

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

25  

(26)

Panorama of Higgs Analyses

Channel   categories

ggF VBF VH nH

γγ

ZZ  (llll)

WW  (lnln)

ττ

bb  

µµ

Invisible   ✓ ✓

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

26  

(27)

Statistical Interpretation

How to read Higgs Search Plots

Hypothesis testing using the Profile likelihood ratio…

L( µ , ! ) = f

b

"

b

(M

##

) + f

s

"

s

(M

##

)

f s ! µ

Simplified

Likelihood Definition:

n

s

= µ! BrL "

Relates to Higgs mass hypothesis

Global coherent factor

(28)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

0 1 2 3 4 5 6 7 8 9

!

-2 l n "( ! )

!# !

test

q

μ

q

0

likelihood ratio without profiling

How to Read Higgs Exclusion Limits Plots

!

µ

= ! ( µ , " ) = L( µ , ˆ " ˆ ( µ ))

L( ˆ µ , ˆ " ) q µ = !2 ln ! µ

Signal likeliness

Background likeliness

(29)

H

0

Summary and inputs to the combination

Channel categories

ATLAS CMS

µ ( at 125.5 GeV) Z exp Z obs M (GeV) µ Z exp Z obs M (GeV)

γγ 1.5±0.3 4.1 7.4 126.8±0.2±0.7 0.8±0.3 3.9 6.7 125.4±0.5±0.4

ZZ (llll) 1.5±0.4 4.4 6.6 124.3±0.5±0.5 0.9±0.3 7.1 3.2 125.8±0.5±0.2

WW (lnln) 1.0±0.3 3.8 3.8 - 5.3 3.9 -

ττ 0.8±0.7 1.6 1.1 - 1.1±0.4 2.6 2.8 125 +9-7

W,Z H (bb*) -0.4±1.0 1.0 0.0 - 2.1 2.1 -

Combination 1.30±0.20 7.3 10 125.5±0.2±0.6 0.80±0.14 - - 125.7±0.3±0.3

*CMS  also  uses   nH  in  the  

combinaAon   from  1303.0763    

(30)

Digression on Information Format

µ=1

Sub-channel signal strengths

Production mode signal strengths (per channel)

µ=0 µ=0 µ=1

n

sc

= µ

i

!

SMi

! A

ic

! "

ic

i"{ggF,VBF,VH ,ttH }

#

$

% && '

( )) ! µ

f

Br

f

! L

c

(31)

pp

total 80µb−1

W

total 35 pb−1

Z

total 35 pb−1

t

total 4.6 fb−1

20.3 fb−1

tt−chan

total 4.6 fb−1

20.3 fb−1

WW+WZ total 4.7 fb−1

WW

total 4.6 fb−1

20.3 fb−1

HggF total 4.8 fb−1

20.3 fb−1

Wt

total 2.0 fb−1

20.3 fb−1

WZ

total 4.6 fb−1

13.0 fb−1

ZZ

total 4.6 fb−1

20.3 fb−1

HVBF total 20.3 fb−1

tW

total 20.3 fb−1

tZ

total 20.3 fb−1

σ[pb]

101 1 101 102 103 104 105 106 1011

LHC pp

s = 7 TeV Theory Data

LHC pp

s= 8 TeV Theory Data

Standard Model Total Production Cross Section Measurements Status: July 2014

ATLAS Preliminary Run 1

s = 7, 8 TeV

Overview  of  Cross  SecAons  

Past  decade  tremendous  progresses  in  theory  calculaAons  and  simulaAon  “Next-­‐to…  

revoluAon”    

Processes  are  simulated  to  an  unprecedented  level  of  accuracy  

Number  of  events  selected  in   full  2010-­‐2012  dataset  

 W  (lν)        ~  100  M   Z    (ll)              ~    10  M   n    (l+X)      ~    0.4  M    

(top  factory)  

-­‐  Test  Standard  Model  

predicAons  at  7  and  8  TeV  

 

-­‐  Calibrate  the  detector  

31  

(32)

pp

total 80µb−1

W

total 35 pb−1

Z

total 35 pb−1

t

total 4.6 fb−1

20.3 fb−1

tt−chan

total 4.6 fb−1

20.3 fb−1

WW+WZ total 4.7 fb−1

WW

total 4.6 fb−1

20.3 fb−1

HggF total 4.8 fb−1

20.3 fb−1

Wt

total 2.0 fb−1

20.3 fb−1

WZ

total 4.6 fb−1

13.0 fb−1

ZZ

total 4.6 fb−1

20.3 fb−1

HVBF total 20.3 fb−1

tW

total 20.3 fb−1

tZ

total 20.3 fb−1

σ[pb]

101 1 101 102 103 104 105 106 1011

LHC pp

s = 7 TeV Theory Data

LHC pp

s= 8 TeV Theory Data

Standard Model Total Production Cross Section Measurements Status: July 2014

ATLAS Preliminary Run 1

s = 7, 8 TeV

Overview  of  Cross  SecAons  

Past  decade  tremendous  progresses  in  theory  calculaAons  and  simulaAon  “Next-­‐to…  

revoluAon”    

Processes  are  simulated  to  an  unprecedented  level  of  accuracy  

Number  of  events  selected  in   full  2010-­‐2012  dataset  

 W  (lν)        ~  100  M   Z    (ll)              ~    10  M   n    (l+X)      ~    0.4  M    

(top  factory)  

-­‐  Test  Standard  Model  

predicAons  at  7  and  8  TeV  

 

-­‐  Calibrate  the  detector   Assumes  SM   branching  fracAons   HggF  

32  

ATL-­‐COM-­‐PHYS-­‐2014-­‐702  

(33)

The  Natural  Width  of  the  Higgs  Boson  

           Is  small  therefore  small  couplings  to  the  Higgs  can  be                              easily  visible:  tool  for  discovery!  

 

At  LHC  only  cross  secAon  x  branching  raAo,  no  direct  access  to  the  Higgs  total  cross  secAon   (unlike  e+e-­‐  collider  from  recoil  mass  spectrum)  

 -­‐  Direct  measurement  (on-­‐shell)  with  the  ZZ(4l)  and  γγ  channels  [obs.  (exp.)]:  

   Γ4l  <  2.6  (3.5)  GeV  [exp.  6.5  for  µ=1]      and    Γγγ  <5.0  (6.2)  GeV  

 -­‐  Only  measure  raAo  of  couplings  or  coupling  modifiers  with  specific  assumpAons    -­‐  Coupling  properAes  measurements  

 -­‐  Constraints  from  invisible  (and  exoAc  decays)  

 

Total  width:  Interference  in  diphoton     (SM  shix  of  approximately  30  MeV)   Use  pT  dependence  of  shix    

(~200  MeV  limit  expected  for  3  ab-­‐1)   Total  width:    

Through  off  shell  couplings    

!

SM

= 4.2 MeV

ATL-­‐PHYS-­‐PUB-­‐2013-­‐014  

33  

(34)

First  step  towards  an  global  EFT  analysis:   InterpreAng  our  Data  

n

sc

= µ µ

i

!

SMi

! A

ic

! "

ic

i"{ processes}

$ #

% && '

( )) ! µ

f

Br

f

! L

c

From  the  number  of  signal   events  fined  in  analysis   categories  

34  

(35)

-­‐  Link  to  an  effecAve  Lagrangian  and  use  scale  factors  

First  step  towards  an  global  EFT  analysis:   InterpreAng  our  Data  

n

sc

= µ µ

i

!

SMi

! A

ic

! "

ic

i"{ processes}

$ #

% && '

( )) ! µ

f

Br

f

! L

c

From  the  number  of  signal   events  fined  in  analysis   categories  

35  

(36)

-­‐  Link  to  an  effecAve  Lagrangian  and  use  scale  factors  

First  step  towards  an  global  EFT  analysis:   InterpreAng  our  Data  

For  example,  the  main  contribuAon  (ggF)  to  the  gg  channel  can  be  wrinen  as   (under  the  assumpAon  that  couplings  to  SM  parAcles  are  SM):  

-­‐  Assuming  narrow  width  approximaAon  

-­‐  Assume  the  same  tensor  structure  of  the  SM  Higgs  boson  :  JCP  =  0++  

n

sc

= µ µ

i

!

SMi

! A

ic

! "

ic

i"{ processes}

$ #

% && '

( )) ! µ

f

Br

f

! L

c

From  the  number  of  signal   events  fined  in  analysis   categories  

µ

i

= !

g2

µ

f =

!

"2

!

H2

!

H2

= 0.085 ! !

g2

+ 0.0023! !

"2

+ 0.91

36  

(37)

-­‐  Link  to  an  effecAve  Lagrangian  and  use  scale  factors  

First  step  towards  an  global  EFT  analysis:   InterpreAng  our  Data  

For  example,  the  main  contribuAon  (ggF)  to  the  gg  channel  can  be  wrinen  as   (under  the  assumpAon  that  no  BSM  in  the  loops):  

-­‐  Assuming  narrow  width  approximaAon  

-­‐  Assume  the  same  tensor  structure  of  the  SM  Higgs  boson  :  JCP  =  0++  

n

sc

= µ µ

i

!

SMi

! A

ic

! "

ic

i"{ processes}

$ #

% && '

( )) ! µ

f

Br

f

! L

c

From  the  number  of  signal   events  fined  in  analysis   categories  

µ

i =

!

F2 µf = 1.6 !!V2 " 0.7 !!V!F + 0.1!!F2

!H2

!

H2

=

!

2f

!

f

f

"

!

SM

(38)

g

g

t t

W, Z W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H b

b

H b

t

q q

H b

t q q

W W

Higgs Production Modes

[TeV]

s

7 8 9 10 11 12 13 14

H+X) [pb]A(pp m

10-1

1 10 102

LHC HIGGS XS WG 2013

H (NNLO+NNLL QCD + NLO EW) pp A

H (NNLO QCD + NLO EW) q

A q pp

WH (NNLO QCD + NLO EW) pp A

ZH (NNLO QCD + NLO EW) A

pp

H (NLO QCD) tt

pp A

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

g

g

t

W, Z t W, Z

q

q g

g

q

q

q

(a) (b) q

(c) (d)

H

H H

H

Gluon fusion process

Vector Boson Fusion

W and Z Associated Production NNnLO ~O(10%)

Two forward jets and a large rapidity gap

NLO TH uncertainty ~O(5%)

NNLO TH uncertainty ~O(5%)

Top Assoc. Prod.

~0.5 M events produced

~40 k events produced

~20 k events produced

~3 k evts produced

tH

! 3.3"!W2 # 5.1"!t!W + 2.8 "!t2

! !

t2

! !

V2

! !

V2

!g !1. " 06!t2 # 0.07 "!t!b + 0.01"!b2

! !

b2

B-quark Assoc. Prod.

κ  for  mH  =  125.5  GeV  

~5 k evts produced 38  

(39)

H H

γ

γ γ

γ

W t

Higgs Decay Channels

[GeV]

MH

120 121 122 123 124 125 126 127 128 129 130

Higgs BR + Total Uncert

10-4

10-3

10-2

10-1

1

LHC HIGGS XS WG 2013

b b

o o

µ µ

c c gg

a a ZZ WW

Za

!

"

!1.6 " !

W2

# 0.7 " !

t

!

W

+ 0.1" !

t2

- Dominant: bb (57%)

- ττ channel (6.3%)

- The γγ channel (0.2%) - WW channel (22%)

- ZZ channel (3%)

- The µµ channel (0.02%) - cc channel (3%)

Extremely difficult

- The Zγ (0.2%)

!

!

b2 /

!

H2

!

!

W2 /

!

H2

!

!

"2 /

!

H2

!

!

Z2 /

!

H2

!

!

c2 /

!

H2

!

!

µ2 /

!

H2

!

!

"2 /

!

H 2

!

Z" !1.12 "

!

W2 # 0.15 "

!

t

!

W + 0.03"

!

t2

(when  assuming  no  BSM  charged  in  the  loop)  

39  

(40)

Main results I : Probing the coupling to SM particles

-  By convention sign on the fermion yukawa strength multiplier

(relying on the γγ strength primarily)… ambiguity inspired tH analyses -  Checking the direct and indirect couplings to fermions

-  Checks of specific composite models

(41)

Main results II : Probing the W to Z ratio (custodial symmetry)

(42)

Main results III : Probing physics beyond the Standard Model

(In the decays and/or in the loops)

Also direct invisible only search  

(43)

Main results IV : Other Relevant Models

-  Illustrating the mass dependence

-  3 coupling strength parameter fits κu, κd and κV for MSSM and 2HDM limits

(44)

Cornering  (directly)  the  top  Yukawa  coupling  

Analysis strategy

-  2 channels t(lvb)t(qqb)H(bb) and t(lvb)t(lvb)H(bb) -  Challenging tt+jets background…

-  tt+jets and tt+HF tamed

ttH (bb)

W

W b

b

q b q

b

l ν t

t

t

ATLAS-­‐CONF-­‐2014-­‐011  

(45)

Cornering  (directly)  the  top  Yukawa  coupling  

+light t t

c +c t t

b +b t t

+V t t

W+jets

Z+jets Diboson

Single top Multijet

4 j, 2 b

+light t t

c +c t t

b +b t t

+V t t

W+jets Z+jets

Diboson Single top

Multijet

4 j, 3 b

+light t t

c +c t t

b +b t t

+V t t

W+jets

Z+jets Diboson

Single top Multijet

4 b

4 j, ATLAS

Preliminary Simulation

= 125 GeV mH

= 8 TeV s

+light t t

c +c t t

b +b t t

+V t t

W+jets Z+jets

Diboson Single top

Multijet

5 j, 2 b

+light t t

c +c t t

b +b t t

+V t t

W+jets Z+jets

Diboson Single top

Multijet

5 j, 3 b

+light t t c

+c t t

b +b t t

+V t t

W+jets Z+jets

Diboson Single top

Multijet

4 b

5 j, tt+light

c +c t t

b +b t t

+V t t W+jets Z+jets Diboson Single top Multijet

+light t t

c +c t t

b +b t t

+V t t W+jets Z+jets Diboson Single top Multijet

+light t t

c +c t t

b +b t t

+V t t

W+jets Z+jets

Diboson Single top

Multijet

6 j, 2 b

+light t t

c +c t t

b +b t t

+V t t

W+jets Z+jetsDiboson

Single top Multijet

6 j, 3 b

+light t t c

+c t t

b +b t t

+V t t

W+jets Z+jets Diboson

Single top Multijet

4 b 6 j,

Single lepton

Analysis strategy

-  2 channels t(lvb)t(qqb)H(bb) and t(lvb)t(lvb)H(bb) -  Challenging tt+jets background…

-  tt+jets and tt+HF tamed

Irreducible   not  criAcal  

13%  

ttH (bb)

45  

Light   rejecAon   crucial  

ATLAS-­‐CONF-­‐2014-­‐011  

Cytaty

Powiązane dokumenty

Z badañ przeprowadzonych przez TNS OBOP na zlecenie Instytutu Globalizacji wyni- ka, ¿e Polacy uwa¿aj¹, i¿ powszechniejszy dostêp do nowych leków spowodowa³by zmniejszenie

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

simulation (prior to the likelihood fit) as a function of the azimuthal angle between the two signal jets, φ j j , and the transverse momentum of the leptonic Z boson, p  T ,

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

In the case of the ATLAS experiment, the normalisation of the theoretical predictions for the background was multiplied by a factor of 1.22 for the 8 TeV analysis of the 0-jet eµ

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,