• Nie Znaleziono Wyników

Cosmology

N/A
N/A
Protected

Academic year: 2021

Share "Cosmology"

Copied!
298
0
0

Pełen tekst

(1)

Cosmology

B.F. Roukema

(c) CC BY-SA 4.0 2020-09-30

(2)

Introduction

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 2

basic cosmology model:

(3)

Introduction

basic cosmology model:

■ GR: curvature = matter-energy content

(4)

Introduction

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 2

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

(5)

Introduction

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

(6)

Introduction

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 2

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

(7)

Introduction

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

(8)

Introduction

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 2

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

■ but: ∃ galaxies ⇒ inhomogeneous, anisotropic spatial slices

(9)

Introduction

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

■ but: ∃ galaxies ⇒ inhomogeneous, anisotropic spatial slices

■ standard model: density perturbations (anisotropy)

(10)

Introduction

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 2

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

■ but: ∃ galaxies ⇒ inhomogeneous, anisotropic spatial slices

■ standard model: density perturbations (anisotropy)

(11)

Introduction

basic cosmology model:

■ GR: curvature = matter-energy content

■ verbal averaging: homogeneous, isotropic spatial slices

■ shape of space (curvature + topology)

+ observations of expansion ⇒ hot big bang ⇒ black body radiation, nucleosynthesis

■ but: ∃ galaxies ⇒ inhomogeneous, anisotropic spatial slices

■ standard model: density perturbations (anisotropy)

(12)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 3

(13)

verbal averaging

■ w:Cosmological principle

(14)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 3

■ w:Cosmological principle

■ practical meaning:

(15)

verbal averaging

■ w:Cosmological principle

■ practical meaning:

1. assume homogeneity and isotropy

2. find the (differential 4-pseudo-manifold, metric) pairs (M, g) that solve G = 8πT

(16)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 3

■ w:Cosmological principle

■ practical meaning:

1. assume homogeneity and isotropy

2. find the (differential 4-pseudo-manifold, metric) pairs (M, g) that solve G = 8πT

3. assume that (M, g) remains unchanged if we add density perturbations to an early time slice

(17)

verbal averaging

(18)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 4

(19)

verbal averaging

■ w:Comoving coordinates ■

(20)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 4

■ w:Comoving coordinates ■

∆x(t) = a(t)∆r

(21)

verbal averaging

■ w:Comoving coordinates ■ Z (t,r2,θ,φ) (t,r1,θ,φ) ds = a(t)∆r = a(t)|r2 − r1|

(22)

verbal averaging

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 4

■ w:Comoving coordinates ■

Z (t,r2,θ,φ)

(t,r1,θ,φ)

ds = a(t)∆r = a(t)|r2 − r1|

(23)

verbal averaging

■ w:Comoving coordinates ■ Z (t,r2,θ,φ) (t,r1,θ,φ) ds = a(t)∆r = a(t)|r2 − r1|

where all expansion/contraction → w:scale factor a(t)

(24)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 5

(25)

FLRW metric

■ w:Friedmann–Lemaître–Robertson–Walker metric

■ w: w:

w:Howard Percy Robertson w:Arthur Geoffrey Walker

(26)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 6

(27)

FLRW metric

(28)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 6

(29)

FLRW metric

(30)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 6

(31)

FLRW metric

ds2 = −dt2 + a2(t) [dr2 + r2 (dθ2 + cos2 θdφ2)]

■ aside: conformal coordinates: may define

u := Z

dt a(t)

(32)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 6

ds2 = −dt2 + a2(t) [dr2 + r2 (dθ2 + cos2 θdφ2)]

■ aside: conformal coordinates: may define

u := Z

dt a(t) ⇒

(33)

FLRW metric

ds2 = −dt2 + a2(t) [dr2 + r2 (dθ2 + cos2 θdφ2)]

■ aside: conformal coordinates: may define

u := Z

dt a(t) ⇒

ds2 = a2(u) −du2 + dr2 + r2 (dθ2 + cos2 θdφ2)

(34)

FLRW metric

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 6

ds2 = −dt2 + a2(t) [dr2 + r2 (dθ2 + cos2 θdφ2)] where r⊥ :=    RC sinh RrC k < 0 r k = 0 RC sin Rr C k > 0

(35)

curvature

■ on a spatial slice (fixed value of t):

x + y

2 2

x

y

(36)

curvature

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 7

■ on a spatial slice (fixed value of t):

y

x

< x + y

2 2

k > 0

k > 0

(37)

curvature

■ on a spatial slice (fixed value of t):

x

y

> x + y

2 2

k < 0

k < 0

(38)

2D curvature intuition: k > 0

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 8

(39)

2D curvature intuition: k > 0

ds2|φ=const,a=1 = dr2 + r2 dθ2, where r⊥ := RC sin Rr

(40)

2D curvature intuition: k > 0

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 8

ds2|φ=const,a=1 = dr2 + r2 dθ2, where r⊥ := RC sin Rr

C

(41)

2D curvature intuition: k > 0

ds2|φ=const,a=1 = dr2 + r2 dθ2, where r⊥ := RC sin Rr

C

w: (al-Biruni, c. 1000 CE)

(42)

2D topology intuition (k = 0)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 9

(43)

2D topology intuition (k = 0)

(44)

2D topology intuition (k = 0)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 9

■ intuition 1: embed in higher dim. space

A

A

(45)

2D topology intuition (k = 0)

■ intuition 1: embed in higher dim. space

(46)

2D topology intuition (k = 0)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 9

■ intuition 1: embed in higher dim. space

(47)

2D topology intuition (k = 0)

■ intuition 1: embed in higher dim. space

■ intuition 2: fundamental domain

(48)

2D topology intuition (k = 0)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 9

■ intuition 1: embed in higher dim. space

■ intuition 2: fundamental domain

(49)

expansion

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

(50)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 10

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

(51)

expansion

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

˙a(t0)/a(t0) ≈ 600 km/s/Mpc > 0 (also Hubble 1929)

(52)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 10

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

˙a(t0)/a(t0) ≈ 600 km/s/Mpc > 0 (also Hubble 1929)

■ so what is the “Big Bang”?

(53)

expansion

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

˙a(t0)/a(t0) ≈ 600 km/s/Mpc > 0 (also Hubble 1929)

■ so what is the “Big Bang”?

(54)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 10

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

˙a(t0)/a(t0) ≈ 600 km/s/Mpc > 0 (also Hubble 1929)

■ so what is the “Big Bang”?

(55)

expansion

■ Hubble law (Lemaître 1927; ADS:1927ASSB...47...49L):

˙a(t0)/a(t0) ≈ 600 km/s/Mpc > 0 (also Hubble 1929)

■ so what is the “Big Bang”?

■ it is: ∃tb such that t → t+b ⇒ a(t) → 0+

(56)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 11

(57)

expansion

■ matter density: ρm ∝ a−3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

(58)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 11

■ matter density: ρm ∝ a−3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

Narlikar (1994; ADS:1994AmJPh..62..903N)] ⇔ λobs λem = aobs aem

(59)

expansion

■ matter density: ρm ∝ a−3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

Narlikar (1994; ADS:1994AmJPh..62..903N)] ■ λobs λem = 1 aem (Defn: a0 := 1)

(60)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 11

■ matter density: ρm ∝ a−3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

Narlikar (1994; ADS:1994AmJPh..62..903N)]

1 + z = 1

aem

(61)

expansion

■ matter density: ρm ∝ a−3 = (1 + z)3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

Narlikar (1994; ADS:1994AmJPh..62..903N)]

1 + z = a−1 (light-cone convention: a often means aem)

(62)

expansion

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 11

■ matter density: ρm ∝ a−3 = (1 + z)3

■ wavelength: λ ∝ a [GR—transport four-velocity: Synge (1960);

Narlikar (1994; ADS:1994AmJPh..62..903N)]

1 + z = a−1 (light-cone convention: a often means aem)

(63)

Black body

■ Planck’s Law: I(ν, T ) = 2hνc23 1

(64)

Black body

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 12

■ Planck’s Law: I(ν, T ) = 2hνc23 1

ekThν −1

(65)

Black body

■ Planck’s Law: I(ν, T ) = 2hνc23 1

ekThν −1

■ wavelength: λ ∝ a ⇒ frequency: ν ∝ a−1 = (1 + z)

(66)

Black body

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 12

■ Planck’s Law: I(ν, T ) = 2hνc23 1

ekThν −1

■ wavelength: λ ∝ a ⇒ frequency: ν ∝ a−1 = (1 + z)

■ ⇒ temperature: kT ∝ hν ∝ (1 + z)

■ z ≫ 1 ⇒ early Universe dominated by hot, dense plasma = protons,

(67)

Black body

■ Planck’s Law: I(ν, T ) = 2hνc23 1

ekThν −1

■ wavelength: λ ∝ a ⇒ frequency: ν ∝ a−1 = (1 + z)

■ ⇒ temperature: kT ∝ hν ∝ (1 + z)

■ z ≫ 1 ⇒ early Universe dominated by hot, dense plasma = protons,

electrons, photons

(68)

Black body

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 12

■ Planck’s Law: I(ν, T ) = 2hνc23 1

ekThν −1

■ wavelength: λ ∝ a ⇒ frequency: ν ∝ a−1 = (1 + z)

■ ⇒ temperature: kT ∝ hν ∝ (1 + z)

■ z ≫ 1 ⇒ early Universe dominated by hot, dense plasma = protons,

electrons, photons

(69)

CMB discovery: McKellar 1941

■ T ≈ 2.3 K — Andrew McKellar (1941; ADS:1941PDAO....7..251M)

from observations by Walter S. Adams (1941;

ADS:1941ApJ....93...11A)

(70)

Black body: COBE (∼ 1992)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 14

(71)

Black body: COBE (∼ 1992)

(72)

Black body: COBE (∼ 1992)

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 14

(73)

BBN: Big bang nucleosynthesis

(74)

BBN: Big bang nucleosynthesis

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 15

■ Alpher, Bethe, & Gamow (1948; ADS:1948PhRv...73..803A)

main reactions of varying probability:

p + n 2H + γ p + 2H → 3He + γ 2H + 2 H → 3He + n 2H + 2H → 3H + p 3He + 2 H → 4He + p 3H + 2 H → 4He + n

(75)

BBN: Big bang nucleosynthesis

■ Alpher, Bethe, & Gamow (1948; ADS:1948PhRv...73..803A)

main reactions of varying probability:

p + n 2H + γ p + 2H → 3He + γ 2H + 2 H → 3He + n 2H + 2H → 3H + p 3He + 2 H → 4He + p 3H + 2 H → 4He + n

(76)

FLRW: a(t) =?

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 16

■ second choice FLRW coord system: r := w:orthographic projection

(77)

FLRW: a(t) =?

■ second choice FLRW coord system: r := w:orthographic projection

of radial comoving distance (cf r := radial comoving distance) ⇒ coord singularity at equator (:= π/2 from centre) if k > 0

(78)

FLRW: a(t) =?

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 16

■ second choice FLRW coord system: r := w:orthographic projection

of radial comoving distance (cf r := radial comoving distance) ⇒ coord singularity at equator (:= π/2 from centre) if k > 0

(79)

FLRW: a(t) =?

■ second choice FLRW coord system: r := w:orthographic projection

of radial comoving distance (cf r := radial comoving distance) ⇒ coord singularity at equator (:= π/2 from centre) if k > 0

■ ds2 = −dt2 + a2(t)  dr2 1 − kr2 + r 2(dθ2 + cos2 θdφ2) 

(80)

FLRW: a(t) =?

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 16

■ ds2 = −dt2 + a2(t)  dr2 1 − kr2 + r 2(dθ2 + cos2 θdφ2) 

(81)

FLRW: a(t) =?

■ ds2 = −dt2 + a2(t)  dr2 1 − kr2 + r 2(dθ2 + cos2 θdφ2) 

■ universe content: diag(T) = (−ρ, p, p, p)

■ maxima: calculate G and G = 8πT and simplify:

(82)

FLRW: a(t) =?

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 16

■ ds2 = −dt2 + a2(t)  dr2 1 − kr2 + r 2(dθ2 + cos2 θdφ2) 

■ universe content: diag(T) = (−ρ, p, p, p)

■ maxima: calculate G and G = 8πT and simplify:

https://cosmo.torun.pl/Cosmo/FLRWEquationsGR ■ Friedmann Eqn: c 2 k a2 + ˙a2 a2 = 8 π G ρ 3

(83)

FLRW: a(t) =?

■ ds2 = −dt2 + a2(t)  dr2 1 − kr2 + r 2(dθ2 + cos2 θdφ2) 

■ universe content: diag(T) = (−ρ, p, p, p)

■ maxima: calculate G and G = 8πT and simplify:

https://cosmo.torun.pl/Cosmo/FLRWEquationsGR ■ Friedmann Eqn: c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 ■

acceleration Eqn: ¨a

a = −

4 π G (ρ + 3 p/c2) 3

(84)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: a˙a22 =

8 π G ρ 3 −

c2 k a2

(85)

FLRW matter-dominated epoch

■ Friedmann Eqn: a˙a22 =

8 π G ρ 3 −

c2 k a2

(86)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: a˙a22 =

8 π G ρ 3 −

c2 k a2

(87)

FLRW matter-dominated epoch

■ Friedmann Eqn: a˙a22 =

8 π G ρm0

3 a3 − c 2 k

a2

(88)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

(89)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(90)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(91)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(92)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(93)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(94)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3

(95)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

(96)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

(97)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

Defn: Hubble parameter H := ˙a/a

(98)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

Defn: Hubble parameter H := ˙a/a

⇒ Hubble constant H0 := H(z = 0)

(99)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

Defn: Hubble parameter H := ˙a/a

⇒ Hubble constant H0 := H(z = 0)

⇒ k = 0 case: a˙a = 3t2 ⇒ H(t) = 3t2 ;

(100)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

Defn: Hubble parameter H := ˙a/a

⇒ Hubble constant H0 := H(z = 0)

⇒ k = 0 case: a˙a = 3t2

(101)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

(102)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

(103)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 600

(104)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

(105)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

(106)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 500

(107)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

(108)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

(109)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

(110)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

(111)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

⇒ EdS would give t0 = 3H20 ≈ 1.3 Gyr < tEarth ≈ 4.5 Gyr

(112)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

⇒ EdS would give t0 = 3H20 ≈ 1.3 Gyr < tEarth ≈ 4.5 Gyr

(113)

FLRW matter-dominated epoch

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

⇒ EdS would give t0 = 3H20 ≈ 1.3 Gyr < tEarth ≈ 4.5 Gyr

(114)

FLRW matter-dominated epoch

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 17

■ Friedmann Eqn: ˙a2 = 8 π G ρ3 a m0 − c2 k

■ matter-dominated epoch: ρ = ρm = ρm0 a−3 ■ k = 0 case: a =  t t0 2/3

Einstein–de Sitter model (EdS)

⇒ H(t) = 3t2 ; H0 = H(t0) = 3t2

0

■ Lemaître (1927) ADS:1927ASSB...47...49L: H0 ≈ 0.6 Gyr−1

■ Hubble (1929) ADS:1929PNAS...15..168H: H0 ≈ 0.5 Gyr−1

⇒ EdS would give t0 = 3H20 ≈ 1.3 Gyr < tEarth ≈ 4.5 Gyr

(115)

FLRW: ρ

crit

■ Friedmann Eqn: a˙a22 =

8 π G ρ 3 −

c2 k a2

(116)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 18

(117)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

(118)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 18

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H

2 0

(119)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H

2 0

(120)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 18

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H 2 0 8πG ⇔ k = 0 flat ◆ ρm0 > 3H 2 0 8πG ⇔ k > 0

(121)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H 2 0 8πG ⇔ k = 0 flat ◆ ρm0 > 3H 2 0 8πG ⇔ k > 0 spherical

(122)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 18

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H 2 0 8πG ⇔ k = 0 flat ◆ ρm0 > 3H 2 0 8πG ⇔ k > 0 spherical ◆ ρm0 < 3H 2 0 8πG ⇔ k < 0

(123)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ ρm0 = 3H 2 0 8πG ⇔ k = 0 flat ◆ ρm0 > 3H 2 0 8πG ⇔ k > 0 spherical ◆ ρm0 < 3H 2 0 8πG ⇔ k < 0 hyperbolic

(124)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

(125)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = 8 π G ρ3 − ca22k

(126)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: H2 = ρHρ 2

crit −

c2 k a2

(127)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = ρHρ 2

crit −

c2 k a2

Defn: ρcrit := 3H8πG2 critical density

Defn: Ωm := ρρ

(128)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: H2 = ΩmH2 − c

2 k

a2

Defn: ρcrit := 3H8πG2 critical density

Defn: Ωm := ρρ

(129)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = ΩmH2 − c

2 k

a2

Defn: ρcrit := 3H8πG2 critical density

Defn: Ωm := ρρ

crit matter density parameter

(130)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: H2 = ΩmH2 − c

2 k

a2

Defn: ρcrit := 3H8πG2 critical density

Defn: Ωm := ρρ

crit matter density parameter

(131)

FLRW: ρ

crit

■ Friedmann Eqn: H2 = ΩmH2 + ΩkH2

Defn: ρcrit := 3H8πG2 critical density

Defn: Ωm := ρρ

crit matter density parameter

(132)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

(133)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

(134)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

(135)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

(136)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

(137)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

(138)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

(139)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωm + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

(140)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωtot + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

◆ Ωm0 < 1 ⇔ k < 0 hyperbolic

(141)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωtot + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

◆ Ωm0 < 1 ⇔ k < 0 hyperbolic

(142)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωtot + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

◆ Ωm0 < 1 ⇔ k < 0 hyperbolic

(143)

FLRW: ρ

crit

■ Friedmann Eqn: 1 = Ωtot + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

◆ Ωm0 < 1 ⇔ k < 0 hyperbolic

(144)

FLRW: ρ

crit

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 19

■ Friedmann Eqn: 1 = Ωtot + Ωk

Defn: ρcrit := 3H

2

8πG critical density

Defn: Ωm := ρcritρ matter density parameter

Defn: Ωk := − c

2k

a2H2 curvature density parameter (sign reversal!)

■ consider a fixed observation, e.g. H0 = 100 km/s/Mpc

◆ Ωm0 = 1 ⇔ k = 0 flat

◆ Ωm0 > 1 ⇔ k > 0 spherical

◆ Ωm0 < 1 ⇔ k < 0 hyperbolic

(145)

FLRW curvature constant

■ metric in

(146)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

(147)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

(148)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

(149)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

(150)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2

■ Defn: Ωk := − c

2k

(151)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ Ωk0 = − c2k H02

(152)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ k = − Ωk 0H02 c2

(153)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ R 2 C = − c 2 Ωk 0H02

(154)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ R 2 C = − c 2 H02 1 Ωk 0

(155)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC2 = − c 2 H02 1 1−Ωtot0

(156)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

(157)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1 ■ Ωtot0 > 1

(158)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1 ■ Ωtot0 > 1 spherical

(159)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

(160)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

(161)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

(162)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

(163)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

■ Ωtot0 = 1 flat RC undefined

(164)

FLRW curvature constant

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 20

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

■ Ωtot0 = 1 flat RC undefined

(165)

FLRW curvature constant

■ metric in

◆ azimuthal equidistant coords: RC

◆ orthographic coords: k

■ orthographic: 1 − kr2 = 0 coord singularity at equator

■ ⇒ kRC2 = 1 ⇒ k = 1/RC2 ■ Defn: Ωk := − c 2k a2H2 ⇒ RC = c H0 1 √ Ωtot0 − 1

■ Ωtot0 > 1 spherical RC real

■ Ωtot0 = 1 flat RC undefined

(166)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

(167)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E

■ maxima: calculate G and G + gΛ = 8πT and simplify:

(168)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E

■ maxima: calculate G and G + gΛ = 8πT and simplify:

https://cosmo.torun.pl/Cosmo/FLRWEquationsGR

(169)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3

(170)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 acceleration Eqn (Λ 6= 0): ¨a a = − 4 π G (ρ + 3 p/c2) 3 + c2 Λ 3

(171)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 acceleration Eqn (Λ 6= 0): ¨a a = − 4 π G (ρ + 3 p/c2) 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

(172)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 acceleration Eqn (Λ 6= 0): ¨a a = − 4 π G (ρ + 3 p/c2) 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

(173)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

acceleration Eqn (Λ 6= 0): ¨a

a = −

4 π G (ρ + 3 p/c2)

3 + ΩΛ H

(174)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2 acceleration Eqn (Λ 6= 0): ¨a a = − H2 2 ρ ρcrit + ΩΛ H2

(175)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

acceleration Eqn (Λ 6= 0): ¨a

a = −

H2 Ωm

2 + ΩΛ H

(176)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2 acceleration Eqn (Λ 6= 0): a¨ a a2 ˙a2 = − Ωm 2 + ΩΛ

(177)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2 acceleration Eqn (Λ 6= 0): a¨ a a2 ˙a2 = − Ωm 2 + ΩΛ Defn: q := −¨aa˙a2

(178)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

Defn: q := −¨aa˙a2 “deceleration parameter”

acceleration Eqn (Λ 6= 0): q = Ωm

(179)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

Defn: q := −¨aa˙a2 “deceleration parameter”

(180)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

Defn: q := −¨aa˙a2 “deceleration parameter”

■ q = Ω2m − ΩΛ acceleration equation

(181)

Einstein’s free parameter: Λ

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

Defn: q := −¨aa˙a2 “deceleration parameter”

■ q = Ω2m − ΩΛ acceleration equation

(182)

Einstein’s free parameter: Λ

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 21

■ Einstein: prevent expansion/contraction via Λ

ADS:1917SPAW...142E Friedmann Eqn (Λ 6= 0): c 2 k a2 + ˙a2 a2 = 8 π G ρ 3 + c2 Λ 3 Defn: “dust solution”: p(t) = 0

Defn: ΩΛ := 3 Hc2Λ2

Defn: q := −¨aa˙a2 “deceleration parameter”

■ q = Ω2m − ΩΛ acceleration equation

(183)

distances in FLRW cosmology

(184)

distances in FLRW cosmology

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 22

■ azimuthal equidistant r: proper distance at t0 ≡ comoving radial

(185)

distances in FLRW cosmology

■ azimuthal equidistant r: proper distance at t0 ≡ comoving radial

distance r = Rtt0 a(tc dt′′)

(186)

distances in FLRW cosmology

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 22

■ azimuthal equidistant r: proper distance at t0 ≡ comoving radial

distance r = Rtt0 a(tc dt′′)

■ Friedmann Eq: 1 = Ωm + Ωk + ΩΛ

(187)

distances in FLRW cosmology

■ azimuthal equidistant r: proper distance at t0 ≡ comoving radial

distance r = Rtt0 a(tc dt′′) ■ Friedmann Eq: 1 = Ωm + Ωk + ΩΛ ■ Ωm = ρcritρ = ρ0 a −3 ρcrit0 (H2/H2 0)

(188)

distances in FLRW cosmology

Cosmology (C) CC BY-SA 4.0 0 | FLRW | k | top | 3obs | a(t): EdS Ω RC q r H0r dA dL d(x, y) | ξ P (k) 2020-09-30 – 22

■ azimuthal equidistant r: proper distance at t0 ≡ comoving radial

distance r = Rtt0 a(tc dt′′) ■ Friedmann Eq: 1 = Ωm + Ωk + ΩΛ ■ Ωm = ρcritρ = ρ0 a −3 ρcrit0 (H2/H2 0) = Ωm0 H 2 0a−1 ˙a−2

Cytaty

Powiązane dokumenty

The aim of this work is to propose a new method for spectro-temporal analysis and filtering of finite duration signals having non-stationary fre- quency characteristics, which is

So, the following theorem extends the Krengel–Lin decomposition which is discussed in [KL] only for compact groups..

While studying the representation theory of the trivial extension T (A) of an artin algebra A by its minimal injective cogenerator bimodule DA, Tachikawa [12] and Yamagata [13]

We also show that the List Coloring Conjecture holds for a planar graph that contains no kites and has ∆ ≥ 9.. In Section 5 we prove results about list total coloring, which we

The elements in F ∩ C are splitters and in the case of Harrison’s classical cotorsion theory these are the torsion-free, algebraically compact groups.. For the trivial cotorsion

In fact, since any graph can be identified with a symmetric digraph (where each edge is replaced by a double arc) the direct product of graphs is a special case of the direct product

We say that a bipartite algebra R of the form (1.1) is of infinite prin- jective type if the category prin(R) is of infinite representation type, that is, there exists an

Since postprojective (and, dually, preinjective) components of Γ B are easy to identify and construct (see [4] and [9]), it follows that concealed algebras are easy to identify....