• Nie Znaleziono Wyników

Determination of the strange quark density of the proton from ATLAS measurements of the $\mathit{W\rightarrow \ell \nu }$ and $\mathit{Z\rightarrow \ell \ell }$ cross sections

N/A
N/A
Protected

Academic year: 2022

Share "Determination of the strange quark density of the proton from ATLAS measurements of the $\mathit{W\rightarrow \ell \nu }$ and $\mathit{Z\rightarrow \ell \ell }$ cross sections"

Copied!
17
0
0

Pełen tekst

(1)

Determination of the Strange-Quark Density of the Proton from ATLAS Measurements of the W ! ‘ and Z ! ‘‘ Cross Sections

G. Aad et al.*

(ATLAS Collaboration)

(Received 19 March 2012; published 5 July 2012)

A QCD analysis is reported of ATLAS data on inclusive Wand Z boson production in pp collisions at the LHC, jointly with ep deep-inelastic scattering data from HERA. The ATLAS data exhibit sensitivity to the light quark sea composition and magnitude at Bjorken x 0:01. Specifically, the data support the hypothesis of a symmetric composition of the light quark sea at low x. The ratio of the strange-to-down sea quark distributions is determined to be 1:00þ0:250:28at absolute four-momentum transfer squared Q2¼ 1:9 GeV2and x¼ 0:023.

DOI:10.1103/PhysRevLett.109.012001 PACS numbers: 12.38.Qk, 13.38.Be, 13.38.Dg, 14.20.Dh

Little is known about the strange-quark distribution in the proton. Flavor SUð3Þ symmetry suggests that the three light sea quark distributions are equal. However, the strange quarks may be suppressed due to their larger mass. The nucleon strange density plays an important role for a number of physics processes, ranging from measurements at proton-proton colliders of W boson pro- duction associated with charm jets [1] and of the W boson mass [2], to the formation of strange matter [3] and neu- trino interactions at ultrahigh energies [4].

Knowledge of the parton distribution functions (PDFs) of the proton comes mainly from deep-inelastic lepton proton scattering experiments covering a broad range of Q2, the absolute four-momentum transfer squared, and of Bjorken x. The PDFs are determined from data using perturbative quantum chromodynamics (pQCD). The re- gion x& 0:01 is primarily constrained by the precise mea- surement of the proton structure function F2ðx; Q2Þ at HERA [5], which determines a specific combination of light quark and antiquark distributions. However, the flavor composition of the total light sea, x ¼ 2xð u þ dþ sÞ, has not been determined at these x values.

The strange-quark distribution has been accessed in charged current neutrino scattering through the subpro- cesses Wþs! c and Ws! c. This measurement has been made by the NuTeV [6] and CCFR [7] experiments, providing information on the strange and antistrange den- sity at x 0:1 and Q2 10 GeV2. However, the interpre- tation of these data is sensitive to uncertainties from charm fragmentation and nuclear corrections. The analyses of Refs. [8–11] suggest strangeness suppression, with

s= d& 0:5, whereas the analysis of Ref. [12] is consistent

with s= d’ 1 (unsuppressed strangeness). Recent HERMES kaon multiplicity data [13] point to a strong x dependence of the strange-quark density and a rather large value of xðs þ sÞ at x ’ 0:04 and Q2’ 1:3 GeV2. However, the interpretation of these data depends on the knowledge of the fragmentation of strange quarks to K mesons at low Q2.

In the present Letter it is shown that the differential measurements of the inclusive W and Z boson cross sections at the LHC, recently performed by the ATLAS collaboration using 35 pb1of pp collision data recorded in 2010 [14], provide new constraints on the strange-quark distribution at high scale, Q2 MW;Z2 , which imply con- straints at low Q2through pQCD evolution. Because of the weak couplings of the quarks involved, complementary information to F2 is provided which also constrains x.

A quantity of special interest is the ratio of the (Wþþ W) and Z cross sections which is sensitive to the flavor com- position of the quark sea [12,15,16] and is rather insensi- tive to the influence of higher order pQCD corrections [17].

The inclusive electromagnetic and weak Drell-Yan scatter- ing process is theoretically well understood [18,19]. The parton distribution analysis is performed here in next-to- next-to leading order (NNLO) QCD using the ATLAS data jointly with inclusive deep-inelastic scattering data from HERA.

The combined ep cross-section measurements of H1 and ZEUS [5] cover a kinematic range of Q2 from near 1 GeV2 to above 104 GeV2 and of x from0:6 down to 104. The ATLAS data access a kinematic range pre- scribed by the boson masses, MW;Z, and the proton beam energy, Ep¼ 3:5 TeV, corresponding to Q2 ’ M2W;Z and an x range 0:001 & x & 0:1, with a mean x ¼ MZ=2Ep¼ 0:013 for the Z boson. The W and Z boson differential cross sections have been measured [14] as functions of the W decay lepton (e, ) pseudorapidity, l, and of the Z boson rapidity, yZ, respectively, with an experimental pre- cision of typically ð1–2Þ% in each bin. The absolute nor- malization of the three cross sections is known to within

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

3.4%. Many systematic uncertainties on the measurements of the Wand Z boson cross sections are fully correlated.

These correlations are taken into account in the analysis.

The present QCD analysis uses theHERAFITTERframe- work [5,20,21]. The light quark coefficient functions are calculated to NNLO as implemented inQCDNUM[22]. The contributions of heavy quarks are calculated in the general- mass variable-flavor-number scheme of Refs. [23,24]. The electroweak parameters and corrections relevant for the W and Z boson production processes are determined follow- ing the procedure described in Ref. [14], and the results are cross-checked between theFEWZ[19] and theDYNNLO[18]

programs. The HERAFITTER package uses the APPLGRID

code [25] interfaced to the MCFM program [26] for fast calculation of the differential W and Z boson cross sections at NLO and a K-factor technique to correct from NLO to NNLO predictions. The data are compared to the theory using the 2function defined in Refs. [27–29].

The evolution equations yield the PDFs at any value of Q2given that they are parametrized as functions of x at an initial scale Q20. In the present analysis, this scale is chosen to be Q20 ¼ 1:9 GeV2 such that it is below the charm mass threshold m2c. The heavy quark masses are chosen to be mc ¼ 1:4 GeV and mb¼ 4:75 GeV. The strong coupling constant is fixed to SðMZÞ ¼ 0:1176, as in Ref. [5]. A minimum Q2 cut of Q2min  7:5 GeV2 is imposed on the HERA data.

The quark distributions at the initial scale are repre- sented by the generic form

xqiðxÞ ¼ AixBið1  xÞCiPiðxÞ; (1) where PiðxÞ denotes polynomials in powers of x. The parametrized quark distributions, xqi, are chosen to be the valence quark distributions (xuv, xdv) and the light antiquark distributions (xu, x d, xs). The gluon distribution is parametrized with the more flexible form xgðxÞ ¼ AgxBgð1  xÞCgPgðxÞ  A0gxB0gð1  xÞC0g, where C0g is set to 25 to suppress negative contributions at high x. The parameters Auvand Advare fixed using the quark counting rule and Ag using the momentum sum rule. The normal- ization and slope parameters, A and B, of u and d are set equal such that xu¼ x d at x ! 0. Terms are added in the polynomial expansion PiðxÞ only if required by the data, following the procedure described in Ref. [5]. This leads to one additional term, PuvðxÞ ¼ 1 þ Euvx2.

Two types of NNLO fit, termed epWZ, are performed with different treatments of strangeness. First, the strange- quark distribution is fully coupled to the down sea quark distribution and suppressed by fixing s= d¼ 0:5 at the initial scale Q20 (‘‘fixed s fit’’) as suggested by Refs. [5,8–11]. In a second fit, xs is parametrized as in Eq. (1), with Ps¼ 1 and Bs¼ Bd, leaving two free strangeness parameters, Asand Cs(‘‘frees fit’’). By default it is assumed that xs¼ xs.

Both fits result in good overall 2=NDF values of 546:1=567 with 13 free parameters, for fixed s, and of 538:4=565 with 15 free parameters, for free s. For the fixed

s fit, the partial 2 of the ATLAS data is 44.5 for 30 data points. This improves significantly to 33.9 for the fit with frees. This fit determines the value of rs¼0:5ðsþ sÞ= d to be

rs¼ 1:00  0:20 exp0:07modþ0:100:15parþ0:060:07S 0:08th;

(2) at Q20 and x¼ 0:023, the x value, which corresponds to x¼ 0:013 at Q2 ¼ MZ2 as a result of QCD evolution. The combined result is rs¼ 1:00þ0:250:28.

The uncertainty of rs, Eq. (2), is dominated by the experimental (exp) uncertainty, which is mostly driven by the statistical and systematic uncertainties of the W and Z cross-section measurements. The model (mod) un- certainty includes effects due to variations (1:25 < mc<

1:55 GeV and 4:5 < mb< 5:0 GeV) of the charm and beauty quark masses following Ref. [30], of the minimum Q2 cut value (5 < Q2min< 10 GeV2), and the value of the starting scale (Q20 lowered to 1:5 GeV2). The largest con- tribution to the model uncertainty of0:05 comes from the variation of the charm quark mass. The parametrization (par) uncertainty corresponds to the envelope of the results obtained with the polynomials Pi, in Eq. (1), extended by one or two terms, resulting in somewhat different parton distributions with similar 2 as for the nominal fit. The parametrization uncertainty also includes a fit with Bsfree.

The s uncertainty corresponds to a variation of sðMZÞ from 0.114 to 0.121. Finally, a theoretical (th) uncertainty is assessed by comparing the DYNNLO and FEWZ predic- tions on the Z, Wþ, and Wfiducial cross sections, which agree at the level of 0.2, 0.5, and 1.0%, respectively. In addition, remaining missing pure electroweak corrections may alter the QCD predictions at the per-thousand level.

Both effects are well covered by an uncertainty of 1% on the W=Z cross-section ratio and this results in a theoretical uncertainty on rsof 0.08.

The fits impose small shifts, typically much smaller than 1 standard deviation, on the correlated systematic uncer- tainties of the data. The global normalization is observed to be shifted upward for both fits by about the size of the luminosity measurement uncertainty. The Wand Z cross- section measurements are compared in Fig.1to the NNLO fit results, after these shifts are applied to the predictions.

Also shown are the ratios of the fits with free s and with fixed s. It is apparent that the enhanced strange-quark fraction in the free s fit has no significant effect on the prediction of the ldistributions for both the Wþand W decay leptons, while it leads to an improvement in the prediction of the yZ distribution. An improvement is also observed in the description of the ratio of the (Wþþ W) to the Z boson cross sections in the fiducial phase space.

This is predicted to be 11.10 in the fit with fixed s, while

(3)

the measured value of 10:70  0:15 is almost exactly reproduced in the fit with free s, which gives a value of 10.74.

In order to check the robustness of the present result for rs, a series of cross-checks is performed. A fit without allowing an adjustment of the correlated errors yields a value of rs¼ 0:97  0:26 exp, in good agreement with Eq. (2). A fit with identical input parameters is repeated at NLO and also yields a consistent result: rs¼ 1:03  0:19 exp. If this NLO fit is performed with a massless heavy quark treatment then rs¼ 1:05  0:19 exp is ob- tained. In a separate NLO study, the constraint ðx u  x dÞ ! 0 for x ! 0 is relaxed. The x dðxÞ distribution is found to be consistent with xuðxÞ, albeit with large uncertainties ( 15% at x  0:01 and Q20). The fraction of strangeness is again consistent with unity, rs¼ 0:96  0:25 exp. Finally the data are fitted, to NNLO, with sepa- rate strange and antistrange normalizations. The resulting value of rs is consistent with unity and the ratio s=s is 0:93  0:15 exp at x ¼ 0:023 and Q2 ¼ Q20.

W, Z cross-section measurements performed at the Tevatron may potentially have sensitivity to rs similar to that of the ATLAS data. A NLO fit to the HERA with the CDF W asymmetry [31] and Z rapidity [32] data gives rs¼ 0:66  0:29 exp at a mean x of about 0.081. This is con- sistent within uncertainties with both suppressed strange- ness and with the present result. A NLO fit to the combined HERA, ATLAS, and CDF data yields rs¼ 0:95  0:17 exp.

The provision of the full differential cross sections for both Wþ, W, and Z boson production, besides the ep cross sections, is essential for the determination of xs: if the ATLAS Z cross-section data are fitted together with the ATLAS W charge asymmetry data, rather than with the separate Wþ and W cross-section measurements, a less precise result is obtained with rs¼ 0:92  0:31 exp.

In Fig. 2 the present result for rs is compared with predictions obtained from four global PDF determinations.

The CT10 (NLO) [12] determination gives a large fraction consistent with the present result. On the other hand, the MSTW08 [8] and ABKM09 [9] determinations give a much lower value of rs’ 0:5, and the NNPDF2.1 [10,11]

result of rs’ 0:25 is even lower.

The enlarged fraction of the strange-quark sea leads to a decrease of the down and up quark sea densities at the initial scale Q20, because xs, x d, and xu are tied together at low x by the precise F2 data. In compensation for the increase of xs, the x d and xu distributions are diminished by’ 10%. The total sea, x, is correspondingly enhanced by’ 8%, as illustrated in Fig.3.

The result on rs, Eq. (2), evolves to

rs¼ 1:000:07exp0:03modþ0:040:06par  0:02S0:03th (3) at Q2 ¼ M2Z and x¼ 0:013, corresponding to a value of rsð0:013; M2ZÞ ¼ 1:00þ0:090:10, which is more than twice as precise as at the initial scale Q20. Uncertainties are smaller at Q2 ¼ MZ2because the gluon splitting probability into qq pairs is flavor independent, thus reducing any initial flavor asymmetries. This also causes rsto increase from 0.5 at Q20 to a value of about 0.8 at Q2¼ MZ2 in the fixed s fit.

rs

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ABKM09 NNPDF2.1 MSTW08 CT10 (NLO) total uncertainty experimental uncertainty

ATLAS , x=0.023

= 1.9 GeV2

Q2 epWZ free s

FIG. 2 (color online). Predictions for the ratio rs¼ 0:5ðs þ

sÞ= d, at Q2¼ 1:9 GeV2, x¼ 0:023. Points: global fit results using the PDF uncertainties as quoted; bands: this analysis; inner band, experimental uncertainty; outer band, total uncertainty.

l| η

|

0 0.5 1 1.5 2 2.5

sfree/fixed

0.981 1.02

| [pb]lη/d|σd

500 550 600 650 700

L dt = 33-36 pb-1

νl

l+ + W

= 7 TeV) s Data 2010 (

stat. uncertainty)

(uncorr. sys.

s epWZ fixed

s epWZ free

ATLAS

l| η

|

0 0.5 1 1.5 2 2.5

sfree/fixed

0.981 1.02

| [pb]lη/d|σd

350 400 450 500

L dt = 33-36 pb-1

νl

l- - W

= 7 TeV) s Data 2010 (

stat. uncertainty)

(uncorr. sys.

s epWZ fixed

s epWZ free

ATLAS

Z|

|y 0 0.5 1 1.5 2 2.5 3 3.5

sfree/fixed

0.981 1.02

| [pb]Z/d|yσd

60 80 100 120 140

L dt = 33-36 pb-1

l-

l+

Z

= 7 TeV) s Data 2010 (

stat. uncertainty)

(uncorr. sys.

s epWZ fixed

s epWZ free

ATLAS

FIG. 1 (color online). Differential d=djþj (left) and d=djj (middle) cross-section measurements for W ! ‘ and d=djyZj cross-section measurement for d=djyZj (right). The error bars represent the statistical and uncorrelated systematic uncertainties added in quadrature while the theoretical curves are adjusted to the correlated error shifts (see text). The NNLO fit results with free and fixed strangeness are also indicated, and their ratios are shown in the panels below the cross-section plots.

(4)

In summary, a NNLO pQCD analysis is presented of the first differential ATLAS W, Z pp cross sections with HERA ep data. The W, Z measurements introduce a novel sensitivity to the strange-quark density at x 0:01, which is exploited here. The ratio of the strange-to-down sea quark density is found to be rs¼ 1:00þ0:250:28, at Bjorken x¼ 0:023 and the initial scale of the QCD fit Q20 ¼ 1:9 GeV2. This is consistent with the prediction that the light quark sea at low x is flavor symmetric. A consequence of this initial observation is that the total sea, x ¼ 2xð u þ dþ sÞ, is enhanced by about 8%, as compared to the result when the strange quark is suppressed to half the magnitude of the down sea quark.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We ac- knowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil;

NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3- CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway;

MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom;

DOE and NSF, United States of America. The crucial com- puting support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[1] U. Baur, F. Halzen, S. Keller, M. L. Mangano, and K.

Riesselmann,Phys. Lett. B 318, 544 (1993).

[2] M. Krasny, F. Dydak, F. Fayette, W. Placzek, and A.

Siodmok,Eur. Phys. J. C 69, 379 (2010).

[3] E. Farhi and R. L. Jaffe,Phys. Rev. D 30, 2379 (1984).

[4] R. Gandhi, C. Quigg, M. H. Reno, and I. Sarcevic,Phys.

Rev. D 58, 093009 (1998).

[5] F. D. Aaron et al. (H1 Collaboration and ZEUS Collaboration),J. High Energy Phys. 01 (2010) 109.

[6] D. Mason et al. (NuTeV Collaboration),Phys. Rev. Lett.

99, 192001 (2007).

[7] M. Goncharov et al. (CCFR Collaboration and NuTeV Collaboration),Phys. Rev. D 64, 112006 (2001).

[8] A. Martin, W. Stirling, R. Thorne, and G. Watt,Eur. Phys.

J. C 63, 189 (2009).

[9] S. Alekhin, J. Blumlein, S. Klein, and S. Moch,Phys. Rev.

D 81, 014032 (2010).

[10] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. Latorre, A.

Piccione, J. Rojo, and M. Ubiali,Nucl. Phys. B809, 1 (2009).

[11] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. Latorre, J. Rojo, and M. Ubiali,Nucl. Phys.

B855, 153 (2012).

[12] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. Nadolsky, J.

Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010).

[13] A. Airapetian et al. (HERMES Collaboration),Phys. Lett.

B 666, 446 (2008).

[14] G. Aad et al. (ATLAS Collaboration),Phys. Rev. D 85, 072004 (2012).

[15] K. Kovarik, T. Stavreva, A. Kusina, T. Jezo, F. Olness, I.

Schienbein, and J. Yu, Nucl. Phys. B, Proc. Suppl. 222- 224, 52 (2012).

[16] P. Nadolsky, Report No. SMU-HEP-09-21, 2006 (unpub- lished).

[17] W. van Neerven and E. Zijlstra,Nucl. Phys. B382, 11 (1992).

[18] S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M.

Grazzini,Phys. Rev. Lett. 103, 082001 (2009).

[19] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello, Phys. Rev. D 69, 094008 (2004).

[20] ‘‘HERAFITTER,’’http://projects.hepforge.org/herafitter.

[21] F. Aaron et al. (H1 Collaboration),Eur. Phys. J. C 64, 561 (2009).

[22] M. Botje,Comput. Phys. Commun. 182, 490 (2011).

[23] R. S. Thorne and R. G. Roberts,Phys. Rev. D 57, 6871 (1998).

[24] R. S. Thorne,Phys. Rev. D 73, 054019 (2006).

[25] T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam, F. Siegert, P. Starovoitov, and M. Sutton, Eur. Phys. J. C 66, 503 (2010).

[26] J. M. Campbell and R. K. Ellis,Nucl. Phys. B, Proc. Suppl.

205–206, 10 (2010).

x

10-3 10-2 10-1

)s+d+u = 2x(Σx

0 0.5 1 1.5 2

2.5 Q2 = 1.9 GeV2

s epWZ fixed

s epWZ free

ATLAS

FIG. 3 (color online). Distribution of the light sea quarks, x ¼ 2xð u þ dþ sÞ, in the NNLO analysis of HERA and ATLAS data with a fixed fraction of strangeness (lower green curve) and with a fitted fraction of about unity (upper blue curve). The bands represent the experimental uncertainties.

(5)

[27] F. Aaron et al. (H1 Collaboration),Eur. Phys. J. C 63, 625 (2009).

[28] C. Adloff et al. (H1 Collaboration),Eur. Phys. J. C 30, 1 (2003).

[29] S. Chekanov et al. (ZEUS Collaboration), Phys. Rev. D 67, 012007 (2003).

[30] A. Martin, W. Stirling, R. Thorne, and G. Watt,Eur. Phys.

J. C 70, 51 (2010).

[31] T. A. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett.

102, 181801 (2009).

[32] T. A. Aaltonen et al. (CDF Collaboration),Phys. Lett. B 692, 232 (2010).

G. Aad,47B. Abbott,110J. Abdallah,11A. A. Abdelalim,48A. Abdesselam,117O. Abdinov,10B. Abi,111M. Abolins,87 O. S. AbouZeid,157H. Abramowicz,152H. Abreu,114E. Acerbi,88a,88bB. S. Acharya,163a,163bL. Adamczyk,37 D. L. Adams,24T. N. Addy,55J. Adelman,174M. Aderholz,98S. Adomeit,97P. Adragna,74T. Adye,128S. Aefsky,22

J. A. Aguilar-Saavedra,123b,bM. Aharrouche,80S. P. Ahlen,21F. Ahles,47A. Ahmad,147M. Ahsan,40 G. Aielli,132a,132bT. Akdogan,18aT. P. A. A˚ kesson,78G. Akimoto,154A. V. Akimov,93A. Akiyama,66M. S. Alam,1

M. A. Alam,75J. Albert,168S. Albrand,54M. Aleksa,29I. N. Aleksandrov,64F. Alessandria,88aC. Alexa,25a G. Alexander,152G. Alexandre,48T. Alexopoulos,9M. Alhroob,20M. Aliev,15G. Alimonti,88aJ. Alison,119 M. Aliyev,10B. M. M. Allbrooke,17P. P. Allport,72S. E. Allwood-Spiers,52J. Almond,81A. Aloisio,101a,101b R. Alon,170A. Alonso,78B. Alvarez Gonzalez,87M. G. Alviggi,101a,101bK. Amako,65P. Amaral,29C. Amelung,22 V. V. Ammosov,127A. Amorim,123a,cG. Amoro´s,166N. Amram,152C. Anastopoulos,29L. S. Ancu,16N. Andari,114 T. Andeen,34C. F. Anders,20G. Anders,57aK. J. Anderson,30A. Andreazza,88a,88bV. Andrei,57aM-L. Andrieux,54

X. S. Anduaga,69A. Angerami,34F. Anghinolfi,29A. Anisenkov,106N. Anjos,123aA. Annovi,46A. Antonaki,8 M. Antonelli,46A. Antonov,95J. Antos,143bF. Anulli,131aS. Aoun,82L. Aperio Bella,4R. Apolle,117,dG. Arabidze,87

I. Aracena,142Y. Arai,65A. T. H. Arce,44S. Arfaoui,147J-F. Arguin,14E. Arik,18a,aM. Arik,18aA. J. Armbruster,86 O. Arnaez,80C. Arnault,114A. Artamonov,94G. Artoni,131a,131bD. Arutinov,20S. Asai,154R. Asfandiyarov,171

S. Ask,27B. A˚ sman,145a,145bL. Asquith,5K. Assamagan,24A. Astbury,168A. Astvatsatourov,51B. Aubert,4 E. Auge,114K. Augsten,126M. Aurousseau,144aG. Avolio,162R. Avramidou,9D. Axen,167C. Ay,53G. Azuelos,92,e

Y. Azuma,154M. A. Baak,29G. Baccaglioni,88aC. Bacci,133a,133bA. M. Bach,14H. Bachacou,135K. Bachas,29 M. Backes,48M. Backhaus,20E. Badescu,25aP. Bagnaia,131a,131bS. Bahinipati,2Y. Bai,32aD. C. Bailey,157T. Bain,157

J. T. Baines,128O. K. Baker,174M. D. Baker,24S. Baker,76E. Banas,38P. Banerjee,92Sw. Banerjee,171D. Banfi,29 A. Bangert,149V. Bansal,168H. S. Bansil,17L. Barak,170S. P. Baranov,93A. Barashkou,64A. Barbaro Galtieri,14

T. Barber,47E. L. Barberio,85D. Barberis,49a,49bM. Barbero,20D. Y. Bardin,64T. Barillari,98M. Barisonzi,173 T. Barklow,142N. Barlow,27B. M. Barnett,128R. M. Barnett,14A. Baroncelli,133aG. Barone,48A. J. Barr,117 F. Barreiro,79J. Barreiro Guimara˜es da Costa,56P. Barrillon,114R. Bartoldus,142A. E. Barton,70V. Bartsch,148 R. L. Bates,52L. Batkova,143aJ. R. Batley,27A. Battaglia,16M. Battistin,29F. Bauer,135H. S. Bawa,142,fS. Beale,97

T. Beau,77P. H. Beauchemin,160R. Beccherle,49aP. Bechtle,20H. P. Beck,16S. Becker,97M. Beckingham,137 K. H. Becks,173A. J. Beddall,18cA. Beddall,18cS. Bedikian,174V. A. Bednyakov,64C. P. Bee,82M. Begel,24

S. Behar Harpaz,151P. K. Behera,62M. Beimforde,98C. Belanger-Champagne,84P. J. Bell,48W. H. Bell,48 G. Bella,152L. Bellagamba,19aF. Bellina,29M. Bellomo,29A. Belloni,56O. Beloborodova,106,gK. Belotskiy,95 O. Beltramello,29S. Ben Ami,151O. Benary,152D. Benchekroun,134aC. Benchouk,82M. Bendel,80N. Benekos,164 Y. Benhammou,152E. Benhar Noccioli,48J. A. Benitez Garcia,158bD. P. Benjamin,44M. Benoit,114J. R. Bensinger,22 K. Benslama,129S. Bentvelsen,104D. Berge,29E. Bergeaas Kuutmann,41N. Berger,4F. Berghaus,168E. Berglund,104 J. Beringer,14P. Bernat,76R. Bernhard,47C. Bernius,24T. Berry,75C. Bertella,82A. Bertin,19a,19bF. Bertinelli,29 F. Bertolucci,121a,121bM. I. Besana,88a,88bN. Besson,135S. Bethke,98W. Bhimji,45R. M. Bianchi,29M. Bianco,71a,71b

O. Biebel,97S. P. Bieniek,76K. Bierwagen,53J. Biesiada,14M. Biglietti,133aH. Bilokon,46M. Bindi,19a,19b S. Binet,114A. Bingul,18cC. Bini,131a,131bC. Biscarat,176U. Bitenc,47K. M. Black,21R. E. Blair,5J.-B. Blanchard,135

G. Blanchot,29T. Blazek,143aC. Blocker,22J. Blocki,38A. Blondel,48W. Blum,80U. Blumenschein,53 G. J. Bobbink,104V. B. Bobrovnikov,106S. S. Bocchetta,78A. Bocci,44C. R. Boddy,117M. Boehler,41J. Boek,173

N. Boelaert,35J. A. Bogaerts,29A. Bogdanchikov,106A. Bogouch,89,aC. Bohm,145aV. Boisvert,75T. Bold,37 V. Boldea,25aN. M. Bolnet,135M. Bona,74V. G. Bondarenko,95M. Bondioli,162M. Boonekamp,135C. N. Booth,138

S. Bordoni,77C. Borer,16A. Borisov,127G. Borissov,70I. Borjanovic,12aM. Borri,81S. Borroni,86

V. Bortolotto,133a,133bK. Bos,104D. Boscherini,19aM. Bosman,11H. Boterenbrood,104D. Botterill,128J. Bouchami,92 J. Boudreau,122E. V. Bouhova-Thacker,70D. Boumediene,33C. Bourdarios,114N. Bousson,82A. Boveia,30J. Boyd,29

I. R. Boyko,64N. I. Bozhko,127I. Bozovic-Jelisavcic,12bJ. Bracinik,17A. Braem,29P. Branchini,133a

(6)

G. W. Brandenburg,56A. Brandt,7G. Brandt,117O. Brandt,53U. Bratzler,155B. Brau,83J. E. Brau,113H. M. Braun,173 B. Brelier,157J. Bremer,29R. Brenner,165S. Bressler,170D. Britton,52F. M. Brochu,27I. Brock,20R. Brock,87 T. J. Brodbeck,70E. Brodet,152F. Broggi,88aC. Bromberg,87J. Bronner,98G. Brooijmans,34W. K. Brooks,31b G. Brown,81H. Brown,7P. A. Bruckman de Renstrom,38D. Bruncko,143bR. Bruneliere,47S. Brunet,60A. Bruni,19a

G. Bruni,19aM. Bruschi,19aT. Buanes,13Q. Buat,54F. Bucci,48J. Buchanan,117N. J. Buchanan,2P. Buchholz,140 R. M. Buckingham,117A. G. Buckley,45S. I. Buda,25aI. A. Budagov,64B. Budick,107V. Bu¨scher,80L. Bugge,116

O. Bulekov,95M. Bunse,42T. Buran,116H. Burckhart,29S. Burdin,72T. Burgess,13S. Burke,128E. Busato,33 P. Bussey,52C. P. Buszello,165F. Butin,29B. Butler,142J. M. Butler,21C. M. Buttar,52J. M. Butterworth,76 W. Buttinger,27S. Cabrera Urba´n,166D. Caforio,19a,19bO. Cakir,3aP. Calafiura,14G. Calderini,77P. Calfayan,97 R. Calkins,105L. P. Caloba,23aR. Caloi,131a,131bD. Calvet,33S. Calvet,33R. Camacho Toro,33P. Camarri,132a,132b

M. Cambiaghi,118a,118bD. Cameron,116L. M. Caminada,14S. Campana,29M. Campanelli,76V. Canale,101a,101b F. Canelli,30,iiA. Canepa,158aJ. Cantero,79L. Capasso,101a,101bM. D. M. Capeans Garrido,29I. Caprini,25a M. Caprini,25aD. Capriotti,98M. Capua,36a,36bR. Caputo,80C. Caramarcu,24R. Cardarelli,132aT. Carli,29 G. Carlino,101aL. Carminati,88a,88bB. Caron,84S. Caron,103G. D. Carrillo Montoya,171A. A. Carter,74J. R. Carter,27

J. Carvalho,123a,hD. Casadei,107M. P. Casado,11M. Cascella,121a,121bC. Caso,49a,49b,a

A. M. Castaneda Hernandez,171E. Castaneda-Miranda,171V. Castillo Gimenez,166N. F. Castro,123aG. Cataldi,71a F. Cataneo,29A. Catinaccio,29J. R. Catmore,29A. Cattai,29G. Cattani,132a,132bS. Caughron,87D. Cauz,163a,163c

P. Cavalleri,77D. Cavalli,88aM. Cavalli-Sforza,11V. Cavasinni,121a,121bF. Ceradini,133a,133bA. S. Cerqueira,23b A. Cerri,29L. Cerrito,74F. Cerutti,46S. A. Cetin,18bF. Cevenini,101a,101bA. Chafaq,134aD. Chakraborty,105K. Chan,2

B. Chapleau,84J. D. Chapman,27J. W. Chapman,86E. Chareyre,77D. G. Charlton,17V. Chavda,81

C. A. Chavez Barajas,29S. Cheatham,84S. Chekanov,5S. V. Chekulaev,158aG. A. Chelkov,64M. A. Chelstowska,103 C. Chen,63H. Chen,24S. Chen,32cT. Chen,32cX. Chen,171S. Cheng,32aA. Cheplakov,64V. F. Chepurnov,64 R. Cherkaoui El Moursli,134eV. Chernyatin,24E. Cheu,6S. L. Cheung,157L. Chevalier,135G. Chiefari,101a,101b

L. Chikovani,50aJ. T. Childers,29A. Chilingarov,70G. Chiodini,71aA. S. Chisholm,17M. V. Chizhov,64 G. Choudalakis,30S. Chouridou,136I. A. Christidi,76A. Christov,47D. Chromek-Burckhart,29M. L. Chu,150 J. Chudoba,124G. Ciapetti,131a,131bK. Ciba,37A. K. Ciftci,3aR. Ciftci,3aD. Cinca,33V. Cindro,73M. D. Ciobotaru,162

C. Ciocca,19aA. Ciocio,14M. Cirilli,86M. Citterio,88aM. Ciubancan,25aA. Clark,48P. J. Clark,45W. Cleland,122 J. C. Clemens,82B. Clement,54C. Clement,145a,145bR. W. Clifft,128Y. Coadou,82M. Cobal,163a,163cA. Coccaro,171 J. Cochran,63P. Coe,117J. G. Cogan,142J. Coggeshall,164E. Cogneras,176J. Colas,4A. P. Colijn,104N. J. Collins,17 C. Collins-Tooth,52J. Collot,54G. Colon,83P. Conde Muin˜o,123aE. Coniavitis,117M. C. Conidi,11M. Consonni,103 V. Consorti,47S. Constantinescu,25aC. Conta,118a,118bF. Conventi,101a,iJ. Cook,29M. Cooke,14B. D. Cooper,76

A. M. Cooper-Sarkar,117K. Copic,14T. Cornelissen,173M. Corradi,19aF. Corriveau,84,jA. Cortes-Gonzalez,164 G. Cortiana,98G. Costa,88aM. J. Costa,166D. Costanzo,138T. Costin,30D. Coˆte´,29R. Coura Torres,23a L. Courneyea,168G. Cowan,75C. Cowden,27B. E. Cox,81K. Cranmer,107F. Crescioli,121a,121bM. Cristinziani,20

G. Crosetti,36a,36bR. Crupi,71a,71bS. Cre´pe´-Renaudin,54C.-M. Cuciuc,25aC. Cuenca Almenar,174 T. Cuhadar Donszelmann,138M. Curatolo,46C. J. Curtis,17C. Cuthbert,149P. Cwetanski,60H. Czirr,140 P. Czodrowski,43Z. Czyczula,174S. D’Auria,52M. D’Onofrio,72A. D’Orazio,131a,131bP. V. M. Da Silva,23a

C. Da Via,81W. Dabrowski,37T. Dai,86C. Dallapiccola,83M. Dam,35M. Dameri,49a,49bD. S. Damiani,136 H. O. Danielsson,29D. Dannheim,98V. Dao,48G. Darbo,49aG. L. Darlea,25bW. Davey,20T. Davidek,125 N. Davidson,85R. Davidson,70E. Davies,117,dM. Davies,92A. R. Davison,76Y. Davygora,57aE. Dawe,141 I. Dawson,138J. W. Dawson,5,aR. K. Daya-Ishmukhametova,22K. De,7R. de Asmundis,101aS. De Castro,19a,19b P. E. De Castro Faria Salgado,24S. De Cecco,77J. de Graat,97N. De Groot,103P. de Jong,104C. De La Taille,114

H. De la Torre,79B. De Lotto,163a,163cL. de Mora,70L. De Nooij,104D. De Pedis,131aA. De Salvo,131a U. De Sanctis,163a,163cA. De Santo,148J. B. De Vivie De Regie,114S. Dean,76W. J. Dearnaley,70R. Debbe,24

C. Debenedetti,45D. V. Dedovich,64J. Degenhardt,119M. Dehchar,117C. Del Papa,163a,163cJ. Del Peso,79 T. Del Prete,121a,121bT. Delemontex,54M. Deliyergiyev,73A. Dell’Acqua,29L. Dell’Asta,21M. Della Pietra,101a,i D. della Volpe,101a,101bM. Delmastro,4N. Delruelle,29P. A. Delsart,54C. Deluca,147S. Demers,174M. Demichev,64

B. Demirkoz,11,kJ. Deng,162S. P. Denisov,127D. Derendarz,38J. E. Derkaoui,134dF. Derue,77P. Dervan,72 K. Desch,20E. Devetak,147P. O. Deviveiros,104A. Dewhurst,128B. DeWilde,147S. Dhaliwal,157R. Dhullipudi,24,l A. Di Ciaccio,132a,132bL. Di Ciaccio,4A. Di Girolamo,29B. Di Girolamo,29S. Di Luise,133a,133bA. Di Mattia,171 B. Di Micco,29R. Di Nardo,46A. Di Simone,132a,132bR. Di Sipio,19a,19bM. A. Diaz,31aF. Diblen,18cE. B. Diehl,86

(7)

J. Dietrich,41T. A. Dietzsch,57aS. Diglio,85K. Dindar Yagci,39J. Dingfelder,20C. Dionisi,131a,131bP. Dita,25a S. Dita,25aF. Dittus,29F. Djama,82T. Djobava,50bM. A. B. do Vale,23cA. Do Valle Wemans,123aT. K. O. Doan,4

M. Dobbs,84R. Dobinson,29,aD. Dobos,29E. Dobson,29,mJ. Dodd,34C. Doglioni,48T. Doherty,52Y. Doi,65,a J. Dolejsi,125I. Dolenc,73Z. Dolezal,125B. A. Dolgoshein,95,aT. Dohmae,154M. Donadelli,23dM. Donega,119 J. Donini,33J. Dopke,29A. Doria,101aA. Dos Anjos,171M. Dosil,11A. Dotti,121a,121bM. T. Dova,69J. D. Dowell,17

A. D. Doxiadis,104A. T. Doyle,52Z. Drasal,125J. Drees,173N. Dressnandt,119H. Drevermann,29C. Driouichi,35 M. Dris,9J. Dubbert,98S. Dube,14E. Duchovni,170G. Duckeck,97A. Dudarev,29F. Dudziak,63M. Du¨hrssen,29 I. P. Duerdoth,81L. Duflot,114M-A. Dufour,84M. Dunford,29H. Duran Yildiz,3aR. Duxfield,138M. Dwuznik,37

F. Dydak,29M. Du¨ren,51W. L. Ebenstein,44J. Ebke,97S. Eckweiler,80K. Edmonds,80C. A. Edwards,75 N. C. Edwards,52W. Ehrenfeld,41T. Ehrich,98T. Eifert,142G. Eigen,13K. Einsweiler,14E. Eisenhandler,74 T. Ekelof,165M. El Kacimi,134cM. Ellert,165S. Elles,4F. Ellinghaus,80K. Ellis,74N. Ellis,29J. Elmsheuser,97 M. Elsing,29D. Emeliyanov,128R. Engelmann,147A. Engl,97B. Epp,61A. Eppig,86J. Erdmann,53A. Ereditato,16

D. Eriksson,145aJ. Ernst,1M. Ernst,24J. Ernwein,135D. Errede,164S. Errede,164E. Ertel,80M. Escalier,114 C. Escobar,122X. Espinal Curull,11B. Esposito,46F. Etienne,82A. I. Etienvre,135E. Etzion,152D. Evangelakou,53

H. Evans,60L. Fabbri,19a,19bC. Fabre,29R. M. Fakhrutdinov,127S. Falciano,131aY. Fang,171M. Fanti,88a,88b A. Farbin,7A. Farilla,133aJ. Farley,147T. Farooque,157S. M. Farrington,117P. Farthouat,29P. Fassnacht,29 D. Fassouliotis,8B. Fatholahzadeh,157A. Favareto,88a,88bL. Fayard,114S. Fazio,36a,36bR. Febbraro,33P. Federic,143a

O. L. Fedin,120W. Fedorko,87M. Fehling-Kaschek,47L. Feligioni,82D. Fellmann,5C. Feng,32dE. J. Feng,30 A. B. Fenyuk,127J. Ferencei,143bJ. Ferland,92W. Fernando,108S. Ferrag,52J. Ferrando,52V. Ferrara,41A. Ferrari,165

P. Ferrari,104R. Ferrari,118aD. E. Ferreira de Lima,52A. Ferrer,166M. L. Ferrer,46D. Ferrere,48C. Ferretti,86 A. Ferretto Parodi,49a,49bM. Fiascaris,30F. Fiedler,80A. Filipcˇicˇ,73A. Filippas,9F. Filthaut,103M. Fincke-Keeler,168 M. C. N. Fiolhais,123a,hL. Fiorini,166A. Firan,39G. Fischer,41P. Fischer,20M. J. Fisher,108M. Flechl,47I. Fleck,140

J. Fleckner,80P. Fleischmann,172S. Fleischmann,173T. Flick,173A. Floderus,78L. R. Flores Castillo,171 M. J. Flowerdew,98M. Fokitis,9T. Fonseca Martin,16D. A. Forbush,137A. Formica,135A. Forti,81D. Fortin,158a

J. M. Foster,81D. Fournier,114A. Foussat,29A. J. Fowler,44K. Fowler,136H. Fox,70P. Francavilla,11 S. Franchino,118a,118bD. Francis,29T. Frank,170M. Franklin,56S. Franz,29M. Fraternali,118a,118bS. Fratina,119 S. T. French,27F. Friedrich,43R. Froeschl,29D. Froidevaux,29J. A. Frost,27C. Fukunaga,155E. Fullana Torregrosa,29 J. Fuster,166C. Gabaldon,29O. Gabizon,170T. Gadfort,24S. Gadomski,48G. Gagliardi,49a,49bP. Gagnon,60C. Galea,97

E. J. Gallas,117V. Gallo,16B. J. Gallop,128P. Gallus,124K. K. Gan,108Y. S. Gao,142,fV. A. Gapienko,127 A. Gaponenko,14F. Garberson,174M. Garcia-Sciveres,14C. Garcı´a,166J. E. Garcı´a Navarro,166R. W. Gardner,30 N. Garelli,29H. Garitaonandia,104V. Garonne,29J. Garvey,17C. Gatti,46G. Gaudio,118aB. Gaur,140L. Gauthier,135 I. L. Gavrilenko,93C. Gay,167G. Gaycken,20J-C. Gayde,29E. N. Gazis,9P. Ge,32dC. N. P. Gee,128D. A. A. Geerts,104

Ch. Geich-Gimbel,20K. Gellerstedt,145a,145bC. Gemme,49aA. Gemmell,52M. H. Genest,54S. Gentile,131a,131b M. George,53S. George,75P. Gerlach,173A. Gershon,152C. Geweniger,57aH. Ghazlane,134bN. Ghodbane,33 B. Giacobbe,19aS. Giagu,131a,131bV. Giakoumopoulou,8V. Giangiobbe,11F. Gianotti,29B. Gibbard,24A. Gibson,157 S. M. Gibson,29L. M. Gilbert,117V. Gilewsky,90D. Gillberg,28A. R. Gillman,128D. M. Gingrich,2,eJ. Ginzburg,152 N. Giokaris,8M. P. Giordani,163cR. Giordano,101a,101bF. M. Giorgi,15P. Giovannini,98P. F. Giraud,135D. Giugni,88a M. Giunta,92P. Giusti,19aB. K. Gjelsten,116L. K. Gladilin,96C. Glasman,79J. Glatzer,47A. Glazov,41K. W. Glitza,173

G. L. Glonti,64J. R. Goddard,74J. Godfrey,141J. Godlewski,29M. Goebel,41T. Go¨pfert,43C. Goeringer,80 C. Go¨ssling,42T. Go¨ttfert,98S. Goldfarb,86T. Golling,174A. Gomes,123a,cL. S. Gomez Fajardo,41R. Gonc¸alo,75

J. Goncalves Pinto Firmino Da Costa,41L. Gonella,20A. Gonidec,29S. Gonzalez,171S. Gonza´lez de la Hoz,166 G. Gonzalez Parra,11M. L. Gonzalez Silva,26S. Gonzalez-Sevilla,48J. J. Goodson,147L. Goossens,29 P. A. Gorbounov,94H. A. Gordon,24I. Gorelov,102G. Gorfine,173B. Gorini,29E. Gorini,71a,71bA. Gorisˇek,73

E. Gornicki,38S. A. Gorokhov,127V. N. Goryachev,127B. Gosdzik,41M. Gosselink,104M. I. Gostkin,64 I. Gough Eschrich,162M. Gouighri,134aD. Goujdami,134cM. P. Goulette,48A. G. Goussiou,137C. Goy,4 S. Gozpinar,22I. Grabowska-Bold,37P. Grafstro¨m,29K-J. Grahn,41F. Grancagnolo,71aS. Grancagnolo,15 V. Grassi,147V. Gratchev,120N. Grau,34H. M. Gray,29J. A. Gray,147E. Graziani,133aO. G. Grebenyuk,120 T. Greenshaw,72Z. D. Greenwood,24,lK. Gregersen,35I. M. Gregor,41P. Grenier,142J. Griffiths,137N. Grigalashvili,64

A. A. Grillo,136S. Grinstein,11Y. V. Grishkevich,96J.-F. Grivaz,114M. Groh,98E. Gross,170J. Grosse-Knetter,53 J. Groth-Jensen,170K. Grybel,140V. J. Guarino,5D. Guest,174C. Guicheney,33A. Guida,71a,71bS. Guindon,53 H. Guler,84,nJ. Gunther,124B. Guo,157J. Guo,34A. Gupta,30Y. Gusakov,64V. N. Gushchin,127P. Gutierrez,110

Cytaty

Powiązane dokumenty

We specify parameters which enter formula (11) for Born spin amplitudes used for: (i) actual MC events generation, 8 (ii) the EW LO α(0) scheme, (iii) effective Born

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,