• Nie Znaleziono Wyników

Spectroscopic studies of fluorescence effects in bioactive 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol molecules induced by pH changes in aqueous solutions

N/A
N/A
Protected

Academic year: 2022

Share "Spectroscopic studies of fluorescence effects in bioactive 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol molecules induced by pH changes in aqueous solutions"

Copied!
28
0
0

Pełen tekst

(1)

JFluoresc(2017)27:1201–1212 DOI10.1007/s10895-017-2053-y

FLUORESCENCENEWSARTICLE

SpectroscopicStudiesofFluorescenceEffects

inB ioactive4-(5-Heptyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3- Dioland4 -(5-Methyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol MoleculesInducedbypHChangesinAqueousSolutions

ArkadiuszM atwijczuk1&D ariuszKluczyk2&A ndrzejGórecki3&

AndrzejNiewiadomy4,5&MariuszGagoś2

Received:7November2016/Accepted:19February2017/Publishedonline:1March2017

#TheAuthor(s)2017.ThisarticleispublishedwithopenaccessatSpringerlink.com

AbstractT hispaperpresentstheresultsofstationaryfluores- cencespectroscopyandtime-

resolvedspectroscopyanalysesoftwo1,3,4-

thiadiazoleanalogues,i.e.4-(5-methyl-1,3,4-thiadiazol-2- yl)benzene-1,3-diol(C1)and4-(5-heptyl-1,3,4-thiadiazol-2- yl)benzene-1,3-

diol(C7)inanaqueousmediumcontainingdifferentconcentrati onsofhydrogenions.Anin-

terestingdualflorescenceeffectwasobservedwhenbothcomp oundsweredissolvedinaqueoussolutionsatpHbelow7forC1a nd7.5forC7.Inturn,forC1andC7dissolvedinwateratpHhighe rthanthephysiologicalvalue(mentionedabove),singlefluores cencewasonlynoted.Basedonprevi-

ousresultsofinvestigationsoftheselected1,3,4-

thiadiazolecompounds,itwasnotedthatthepresentedeffectsw ereasso-

ciatedwithbothconformationalchangesintheanalysed

ElectronicsupplementarymaterialTheonlineversionofthisarticle(doi:

10.1007/s10895-017-2053-

y)containssupplementarymaterial,whichisavailabletoauthorizedusers .

* ArkadiuszMatwijczuk

arkadiusz.matwijczuk@up.lublin.pl;a rekmatwijczuk@gmail.com

* MariuszGagośmariusz.gagos@poczta .umcs.lublin.pl

1 DepartmentofBiophysics,UniversityofLifeSciencesinLublin,Ak ademicka13,20-950Lublin,Poland

2 DepartmentofCellBiology,InstituteofBiology,MariaC urie-SkłodowskaUniversity,20-033Lublin,Poland

3 DepartmentofPhysicalBiochemistry,FacultyofBiochemistry, BiophysicsandBiotechnologyoftheJagiellonianUniversity,Gro nostajowa7,30-387Krakow,Poland

4 InstituteofIndustrialOrganicChemistry,Annopol6,0 3-236Warsaw,Poland

5 DepartmentofChemistry,UniversityofLifeSciencesinLublin,20- 950Lublin,Poland

(2)

2 JFluoresc(2017)27:1201–1212

moleculesandchargetransfer(CT)effects,whichwereinflu- encedbytheaggregationfactor.However,inthecaseofC1and C7,thedualfluorescenceeffectswerevisibleinahigherenerge ticregion(differentthanthatobservedinthe1,3,4- thiadiazolesstudiedpreviously).Measurementsofthefluores -cencelifetimesinamediumcharacterisedbydifferentcon- centrationsofhydrogenionsrevealedclearlengtheningofthee xcited-

statelifetimeinapHrangeatwhichdualfluorescenceeffectscan beobserved.Animportantfindingoftheinvesti-

gationspresentedinthisarticleisthefactthatthespectroscop- iceffectsobservednotonlyareinterestingfromthecognitivep ointofviewbutalsocanhelpindevelopmentofanappro- priatetheoreticalmodelofmolecularinteractionsresponsible forthedualfluorescenceeffectsintheanalysed1,3,4- thiadiazoles.Furthermore,thestudywillclarifyabroadrange ofbiologicalandpharmaceuticalapplicationsofthesecom- pounds,whicharemorefrequentlyusedinclinicaltherapies.

KeywordsD ualfluorescenceeffects.Molecularspectrosc opy.Molecularaggregation.Substituenteffects.1,3,4- thiadiazole

Introductio n

AsreportedbytheWorldHealthOrganisation,oneofthe majorchallengesofmodernmedicineisthefightagainstcan- cerandneurodegenerativediseases.Accordingtoliteratured ata,thesediseasesarecurrentlytheleadingcausesofpa- tients’mortalityworldwide[1,2].Greathopesinthefightag ainstcancerandneurodegenerativediseasesareplacedonsynt heticcompoundsfromthe1,3,4-

thiadiazolegroup,whosedifferentderivativesarealreadykno wnandclinicallyapplied.The1,3,4-

thiadiazoleswithasubstitutedresorcylfragment

(3)

-

analysedinthisstudyarehighlypromisingcompoundsi nanticancerandneurodegenerativediseases.Asindicatedin mostresearchpapers,1,3,4-

thiadiazolesarethemostattractiveneuroprotective-

activitymoleculesystemofalltheotherthiadiazolesystems[3 –

5].Manycompoundsofthisgrouphavebeenusedinmedici nease.g.oxidationinhibitors,colourants,andmetalcompl exingcompounds[6].Additionally,theliteratureshowsthat thethiadiazolefamilycomprisescompoundswithantitumour[

7–10],antifungal[11],antibacterial[11],anti- inflammatory[12],anticonvulsant

[13],antiviral[14],antituberculosis[15],antihypertensive [16],andantidepressant[17]activity.

Twohighlypromising1,3,4-

thiadiazoleanalogueswithaconfirmedneuroprotectiveactivit y,i.e.4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3- diol(C1)(C1,Scheme1A–C)and4-(5-heptyl-1,3,4-thiadiazol-2- yl)benzene-1,3-diol(C7)(C7,Scheme1D–

F),wereselectedinthisstudyfortheinves-

tigationsofthemechanismofmolecularinteractions.Note worthy,these1,3,4-

thiadiazolecompoundsexhibitnotonlyremarkableandconfir medpharmacologicalpropertiesbutalsoveryinterestingspectr oscopictraits,whichcontribute

totheirbiologicalactivity.Thespectroscopiceffectsexhibitedb ythe1,3,4-

thiadiazoleanaloguesincludee.g.theeffectsofketo/enoltauto merisminducedbychangesinmediumpolar-izability[18–

21],effectsassociatedwithcrystalpolymor-

phism[22]andsolvatomorphism[23],andinterestinginter- actionsinmodellipidsystems[24,25].Additionally,theanaly sedcompoundgroupexhibitsaninterestingdualfluo-

rescenceeffectoraneffectofseveralfluorescencespectra,dep endingontheconcentration[26],pH,orchangesinthemedium temperature,whichwillbepresentedinthispaper[27].Moreo ver,thesecompoundsaregoodligands,whichcanformcom plexeswithd-

blockmetalions[28],andcanthereforebeusedinnovelmedica lapplications.Thecombi-

nationofthespectroscopicandcrystallographiceffectsreport- edinthepaperscitedabovehasgreatimportanceforelucida- tionofthebroadspectrumofthepharmacologicalactivityofthes ecompounds.

Theaimofthepresentspectroscopicstudywastoinvesti- gateC1andC7inamediumwithdifferentconcentrationsofhydr ogenionsandtodescribethedualfluorescenceeffectobserv edinthesemolecules.Inpreviousstudies,thedual

Scheme1Chemicalstructureof OH

theC1molecule(a–enolform,b

formionisedwiththe–O N N

group,c–formionisedwiththe–

a

N+–Hgroup)andC7molecule(d OH

enolform,e–formionisedwith S

the–O group,f–formionised O

withthe–N+–Hgroup)

N N OH

b

S OH H

N+N

c

OH

S OH

N N OH

d

S O-

N N OH

e

S OH H

(4)

N+N

f

OH

S

(5)

1203 JFluoresc(2017)27:1201–1212

fluorescenceeffectwasobservedforonerepresentativeofthean aloguegroup(FABT)[27].However,inthisstudy,theef- fectwasobservedinadifferent(substantiallyhigher)energyran ge,whichcompletelychangedthephotophysicalproper- tiesoftheanalysedmolecules.Usingspectroscopicap- proaches,suchastheelectronabsorptionspectroscopictech- nique,fluorescencemethodscombinedwiththeRLStech- nique,andmainlymeasurementsoffluorescencelifetimes,w ehaveshownthecomplexityofphysicalprocessesthatex- ertanimpactontheobservedeffects.Thedualfluorescenceeffe ctscanbeinducedindifferentmoleculesbychangesinmediu mpolarity,pHofthesolution,temperature,orthecon-

centrationofthesample[29–

33].Accordingtotheoriesattemptingatelucidationoftheobser vedfluorescenceeffects,theycanberelatedtoappearanceofintr amolecularCTstates[34]andtheso-

calledTICTstates(TwistedIntramolecularChargeT ransfer) [35,36].Anotherexplanationoftheanalysedphenomenaist heprocessofExcited-

StateIntramolecularProtonTransferESIPT[37–

42].Othertheoriespostulateformationofcompoundconcentr ation-inducedexcimersystems[43,44],varioustypesofacid- basereactionsintheinvestigatedsystem,orveryfrequentforma tionofexcited-statetautomericsystems[45,46].Theanti- Kashamechanismofthedualfluorescenceeffectpostulatedin 2015intheJournalofPhysicalChemistryBbyBrancato etal.shouldalsobementioned[47].However,assuggestedbyth eresearchresultspresentedinthispaper,noneofthesemechanis msseemstobesuccessfulinelucidationoftheob-

servedeffectsandmolecularmechanismsinvolvedinthespect roscopicchanges.

Thestudiesperformedwiththeuseofstationaryfluores- cencespectroscopyandtime-

resolvedspectroscopyinanaqueousmediumwithdifferentpH valuesrevealedthedualfluorescenceeffectinbothanalogues.

Formulationofaconcisetheoryforthedualfluorescenceeffe ctsobservedinthe1,3,4-

thiadiazoleanaloguesiscrucialforunderstandingtheirbiologic alactivity.Theeffectisattrac-

tivefortheoreticreasons,asitcanbeusedforexaminationoftheex citationstateinvariousmoleculartransformationsandfordesig ningnewmolecularprobesof(dual)fluorescence.

MaterialandMethods

Materials

4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol(C1) (seeScheme1D)and4-(5-heptyl-1,3,4-thiadiazol-2- yl)benzene-1,3-

diol(C7)weresynthesizedintheDepartmentofChemistryo ftheUniversityofLifeSciencesinLublin,detailsoftheprocedur

earedescribedelsewhere[3].ThepurificationprocedureoftheC1 andC7compoundisdescribedindetailin

(6)

JFluoresc(2017)27:1201–1212

6

thereferences[3].Theconcentrationofthecompoundswasc=

1.25×10−6MforC1andc=1.19×10−6MforC7.

Metho ds

pHMeasurementandPreparatio n

AllsolutionsweremeasuredwithanElmetronCP-502pH- meteratroomtemperature.InthecaseoftheaqueousC1andC7s olutions,0.1MNaOHwasfirstaddedtowatertoobtainpH12.A fterwards,powderC1andC7wasdissolvedtherein.Next,0.1 MHClacidwasslowlyaddedtoobtainacertainpHvalueinthew aterC1andC7solution.ThepHwascontinu-

allycontrolled.Respectivetitrationcurvesforboth1,3,4- thiadiazoleanaloguesareshowninFig.S1intheSupple mentaryMaterials.TheinsetsinFig.S1presentionisedfunctio nalgroupsandpKpointsforbothcompounds(seebelo w).

ElectronicAbsorptionSpectrosco py

ElectronicabsorptionspectraofC1andC7wererecordedonado uble-beamUV-

VisspectrophotometerCary300Bio(Varian)equippedwit hathermostattedcuvetteholderwitha6×6multicellPeltierblo ck.Temperaturewascontrolledwithathermocoupleprobe (CarySeriesIIfromVarian)placeddirectlyinthesample.

Allexperimentswerecarriedoutat23°C.Thespectralslitwi dthwas1.5nminthemeasurementsoftheelectronabsorptionsp ectra.

ElectronicFluorescenceS pectroscopyw iththeR LST echnique

Fluorescenceexcitationandemissionaswellassynchronouss pectrawererecordedwithaCaryEclipsespectrofluorometer(

Varian)at23°C.Fluorescencespectrawererecordedwith 0.5nmresolutionandcorrectedforthelampandphotom ultiplierspectralcharacteristics.Resonancelightscat- tering(RLS)measurementswereperformedasinPasternacka ndCollings[48,49].Theexcitationandemissionmonochro- matorsofthespectrofluorimeterwerescannedsynchronously (0.0nmintervalbetweenexcitationandemissionwave- lengths),theslitsweresettoobtainspectralresolutionof 1.5nm.ThespectralanalysiswasperformedwiththeuseofGra ms/AI8.0software(ThermoElectronCorporation).

Time-

CorrelatedSinglePhotonCounting(TCSPC)

Time-correlatedsinglephotoncounting(TCSPC)measure- mentswereperformedonaFluoroCubefluorimeter(Horiba,F rance).ThesampleswereexcitedwithapulsedNanoLEDdio

deat372nm(pulsedurationof150ps)operated with1 MHzrepetition.Toavoidpulsepile-up,thepowerofthe

(7)

Σατ

τ

pulseswasadjustedtoanappropriatelevelusinganeutralgra dientfilter.Fluorescenceemissionwasrecordedusingapicose conddetectorTBX-

04(IBH,JobinYvon,UK).TheDataStationandtheDAS6softw are(JobinYvon(IBH,UK))wereusedfordataacquisitionandsi gnalanalysis.Allfluores-

cencedecaysweremeasuredina10×10mmquartzcuvette,using anemittercut-offfilterwithtransmittanceforwave- lengthslongerthan408nm.Theexcitationprofilesrequiredfort hedeconvolutionanalysisweremeasuredwithouttheemi tterfiltersonalightscatteringcuvette.Allmeasurementswerep erformedinwaterat20°CandvariouspH.Fluorescencedec aywasanalysedwithamultiexponentialmodelgivenbytheeq uation:

experimentaldata.Theaveragelifetimeoffluorescencedecayw ascalculatedaccordingtothefollowingequation:

Σ iαiτ2

hτi¼ i ð2Þ

iii

ResultsandDiscussion

ByplottingthepHtitrationcurvesforC1andC7,character- isticpKpointsfortheionisation-associatedgroupswerede- terminedinthestudied1,3,4-thiadiazoles(Fig.S1inthe

t SupplementaryMaterials).Forthe–O−g r o u pintheortho

I∑αiexp−

i ð1Þ positioni ntheresorcylr ing,pKC7=8.8andpKC1=8.1(Fig.S1inth

eSupplementaryMaterials-figureinsets)and whereαiandτiarethepre-

exponentialfactorsandthedecaytimeofcomponenti,respectiv ely.

Best-

fitparameterswereobtainedbyminimizationofthereducedχ [ 2]valueaswellasresidualdistributionof

forthe–

NH+group,pKC7=4.9andpKC1=4.1(Fig.S1intheSupplementar yMaterials-figureinsets).

PanelsAandCinFig.1presentresultsobtainedwithelectr onabsorptionspectroscopyforC1(PanelA)andC7

Fig.1PanelsAandCpresentelectronabsorptionspectraforC1(PanelA)an dC7(PanelC)generatedintheaqueoussolutionatpH12,10,8,6,4,and2.For

C7inPanelC,theabsorptionspectraatpH2,4,and6weremultipliedby10forbet terpresentationandcomparisonoftheanalysed

(8)

effects.PanelsB andD showfluorescenceemissionspectracorres pondingtothespectrafromPanelsAandCforC1(PanelB)andC7(PanelD ).Theexcitationwavelengthcorrespondedtothemaximumoftherespecti veabsorptionband

(9)

JFluoresc(2017)27:1201–1212 120 5 (PanelC)overtheentirerangeofhydrogenionconcentrations(fr

ompH1topH12).Thereresultsshowdistinctchangesintheshap eofthespectra,inparticularintheregionthatisrelevan ttothephysiologicalvalues.SpectraforpH2,4,6,8,10,and12f orbothanalysedcompoundsarepresentedforbetterclarity.The spectrainthepHrangefrom1to6weremultipliedby10(specifi cally:forC7atpH2,4,and6)forclearerpresentationoftheanaly sedeffectsforC7(PanelCinFig.1).AsshowninbothpanelsinFig .1,thedissociationofthe–

OHgroupfromtheresorcylringintheorthoposition(Scheme1 BandE)resultsinaclearhypsochromicshiftby301cm−1inthec aseofC7andby303cm−1forC1inthecompoundspectraatp H12.Inaddition,thereisa bathochromicshiftby3845cm−1fo rC7and3864cm−1forC1forspectraofbothcompoundsatpH1 ,comparedwiththeirspectraatpH7.Theseshiftsareusedforcal culationofthedistancesbetweenthemoleculesinthedimerusi ngtheexcitonsplittingtheory.Inboth1,3,4-

thiadiazoleanalogues,theionisationprocessisaccompaniedby compoundaggrega-

tion[27].AtpHca.7–

8,distinctbroadeningoftheabsorptionspectraisevidentforC1a ndC7(dashedgreylineinPanelsAandC,Fig.1),whichindicates aprobabilityofthepresenceofotherthanmonomericspectralfo rmsoftheanalysedstruc-

tures[27].InthecaseoftheC7spectrumatpH2,theabsor- banceisthelowest,whichimpliessubstantialpredominanceofa ggregatedformsinthiscompound(seePanelBinFig.2).Inturn,i nthecaseofC1,thelowestabsorbanceintensityisobservedinth esamerange,butitissubstantiallyhigherthanthatforC7atthecor respondingpH.Thisindicatesanimpactofthestructureofthean alysedcompounds,inparticularthestructureoftheiralkylsubsti tuents,onthemodeofformationofaggregatedformsofthesemol ecules.Thestructureofsub-

stituentgroupscanhaveasignificantinfluence(throughpro- cessesrelatedtostrongeraggregation)onthesolubilityoftheana lysedmoleculesindifferentorganicsolvents.ForC1atpH4,th ecompoundabsorbanceunexpectedlyincreasesslightly,sug gestinganincreaseinthenumberofthemono-

mericformsofthisanalogue.Nosuchphenomenonisob- servedinthecaseofC7inthespecifiedconcentrationrange,whic hevidencesstrongerinteractionsbetweenC7moleculesandfor mationofmoredurableaggregates.InC7,aremark-

abledecreaseintheabsorbancelevelisvisible,whichimpliesver ystrongaggregationata(probably)constantlevelalongthedec reaseinthepHvalue(atlowpH).

Basedontheexcitonsplittingtheoryandthespectralshiftspre sentedinFig.1andabove(andinFig.S2intheSupplementary Materials),itwaspossibletocalculatethedis-

tancebetweenadjacentchromophoresofmoleculesC1and

C7inthedimericstructure[49].Fig.S2(intheSupplementary

Fig.2PanelApresentstheratioofthemaximumelectronabsorptionatca.36 0/313nmforC1(whitecircles)andat361/314nmforC7(blacktriangles),i.

e.theratiobetweenthepredominantmonomericform(ionisedwiththe–

Og

roup)andthepredominantassociatedformforagivencompound(ionis edwiththe–N-

H+g

roup)dependingonthepHoftheaqueoussolution.PanelBshowsthera tioofthefluorescenceemissionintensityforC1(whitecircles)andC7(bla cktriangles)dependingonchangesinthepHoftheaqueoussolution.T hepointswerereadfromtheabsorptionandfluorescenceemissionspect rapresentedinFig.1.Themeasurementsoftheabsorptionandelectronflu orescencespectra,fromwhichtherespectiveabsorptionandfluoresce ncemaximawereread

maximumatca.319nm(31,348cm−1)atpH7isslightlyshift edt owards317 nm(31,5 46c m−1)anda bandw itha maximu matca.351nm(28,490cm−1)appearsonthelongwaveside.Si milarly,inthecaseofC1,themainbandswithamaximumatca.3 16nm(31,646cm−1)isshiftedatlowpHvaluestowardsca.314n m(31,847cm−1)andabandwithamaximumatca.357nm(28,01 1cm−1)canbeseenonthelongwaveside.

Basedintheexcitonsplittingtheory,thedistancebetweenadjac entchromophoresRβcanbecalculatedusingtheformula:

sffiffiffiffiffiffiffiffi Materials)showselectronabsorptionspectraforC7(PanelA)an

dC1(PanelB)normalisedatthemaximum.Underpinning

Rβ¼ 1:71 3 μ2κ

η2β ð3Þ

ofthebandcanbeobservedforbothC1andC7atpHca.1, comparedwithpH7.ForC7(PanelA),thebandwitha

whereμisthediploemomentoftransitionoftheinteracting molecules,η–refractiveindex,β–dipole-dipoleinteraction

(10)

energy(inaclassicalapproach).Intheexcitonicmodel,onecanc onsideranaggregatedstructureformedthroughinterac- tionofidenticalmolecules,inwhichtransitiondipolemo- mentsofadjacentmoleculesareparallel,henceα=0(where,κ=

1 -

3cos[2]θ,whereθistheanglebetweenthetransitiondipolemom ents).Asproposedintheexcitonsplittingtheory[50,51],κ= 1for thecardpackmoleculearrangementintheaggregateandκ=− 2f ort heheadtot ailaggregate.T hetransitiondipolemomentcalcu latedviaintegrationoftheab-

sorptionspectrumisμ=4.16D(inH2O)andμ=4.25DforC7(the valuesoftransitiondipolemomentsinothersolventsandwatera swellasthemolarvalueoftheextinctioncoefficientsareprese ntedinTableS1intheSupplementaryMaterials).Thecalculate ddistancebetweenadjacentchromo-

phoresis4.29Å50inthecaseoftheC1dimersinanaqueoussolutio nand3.87ÅforC7.Theseresultsareconsistentwithcrystallogr aphicdatapresentedinsomeother1,3,4-

thiadiazolecompounds[27].Thedistanceincrystalsislowertha ninsolutions,whichisthecauseoftheobviouslydenserpacking oftheanalysedmoleculesinthecrystallinestructureandstronge rintermolecularinteractions.However,themostimportantfact isthatthedistancebetweenadjacentmoleculesinC7issubstanti allysmallerthaninC1.

PanelAinFig.2showstheratiooftheabsorbancemaxi- mumat360nm(predominantmonomericform,Scheme1B,and E–ionisedwiththe–

O−group)and313nm(predominantassociatedform,Scheme1C ,andF–ionisedwiththe–

NH+group)forC1(opencircles)aswellastheratiooftheabsor- bancemaximumof361nmand314nmforC7(blacktrian- gles),dependingonthepHoftheaqueoussolution.Thepre- dominanceofthenegativelyionisedform(predominanceofthe monomericform)forbothC1andC7compoundsismostevident atthehighpHvalues(pH12forC7andpH10.5forC1).Incontrast ,thepredominanceoftheformsionisedwiththeNH+groupcanbe observedatthelowpHvalues(atpH1forbothC7andC1).Inanaci dicenvironment,thepresenceofapositivelychargedNH+group inthethiadiazoleringshouldalsoleadtomonomerisation.How ever,thepresenceofthe–

OHgroupsintheresorcylringfacilitatesgenerationofhydro- genbondsnotonlywithwaterbutalsowithothermolecules,resu ltingintheiraggregation.Inturn,thegreatestchangesintheprese ntedratioinbothcompoundscanbeobservedforthephysiologic alpHvalues,whichcanbeclearly seenintheabsorptions pectrapresentedinPanelsAandCofFig.1.

Inthenextstepoftheinvestigations,thecompoundswereanal ysedwiththefluorescencespectroscopymethods.Notewor thyaretheeffectspresentedinPanelsBandDofFig.1.Thepa nelsshowfluorescenceemissionspectraforC1(PanelB)a ndC7(PanelD),correspondingtotheabsorp-

tionspectrapresentedinFig.1(PanelsAandC),togetherwiththe changeinthepHvalueoftheaqueoussolution(pH2,4,6,8,and10

arepresentedanalogouslyas fortheabsorptionspectra).Thee xcitationwavelengthforalltheanalysed

(11)

samplescorrespondstothemaximumofrespectiveabsorption bands.Adualfluorescenceeffectwithamaximumatca.380 nmand440nminthepHrangefrom1to7.5(PanelsCandD)i se videntint hecaseofbothc ompounds.AbovepH7.5,singleflu orescencewithamaximumat438nmforC7and437nmforC 1i s observed.At p H 8,onlysl ightunderpinningoftherespe ctivefluorescenceemissionspec-

trumisnotedforC1.Additionally,itshouldbeemphasisedtha ttheintensityofthefluorescenceemissionspectraforC7issubst antiallylowerthanthatforC1intherangewheretheaforeme ntionedeffectcanbeobserved(thesameconcentra-

tionofbothanalogues).Thisclearlyindicatesaconsiderablygr eaterdegreeofaggregationinC7thanthatinC1andmoreintens ivefluorescenceemissiondecay.Thiswasalsoobservedinthe calculationsbasedontheexcitonsplittingtheory(seeabove), wherethedistancesbetweenadjacentchromophoresweremar kedlysmallerinC7thaninC1.

PanelBinFig.2showstheratioofshort-

andlongwavefluorescenceemissionintensityforbothcomp ounds(emis-

sionwithamaximumof c a.380nm vs.emissionwithamaxi mumofca.440nm)dependingonthepHchangesintheaque oussolution.Evidently,inthepHrangefrom1to7.5forC7andC 1,thepointsarearrangedinonealmosthorizon-

talline,likewiseforthespectrashowninFig.1(PanelsAandC).

Thisimpliesthattheprocessofnitrogenatomprotonationisine quilibriumanddoesnotchangetheintensityoftheratiointhean alysed1,3,4-

thiadiazoleanalogues(Scheme1CandF).AtapHvaluehigher than7.5(forbothcompounds),theratioincreasessignificantly andthefluorescenceat378/9nmdisappearsforbothcompoun ds.

Noteworthy,a longwavefluorescencebandwitha max imumatca.500nmappearedinthecaseofanother1,3,4- thiadiazoledescribedpreviously,i.e.FABT[27],inwhichthe structuraldifferencesarerelatedtothepresenceoftheN- Hgroupandafluorobenzenering.Inturn,inthecompoundsan alysedinthispaper,thedecreaseinthepHvalueisaccompanie dbyashortwavefluorescenceemis-

sionbandwitha maximumatca.380nm.Therefore,changes intheenergystructureofthe1,3,4-

thiadiazolemoleculesareobserved.Thiseffectcanbeassocia tedwiththepresenceoftheaminoN-

HgroupintheFABTstruc-turelocatedatthe1,3,4- thiadiazolering[27].Inthecaseofa 1,3,4-

thiadiazolethatstructurallyresemblesFABT,althoughwith outthefluorobenzenefragment,anddiffersfromC1onlyinth eN-

Hgroup,abandwithamaximumatca.380nmisobservedathi ghpHvalues(resultssub-

mittedforpublishing).Inturn,acidificationyieldedasep- aratebandatca.440nm(asinthecaseofC1andC7atthehighp Hvalues).Theseconsiderationsindicateanim-

pactofthesubstituentsinthe1,3,4-

thiadiazolestructureonthepositionoffluorescencebandsde

spitetheidenticalchromophoreorganisation(fiveconjugated doublebonds)inthemolecule.

(12)

Fig.3ThepHeffectofthefluorescencedecayofC7andC1inwater.Dottedc urvesshowthedecayoffluorescenceemissionobservedusingtheTCSPCt echniqueatagivenpHforC7andC1inPanelsAandB,respectively.Solidli nesarebestexponentialfits.Theexcitationpulse

profile,setupat372,isshownbythedottedblackcurve.Residualsdet erminedforthepresentedfitsareshownbelowthedecaycurvesinPanelsC andD

FluorescenceLifetimeStudy

Figures3and4aswellasTables1and2presenttheresultsofmeas urementsoffluorescencelifetimesforC1andC7intheaqueouss olutionovertheentirepHrange(shownforpH4,7,

9,and12).Lightwithawavelengthof372nmwasusedforexcitat ion.AtpH7,theselectedexcitationwavelengthistyp-

icalforthelongwaveabsorptionedgeofthemonomericformand resonantexcitationoftheaggregatedform(~370nm).Fluore scencedecaywasmonitoredwiththeTCSPCmethod

Fig.4TheeffectofpHonthefluorescencelifetimeforC7(PanelsAand B) andC1(PanelsCandD).Thedependenceofthemeanfluorescencelifeti mesonthebestexponentialfitsatgivenpHareshowninPanelsA

andC,whileintensitiesofthefractionalfluorescencelifetimesarepresent edinPanelsBandD

(13)

Table1Fluorescencelifet imesofC7inH2Oinrelatio ntochangesinpH

Table2Fluorescencelifet imesofC1inH2Oinrelatio ntochangesinpH

C7

pH τ ± Δτ

0.8 1.59 ±

0.03

1.0 1.59 ±

0.03

1.6 1.60 ±

0.03

2.0 1.59 ±

0.02

2.5 1.55 ±

0.02

3.1 1.53 ±

0.02

3.6 1.51 ±

0.02

4.1 1.52 ±

0.02

4.5 1.52 ±

0.02

4.9 1.61 ±

0.02

5.5 1.58 ±

0.01

6.1 1.51 ±

0.01

6.3 1.51 ±

0.02

6.6 1.47 ±

0.01

6.8 1.46 ±

0.01

7.1 1.44 ±

0.01

7.3 1.46 ±

0.01

7.5 1.48 ±

0.01

7.8 1.44 ±

0.01

8.0 1.45 ±

0.01

8.6 1.18 ±

0.01

9.1 0.75 ±

0.01

9.4 0.68 ±

0.02

10.0 0.72 ±

0.06

10.6 0.12 ±

0.10

11.1 0.29 ±

0.03

11.6 0.17 ±

0.02

12.3 0.11 ± 0.07

C1

pH τ ± Δτ

(14)

atatemperatureof2 2°Cforlightwitha wavelengthover40 8nm.Theresultswe reanalysedbydeco nvolutionoftheflu orescencedecayusi ngEq.

(1)eachtimefori=1, 2,and3.Inamajority oftheanalysedcase s,thedoubleexpon entialmodeloffluo rescencedecaypro vedtobeoptimal.T hemono-

exponentialdecay modelwasinsuffici ent,andadditionofa thirdcomponentdi

dnotimprovethequalityofthefit, whichwasverifiedbythevalueofth efitparameterandanal-

ysisofresiduedistribution(Fig.3,P anelsCandD).Asingleexponential wasonlyobservedforC1atpHlowe rthan5.Inthesecases,anadditional componentdidnotimprovethefit.F orC7,bothcomponentsofthefluore scencelifetimesexhib-

itedverylittlevariabilityatpHbelo w8,5.Inthisrange,thelifetimeofth elongercomponentisbetween2an d2,5nsandisrapidlyreducedtoca.1 nsoverthethresholdpHvalue.Itsco ntributionisca.70%atthelowpHva luesanddeclinestoca.10%atthehi gherpHvalues.Thelifetimeofthes econdcomponentisca.0.5nsatthel owerpHvaluesanddecreasestosev eraltensofpsforthehigherpHvalu

es.Asaresultofthisvariability,theaveragelifetimeisca.1,6nsfo rpHlowerthan8andisreducedtoseveraltensofpsatthehigher pHvalues.InthecaseofC1,thecomponentwiththelongerlifet imehasasimilarvaluetothatobservedforC7andis2–

2,5nsovertheentirepHrange.FrompH5,asecondcompo- nentwithalifetimeof0,5nsisobservedanditsvaluechangesinsig nificantlyovertheanalysedpHrange.Withtheaddition- alcomponent,theaveragelifetimeismarkedlyreducedatthepHi ncreaseuptoca.6andthenremainsrelativelyconstantatca.0,5–

1nsuptothepHvalueof11.

Noteworthy,drasticchangesinthelengthofthelifetimesare observedfromapHvalueofca.8inthecaseofC7(Fig.4,PanelA) and frompHofca.5.5 inC1(Fig.4,PanelC).Similarly,t hepercentageproportionofthecomponentsoftheaveragelifeti mesforC1andC7changesatexactlythesamepHvalues(seeFig.

4,PanelsBandD).Thisclearlyindicatessubstantiallystrongera ggregationoftheC7molecules,com-

paredwithC1,whichhasalreadybeenobservedintheabsorp- tionspectra(Fig.1,PanelsAandC),whereasignificantre- ductionintheabsorbancelevelwasnoted.Thisprovescon- siderablybettersolubilityofC1intheaqueousmediumwith

1.0 2.45 ±

0.06

2.0 2.24 ±

0.03

3.0 2.17 ±

0.01

4.0 2.15 ±

0.01

5.0 1.29 ±

0.01

6.0 0.73 ±

0.01

7.0 0.63 ±

0.01

8.0 0.60 ±

0.01

9.0 0.62 ±

0.01

10.0 0.72 ±

0.01

11.0 0.81 ±

0.04

12.0 0.81 ±

0.04

pHrelevantfromthephysiologicalpointofview.

Thelengtheningofthefluorescencelifetimeinthecaseofmol eculesexhibitingthedualfluorescenceeffectischaracter- isticforcharge-

transfersystemsandexcimers[52],incontrasttoprocessesindu cedbythephenomenonofaggregation(dimerisation),inwhich aclearreductioninthelifetime[27]ordecayisobserved.

ResonanceLightScatteringStudy

Inordertorelatethefluorescenceeffectsobservedwiththemol ecularaggregationeffects,respectiveResonanceLightScatt ering(RLS,Δλ=0)spectrawereobtainedforC1and

(15)

C7intheaqueoussolution,dependingonthechangesinthemedi umpH.PanelsAandBinFig.5demonstrateRLSspec-

traforC1(PanelA)andC7(PanelB)obtainedatthedifferentpHva luesofthemedium.Asreportedintheliterature(mainlybyPaster nackandParkash[48,49]),theappearanceofRLSbandsshould primarilybeassociatedwithchromophoreag-

gregationofthesystemspresentinthesolution.Analysisofallthe RLSspectrashowninFig.5revealsthepresenceofRLSspectra(

withhigherorlowerintensity)inthepHrangeswherethedualflu orescenceeffectisobservedforC1andC7,aspresentedabov einFig.1(PanelsBandD).Additionally,itcanbenotedthatthei ncreaseinthepHvalueisaccompaniedbyreductionoftheRLSsi gnalforbothanalysedanalogues.PanelCinFig.5showstherel ationshipbetweentheRLSsignalintensityandthesolutionp HforC1(blackline)andC7(greyline).Ascanbenoted,theR LSsignalintensitysubstantiallydeclineswiththeincreaseinp H,whichclearlysuggestsanimpactofmolecularaggregationo nthespectraleffects.Theintensityofthesignalsisclearlyhighe rforC7,whereasubstantialdeclineintheabsorbancelevelwas re-vealedbythemeasurementsofabsorptionspectra.Thisevi- dencestheimpactofthealkylsubstituentstructureonth e

strengthoftheaggregationinteractionsinC7.TheRLSsignallos esitsintensityatapHvalueofca.7forC7andC1.Thepresenceo ftheRLSspectraandtheirdependenceonthechangesinthepH oftheanalysedsolutionsclearlyprovesarelationshipbetweent hepresentedeffectandthemolecularaggregationoftheinvesti gated1,3,4-

thiadiazoles.Itisalsoworthmentioningthattheoscillatoryst ructureoftheRLSbandsevidencesthepresenceofvariouspo ssiblydifferent-

sizeaggregationstructuresofbothC1andC7,whichalsoco nfirmstheimpactofthestructureoftheanalysedanalogues,inpa rticulartheiralkylsubstituents,ontheobservedeffect(Schem e1).

Theobservationsclearlyindicateagreaterimpactofmo- lecularaggregationeffectsthantheaforementionedTICT,E SIPT,andanti-

Kashaprocessesorexcimerfluorescence.Additionally,aggr egationhasasignificantimpactonchangesintheelectroncharge distributionaroundtheanalysedmole-

cules,whichyieldsfluorescencespectraleffectsinapHrange.Th edifferenceinthestructureofsubstituentgroupsoftheanalys edanalogues(C1,C7)evokesdifferentaggregationef- fects.Therefore,wepostulatethatthedualfluorescenceef- fectsinthe1,3,4-thiadiazolesareinducedbyatleasttwo

(16)

Fig.5PanelsA andB:RLSspectra(ResonanceLightScattering,Δλ=0)for C1andC7obtainedintheaqueoussolutionatthedifferentpHvalues,presen tedinthefigureforpH1,3,7,and10,respectively.

PanelCshowstheratiooftheintensityoftheRLSspectraforC1(blackline)a ndC7(dashedgreyline)dependingonthepHoftheaqueoussolution.Al lRLSspectrawereobtainedatT=23°C

(17)

JFluoresc(2017)27:1201–1212 121 3 overlappingeffects,i.e.molecularaggregation(dependingont

hesubstituenttypeinthemolecule)andchargetransferCT(indu cedbytheaggregationfactor).Basedonthespectralshift sintheelectronabsorptionspectra,formationofcardpackr atherthanhe a dtot a i laggregatescanbeassumed.Furthermore ,theaggregationcanbestrongeratlow,neutral,orveryhighpHv alues,whereasadditionalintermediateforms,whicharearesul tantofbothionisedforms,canappearatneutralpH.Thiscanexpl aintherapiddeclineintheinten-

sityoftheRLSsignalatneutralandhighpHvalues.Theseconsi derationswillbecontinuedinfurtherinvestigationsofthishigh lyattractivedualfluorescencespectroscopiceffectinthe1,3,4- thiadiazolegroupwitha resorcylringinthestructure.

Conclusions

Theresultspresentedinthispaperindicateappearanceofthedual fluorescenceeffectinthefluorescenceemissionspectrumofthe analysed1,3,4-

thiadiazoleanaloguesC1andC7intheaqueousmedium.Inboth compounds,thiseffectismostev-

identatthephysiologicalpHandvalueslowerthatca.7.Fu rthermore,thecomparisonoftheanalysedanalogueswiththepr eviouslydescribedFABTcompound,differingstructur- allybythepresenceoftheamino–N-Hgroupinthesubstit- uentgroupandthefluorobenzenering,revealedthattherewasno longwavefluorescencebandwitha maximumatca.500nm.I nthecaseconsideredinthispaper,ashortwavefluoresc enceemissionbandwithamaximumatca.380nmwasfoundto accompanythedeclineinthepHvalue.Thiseffectmayberelat edtothestructuraldifferences(absenceoftheN-

HgroupintheC1andC7structure)betweenthecom-

pounds.Inanotherstudyofacompoundthatisstructurallysimi lartoFABTbutdoesnotcomprisethefluorobenze nefra gmentanddiffersfromC1onlyinthepresenceoftheN-

Haminegroup,abandwithamaximumatca.380nmwasobserv edathighpHvalues(resultssubmittedforpublishing).Acidifica tionofthemediumyieldedaseparatebandatca.440nm(asint hecaseofC1andC7atthehighpHvalues).Therefore,thereisane videntimpactofthesubstituentsinthe1,3,4-

thiadiazolestructureonthepositionoffluorescencebandsdesp itethesimilar/identicalchromophoreorganisation(fiveconju gateddoublebonds)intheanalysedmolecules.Thelength enedfluorescencelifetimeandchangeintheinten-

sityoftheRLSspectruminthespecifiedpHrangeforbothmole culesindicateassociationofthiseffectwiththeaggrega- tionphenomenondependentonthealkylchainlength.Theref ore,ithasbeenproposedthatprobablyacombinationoftwoeffe cts,i.e.molecularaggregation(withtheformde-

pendentontheanalogue)andCTchargetransfer,isresponsi- blefortheobservedfluorescencephenomena.Thishypothesisi slargelyconfirmedbythequantum-mechanicalcalculations

(TDDFT)performedforotheranaloguesfromthisgroupofco mpounds.Thenon-

specificinteractions(e.g.formationofintra-

andintermolecularhydrogenbondsorCTstates)intheanalysed 1,3,4-

thiadiazoleanaloguesmodifytheelectronicstructuresurrou ndingthemolecule,leadingtochangesinthedistributionofelect rondensityandtherebyforcingCTchargetransferintheanalyse danalogues.Thiseffectisreversibleafteralkalinisationofthe mediumandathighpHvalues(sin-

glefluorescence)andafteracidificationofthemediumatpHinth erangefrom1toca.7(dualfluorescence).

Thedualfluorescenceeffectoccursinadifferentenergeticra ngethanthatinthe1,3,4-

thiadiazolesanalysedpreviously.Inthetheoreticalaspect,itcan beusedforanalysisofexcita-

tionstatesintheseandotherstructurallysimilarmoleculesandfo rdesigningnewfluorescenceprobes.

Inconclusion,itshouldbeemphasisedthattheanalysed1,3, 4-

thiadiazolescanserveasexcellentfluorescentprobesthatareh ighlysensitivetochangesinthemediumpH.Additionally,the attractivenessoftheinvestigatedsystemsisenhancedbytheirad vantagesinmedicalandpharmacologicalapplications,whichar emoreoftenbasedonnewcompoundswithdesirableproperties.

AcknowledgementsT h e researchwasp artlysupportedby thegrantfro mtheUniversityofLifeScienceinLublin(TKF/MN/5toAM).

OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCo m mo nsAt tribu t ion4. 0In t ernat iona lLicen se(ht tp://creativecommo ns.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedyougiveappropriatecredittotheori ginalauthor(s)andthesource,providealinktotheCreativeCommonslicens e,andindicateifchangesweremade.

References

1. MaX,YuH(2006)Globalburdenofcancer.YaleJBiolMed79:85–

94

2. ColemanCN,MinskyBD(2015)Theverdictisin:thetimeforeffecti vesolutionstotheglobalcancerburdenisnow.LancetOncol16:1146–

1147

3. LuszczkiJJ,KarpińskaM,MatysiakJ,NiewiadomyA(2015)Ch aracterizationandpreliminaryanticonvulsantassessmentofsome1 ,3,4-thiadiazolederivatives.PharmacolRep67:588–592

4. MatysiakJ,NasulewiczA,PelczynskaM,SwitalskaM,Jarosze wiczI,OpolskiA(2006)Synthesisandantiproliferativeactivityof some5-substituted2-(2,4-dihydroxyphenyl)-1,3,4-

thiadiazoles.EurJMedChem41:475–482

5. JäntschiL,BolboacăS(2006)Modellingtheinhibitoryactivityoncar bonicanhydraseIVofsubstitutedthiadiazole-andthiadiazoline- disulfonamides:integrationofstructureinformation.Electro nJBiomed2:22–33

6. NadeemSiddiquiPA,WaquarAhsanSN(2009)Pandeya,MShams herAlamthiadiazoles:progressreportonbiologicalactivi- ties.JChemPharm1:19–30

(18)

1210 JFluoresc(2017)27:1201–1212 7. ShawaliAS(2014)1,3,4-

thiadiazolesofpharmacologicalinterest:recenttrendsintheirsynt hesisviatandem1,3-dipolarcycloaddi-

tion:review.JAdvRes5:1–17

(19)

8. RezkiN,Al-YahyawiAM,BardaweelSK,Al-

BlewiFF,AouadMR(2015)Synthesisofnovel2,5-Disubstituted- 1,3,4-thiadiazolesclubbed1,2,4-Triazole,1,3,4-thiadiazole,1,3,4- oxadiazoleand/orSchiffBaseaspotentialantimicrobialandantiprol iferativeagents.Molecules20:16048–16067

9. FarghalyTA,AbdallahMA,MasaretGS,MuhammadZA(2015)Ne wandefficientapproachforsynthesisofnovelbioactive[1,3,4]thiad iazolesincorporatedwith1,3-

thiazolemoiety.EurJMedChem97:320–333

10. KovalenkoSI,NosulenkoIS,VoskoboynikAY,BerestGG,Antyp enkoLN,AntypenkoAN,KatsevAM(2012)Substituted2 - [ ( 2 - O x o - 2 H - [ 1 ,2 , 4 ]t r i a zi n o[ 2 , 3 - c ] q u in a zo l in - 6 - yl)thio]acetamideswiththiazoleandthiadiazolefragments:synthe- sis,physicochemicalproperties,cytotoxicity,andanticanceractiv- ity.SciPharm80:837–865

11. CamoutsisC,GeronikakiA,CiricA,SokovićM,ZoumpoulakisP(20 10)M.,Z.Sulfonamide-1,2,4-thiadiazolederivativesasantifun- galandantibacterialagents:synthesis,biologicalevaluation,lipo- philicity,andconformationalstudies.ChemPharmBull(Tokyo)58:

160–167

12. SantagatiM,ModicaM,SantagatiA,RussoF,CarusoA,CutuliV,Di PietroE,Amico-RoxasM(1994)Synthesisandpharmacologi- calpropertiesofbenzothiazole,1,3–4-oxadiazoleand1,3,4- thiadiazolederivatives.Pharmazie49:880–884

13. GuptaA,MishraP,PandeyaSN,KashawSK,KashawV,StablesJP(2 009)Synthesisandanticonvulsantactivityofsomesubstituted1,2,4- thiadiazoles.EurJMedChem44:1100–1105

14. TonewM(1976)Antiviral1,3,4-

thiadiazoles.II.EffectsoncellularandviralRNAsynthesisinMeng o-virus-infectedFLcells.Chemotherapy22:114–120

15. AlwanWS,KarpoormathR,PalkarMB,PatelHM,RaneRA ,ShaikhMS,KajeeA,MlisanaKP(2015)Novelimidazo[2,1-b]- 1,3,4-

thiadiazolesaspromisingantifungalagentsagainstclinicaliso- lateofCryptococcusneoformans.EurJMedChem95:514–525 16. TurnerS,MyersM,GadieB,NelsonAJ,PapeR,SavilleJF,DoxeyJC,

BerridgeTL(1988)Antihypertensivethiadiazoles.1.Synthesisofso me2-aryl-5-hydrazino-1,3,4-thiadiazoleswithvasodilatorac- tivity.JMedChem31:902–906

17. HaiderS,AlamMS,HamidH(2015)1,3,4-thiadiazoles:apo- tentmultitargetedpharmacologicalscaffold.EurJMedChem92:1 56–177

18. MatwijczukA,GoreckiA,KaminskiD,Mysliwa-

KurdzielB,FiedorL,NiewiadomyA,KarwaszGP,GagosM (20 15)Influenceofsolventpolarizabilityontheketo-

enolequilibriumin4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2- yl]benzene-1,3-diol.JFluoresc25:1867–1874

19. GagosM,MatwijczukA,KaminskiD,NiewiadomyA,KowalskiR,K arwaszGP(2011)Spectroscopicstudiesofintramolecularpro- t o ntr a n s f eri n2 - ( 4 - f lu o r o p h e n y l am i n o ) - 5 - ( 2 , 4 - dihydroxybenzeno)-1,3,4-thiadiazole.JFluoresc21:1–10 20. MatwijczukA,KarczD,WalkowiakR,NiewiadomyA,WybraniecS,

KarwaszG,GagosM(2016)Keto-enoltautomerismof2-(4- fluorophenyl)-5-(2,4-dihydroxyphenyl)-1,3,4-

thiadiazole.Spectroscopicstudies.PrzemChem95:1894–1898 21. MatwijczukA,KarczD,WalkowiakR,FursoJ,GładyszewskaB,W

ybraniecS,NiewiadomyA,KarwaszGP,GagośM(2017)Effectofs olventpolarizabilityontheketo/enolequilibriumofselectedbioacti vemoleculesfromthe1,3,4-thiadiazolegroupwitha2,4-

hydroxyphenylfunction.JPhysChemA121(7):1402–1411 22. HoserAA,KamińskiDM,MatwijczukA,NiewiadomyA,GagośM ,

Woźn ia kK (2 01 3)O npol y m o r phi s mof2 - ( 4- fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4- thiadiazole(FABT)DMSOsolvates.CrystEngComm15:978–

1988

23. KamińskiDM,HoserAA,GagośM,MatwijczukA,ArczewskaM,N iewiadomyA,WoźniakK(2010)Solvatomorphismof2-(4-

Fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4- thiadiazoleChloride.CrystGrowthDes10:3480–3488

24. KaminskiDM,MatwijczukA,PociechaD,GoreckaE,Niewia domyA,DmowskaM,GagosM(2012)Effectof2-(4- fluorophenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-

thiadiazoleonthemolecularorganisationandstructuralpropertieso ftheDPPClipidmultibilayers.BiochimBiophysActa1818:2850–

2859

25. KluczykD,MatwijczukA,GoreckiA,KarpinskaMM,SzymanekM, NiewiadomyA,GagosM(2016)MolecularOrganizationofDipal mitoylphosphatidylcholineBilayersContainingBioactiveCompo unds4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-dioland4 - (5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-

diols.JPhysChemB120:12047–12063

26. MatwijczukA,KluczykD,GóreckiA,NiewiadomyA,GagosM(20 16)Solventeffectsonmolecularaggregationin4-(5-heptyl-1,3,4- thiadiazol-2-yl)benzene-1,3-dioland4-(5-methyl-1,3,4- thiadiazol-2-yl)benzene-1,3-

diol.J PhysChemB 120(32):7958–7969

27. MatwijczukA,KaminskiD,GoreckiA,LudwiczukA,Niewia domyA,MackowskiS,GagosM(2015)Spectroscopicstudiesofdu alfluorescencein2-((4-fluorophenyl)amino)-5-(2,4-

dihydroxybenzeno)-1,3,4-

thiadiazole.JPhysChemA119:10791–10805

28. KarczD,MatwijczukA,BorońB,CreavenB,FiedorL,Niewiado myA,GagośM(2017)Isolationandspectroscopicchar-

acterizationofZn(II),Cu(II),andPd(II)complexesof1,3,4- thiadiazole-derivedligand.JMolStruct1128:44–50

29. ZhouP,HoffmannMR,HanK,HeG(2015)Newinsightsintothedua lfluorescenceofmethylsalicylate:effectsofintermo-

lecularhydrogenbondingandsolvation.JPhysChemB119:2125–

2131

30. YangW,ChenX(2014)Dualfluorescenceofexcitedstateintra- molecularprotontransferofHBFO:mechanisticunderstanding,su bstituentandsolventeffects.PhysChemChemPhys16:4242–

4250

31. PrabhuAA,SankaranarayananRK,VenkateshG,RajendiranN(2 012)DualfluorescenceoffastblueRRandfastvioletB:effectsofsolv entsandcyclodextrincomplexation.JPhysChemB116:9061–

9074

32. RajendiranN,BalasubramanianT(2007)Dualfluorescence ofsyringaldazine.SpectrochimActaAMolBiomolSpectrosc68 :894–904

33. SuzukiN,FukazawaA,NaguraK,SaitoS,Kitoh-

NishiokaH,YokogawaD,IrleS,YamaguchiS(2014)Astrapstrateg yforconstructionofanexcited-

stateintramolecularprotontransfer(ESIPT)systemwithdualfluor escence.AngewChemIntEdEngl53:8231–8235

34. Il'ichevYV,KühnleW,ZachariasseKA(1998)Intramolecularc hargetransferindualfluorescent4-

(Dialkylamino)benzonitriles.ReactionEfficiencyEnhancementb yIncreasingtheSizeoftheAminoandBenzonitrileSubunitsbyAl kylSubstituents.JPhysChemA102:5670–5680

35. MontiF,VenturiniA,NenovA,TanciniF,FinkeAD,DiederichF,Ar maroliN(2015)Anilino-substitutedMulticyanobuta-1,3- dieneelectronacceptors:TICTmoleculeswithaccessibleconicalint er-sections.JPhysChemA119:10677–10683

36. DeshmukhMS,SekarN(2014)Noveltwistedintramolecularcharg etransfer(TICT)extendedfluorescentstyrylderivativescontainin gquinolineelectronreleasingmoiety.JFluoresc24:1811–1825 37. PadalkarVS,SekiS(2016)Excited-stateintramolecularproton-

transfer(ESIPT)-

inspiredsolidstateemitters.ChemSocRev45:169–202

38. MannaA,SayedM,KumarA,PalH(2014)Atypicalenergeticandkin eticcourseofexcited-stateintramolecularprotontransfer

(20)

1212 JFluoresc(2017)27:1201–1212

(ESIPT)inroom-

temperatureproticionicliquids.JPhysChemB118:2487–2498 39. LiH,Niu L,XuX,Zhang S,GaoF(2011)Aco mprehensive

theroticalinvestigationofintramolecularprotontransferintheex- citedstatesforsomenewly-

designeddiphenylethylenederivativesbearing2-(2-Hydroxy- phenyl)-Benzotriazolepart.JFluoresc21:1721–1728 40. GaoF,YeX,LiH,ZhongX,WangQ(2012)Evidencefortwo-

photonabsorption-inducedESIPTofchromophorescontaininghy- droxylandIminogroups.ChemPhysChem13:1313–1324 41. DingG,LuY,GongY,MaL,LuoZ,ZhangS,GaoF,LiH(2016)NewA

B2typetwo-photonabsorptiondyesforwell-separateddual- emission:molecularpreorganizationbasedapproachtophoto physicalproperties.Tetrahedron72:3040–3056

42. DingG,LuY,QinX,SuJ,ZhangS,LiH,LuoZ,ChenL,GaoF(2017)N eworganicconjugateddyenano-aggregatesexhibitingnaked- eyefluorescencecolorswitching.DyesPigments139:19–32 43. ItoF,KakiuchiT,SakanoT,NagamuraT(2010)Fluorescencep

ropertiesofpyrenederivativeaggregatesformedinpolymerma- trixdependingonconcentration.PhysChemChemPhys12:10923–

10927

44. HaedlerAT,MisslitzH,BuehlmeyerC,AlbuquerqueRQ,KöhlerA, SchmidtaHW(2013)Controllingthen-

StackingBehaviorofPyreneDerivatives:lnfluenceofH- BondingandStericEffectsinDifferentStatesofAggregation.Che mPhysChem14:1818–1829

45. WalukJ (2006)Ground-andexcited-

statetautomerisminporphycenes.AccChemRes39:945–952

46. ZiolekM,KubickiJ,MaciejewskiA,NaskreckiR,GrabowskaA(20 06)E nol-

ketot automerismo f a romaticp hotochromicS chiffbaseN,N'- bis(salicylidene)-p-

phenylenediamine:groundstateequilibriumandexcitedstated eactivationstudiedbysolvatochromicm e a s u r e m e n tso n u l t r a f a s t t i m e s c a l e . J C h e m Phys124:124518

47. BrancatoG,SignoreG,NeyrozP,PolliD,CerulloG,AbbandonatoG, NucaraL,BaroneV,BeltramF,BizzarriR(2015)Dualfluores- cencethroughKasha’srulebreaking:anunconventionalPhoto mechanismforintracellularprobedesign.JPhysChemB119:6144 –6154

48. ParkashJ,RobbleeJH,AgnewJ,GibbsE,CollingsP,PasternackRF, dePaulaJC(1998)Depolarizedresonancelightscatteringbyporphyr inandchlorophyllaaggregates.BiophysJ74:2089–2099

49. PasternackR,CollingsP(1995)Resonancelightscattering:anewtec hniqueforstudy ingchromophoreagg regation.Science269:9 35–939

50. KashaM(1963)Energytransfermechanismsandthemolecularexci tonmodelformolecularaggregates.RadiatRes20:55–71

51. KashaM,RawlsHR,AshrafEl-

BayoumiM(1965)Theexcitonmodelinmolecularspectroscopy.Pu reApplChem11:371–392

52. BainsGK,KimSH,SorinEJ,NarayanaswamiV(2012)Extentofpyre neexcimerfluorescenceemissionisareflectorofdistanceandflexibil ity:analysisofthesegmentlinkingtheLDLreceptor-

bindingandTetramerizationdomainsofapolipoproteinE3().Bioch emistry51:6207–6219

Cytaty

Powiązane dokumenty

2 shows the ratio of short- and longwave fluorescence emission intensity for both compounds (emis- sion with a maximum of ca. emission with a maximum of ca. 440 nm) depending on the

Obróbka zgrubna/ półwykańczająca CoroMill 200 Strona D120 CoroMill 300 Strona D108 CoroMill 316 Strona D202 CoroMill Plura Strona D214 Frez kulisty CoroMill Strona D126..

Gatunek pokrywany metodą PVD ze znakomitą odpornością na zużycie oraz udarnością krawędzi przy prędkościach skrawania od niskich do umiarkowanych. Stal, staliwo,

CoroBore® 825 - do wytaczania tradycyjnego lub wstecznego F30 Chwyt cylindryczny - 19-36 mm F32 Coromant Capto® oraz HSK - 19-167 mm F34 Coromant Capto® z tłumieniem drgań - 19-167

Jednolite uchwyty narzędziowe - Przegląd G49 Jednolite uchwyty narzędziowe HSK - Przegląd G65 Precyzyjny uchwyt zaciskowy Hydro-Grip® G78 Uchwyty do narzędzi modułowych -

❖ zwrócić się do policji w celu umieszczenia dziecka w pogotowiu opiekuńczym. Sporządza notatkę służbową dotyczącą zaistniałego zdarzenia. Przeprowadza rozmowę z

Wpływ kosztów ,które ponosimy corocznie w związku z zarządzaniem Twoimi inwestycjami oraz kosztów przedstawionych w dokumencie zawierającym kluczowe informacje w sekcji „Co to

Wpływ kosztów ,które ponosimy corocznie w związku z zarządzaniem Twoimi inwestycjami oraz kosztów przedstawionych w dokumencie zawierającym kluczowe informacje w sekcji „Co to