• Nie Znaleziono Wyników

Observation of a new $\chi_{b}$ state in radiative transitions to $\Upsilon$ (1S) and $\Upsilon$ (2S) at ATLAS

N/A
N/A
Protected

Academic year: 2022

Share "Observation of a new $\chi_{b}$ state in radiative transitions to $\Upsilon$ (1S) and $\Upsilon$ (2S) at ATLAS"

Copied!
17
0
0

Pełen tekst

(1)

Observation of a New 

b

State in Radiative Transitions to ð1SÞ and ð2SÞ at ATLAS

G. Aad et al.*

(ATLAS Collaboration)

(Received 21 December 2011; revised manuscript received 18 February 2012; published 9 April 2012) ThebðnPÞ quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at ffiffiffis

p ¼ 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4:4 fb1, these states are reconstructed through their radiative decays to ð1S; 2SÞ with

! þ. In addition to the mass peaks corresponding to the decay modesbð1P; 2PÞ ! ð1SÞ, a new structure centered at a mass of 10:530  0:005ðstatÞ  0:009ðsystÞ GeV is also observed, in both the

ð1SÞ and ð2SÞ decay modes. This structure is interpreted as the bð3PÞ system.

DOI:10.1103/PhysRevLett.108.152001 PACS numbers: 14.40.Pq, 12.38.t, 13.20.Gd, 14.65.Fy

Measurements of the properties of heavy quark-antiquark bound states, or quarkonia, provide a unique insight into the nature of quantum chromodynamics close to the strong decay threshold. For theb b system, the quarkonium states with parallel quark spins (s ¼ 1) include the S-wave  and the P-wave b states, where the latter each comprise a closely spaced triplet ofJ ¼ 0; 1; 2 spin states: b0, b1, andb2. Thebð1PÞ and bð2PÞ, with spin-weighted mass barycenters of 9.90 and 10.26 GeV, respectively, can be readily produced in the radiative decays of ð2SÞ and

ð3SÞ and have been studied experimentally [1].

In this Letter, b quarkonium states are reconstructed with the ATLAS detector through the radiative decay modes bðnPÞ ! ð1SÞ and bðnPÞ ! ð2SÞ, in which ð1S; 2SÞ ! þand the photon is reconstructed either through conversion toeþeor by direct calorimetric measurement. Previous experiments have measured the

bð1PÞ and bð2PÞ through these decay modes [2]. The

bð3PÞ state has not previously been observed. It is pre- dicted to have an average mass of approximately 10.52 GeV, with hyperfine mass splitting between the triplet states of 10–20 MeV [3,4].

The ATLAS detector [5] is a general-purpose particle physics detector with a forward-backward symmetric cy- lindrical geometry and near 4 coverage in solid angle.

The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin super- conducting solenoid providing a 2 T magnetic field and by high-granularity liquid-argon sampling electromagnetic calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end cap and forward regions are instrumented with

liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of a system of precision tracking chambers and detectors for triggering, inside a toroidal magnetic field.

The data sample used for this measurement was re- corded by the ATLAS experiment during the 2011 LHC proton-proton collision run at a center-of-mass energyffiffiffi ps

¼ 7 TeV. The integrated luminosity of the data sam- ple, which includes only data-taking periods where all relevant detector subsystems were operational, is 4:4 fb1. A set of muon triggers designed to select events containing muon pairs or single high transverse momen- tum muons was used to collect the data sample.

In this analysis, each muon candidate must satisfy stan- dard muon quality requirements [6]. It must have a track, reconstructed in the muon spectrometer, combined with a track reconstructed in the ID with transverse momentum pT> 4 GeV and pseudorapidity jj < 2:3. The dimuon selection requires a pair of oppositely charged muons, which are fitted to a common vertex. A very loose vertex quality requirement [2 per degree of freedom (d.o.f.)

<20] is used and no mass or momentum constraints are applied to the fit. The dimuon candidate is also required to have pT> 12 GeV and rapidity jyj < 2:0. The invariant mass distribution,m, of dimuon candidates is shown in Fig.1. Those candidates with masses in the ranges 9:25 <

m< 9:65 GeV and 9:80 < m< 10:10 GeV are se- lected as ð1SÞ ! þ and ð2SÞ ! þ candi- dates, respectively. The asymmetric mass window (evident from Fig. 1) for ð2SÞ candidates is chosen in order to reduce contamination from the ð3SÞ peak and continuum background contributions.

The reconstruction of photons in ATLAS is described in Ref. [7]. Further details related to this particular analysis are described below.

Converted photons are reconstructed from two oppo- sitely charged ID tracks intersecting at a conversion vertex, with the opening angle between the two tracks at this vertex constrained to be zero. For tracks with signals in

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

the transition radiation tracker, the transition radiation should be consistent with an electron hypothesis. In order to be reliably reconstructed, each conversion electron track must have a minimum transverse momentum of 500 MeV.

It is also required to have at least four silicon detector hits and not to be associated to either of the two muon candi- dates. To reduce background contamination, the conver- sion candidate vertex is required to be at least 40 mm from the beam axis and have a vertex2 probability of greater than 0.01. The converted photon impact parameter with respect to the dimuon vertex is required to be less than 2 mm.

Electromagnetic calorimeter energy deposits not matched to any track are classified as unconverted photons.

This analysis uses the ‘‘loose’’ photon selection described in Ref. [7], with a minimum photon transverse energy of 2.5 GeV. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower be consistent with the narrow shape expected for an electromagnetic shower.

To check that an unconverted photon originates from the same vertex as the , and to improve the mass resolution of the reconstructedb, the polar angle of the photon is corrected using the procedure described in Ref. [8]. The corrected polar angle is determined using the measurement of the photon direction from the longitudinal segmentation of the calorimeter and the constraint from the dimuon vertex position. Photons incompatible with having origi- nated from the dimuon vertex are rejected by means of a loose cut on the fit result (2 per d.o.f.<200).

The converted (unconverted) photon candidates are re- quired to be withinjj < 2:30 (2.37). Unconverted photons must also be outside the transition region between the barrel and the end cap calorimeters, 1:37 < jj < 1:52.

The b candidates are formed by associating a recon- structed ! þ candidate with a reconstructed

photon. The invariant mass difference m ¼ mðþÞmðþÞ is calculated to minimize the effect of ! þmass resolution. In order to compare the m distributions of both bðnPÞ ! ð1SÞ and

bðnPÞ ! ð2SÞ decays, the variable ~mk¼ m þ mðkSÞ is defined, where mðkSÞ are the world average masses [9] of the ðkSÞ states. Requirements of pTðþÞ > 20 GeV and pTðþÞ > 12 GeV are ap- plied to  candidates with unconverted and converted photon candidates, respectively. These thresholds are

) [GeV]

µ-

µ+

m(

8.5 9.0 9.5 10.0 10.5 11.0

/ (50 MeV)3 10× Dimuon candidates

0 10 20 30 40 50 60 70

80 ATLAS

A B

L dt = 4.4 fb-1

Data

(1S) selection A -

(2S) selection B -

FIG. 1 (color online). The invariant mass of selected dimuon candidates. The shaded regionsA and B show the selections for

ð1SÞ and ð2SÞ candidates, respectively.

[GeV]

) + m(1S) + -

) - m(

-

m( +

9.6 9.8 10.0 10.2 10.4 10.6 10.8

Candidates / (25 MeV)-+

0 10 20 30 40 50 60

70 ATLAS

Ldt = 4.4 fb-1

Unconverted Photons

Data Fit Background

(a)

(b)

[GeV]

S) k

) + m( + -

) - m(

-

m( +

9.6 9.8 10.0 10.2 10.4 10.6 10.8

Candidates / (25 MeV)

0 20 40 60 80 100 120 140 160 180 200

220 ATLAS Fit to (1S) (2S) Fit to

(1S) Background to

(2S) Background to (1S)

Data:

(2S) Data:

Converted Photons Ldt = 4.4 fb-1

FIG. 2 (color online). (a) The mass distribution of b !

ð1SÞ candidates for unconverted photons reconstructed from energy deposits in the electromagnetic calorimeter (2fit=d:o:f: ¼ 0:85). (b) The mass distributions of b! ðkSÞ (k ¼ 1, 2) candidates formed using photons which have converted and been reconstructed in the ID (2fit=d:o:f: ¼ 1:3). Data are shown before the correction for the energy loss from the photon conversion electrons due to bremsstrahlung and other processes.

The data for decays of b! ð1SÞ and b! ð2SÞ are plotted using circles and triangles, respectively. Solid lines represent the total fit result for each mass window. The dashed lines represent the background components only.

(3)

chosen in order to optimize signal significance in the

bð1P; 2PÞ peaks.

Figure 2(a) shows the ~m1 distribution for unconverted photons and Fig.2(b) shows the ~m1 and ~m2 distributions for converted photons. In addition to the expected peaks for

bð1P; 2PÞ ! ð1S; 2SÞ, structures are observed at an invariant mass of approximately 10.5 GeV. These addi- tional structures are interpreted as the radiative decays of the previously unobserved bð3PÞ states, bð3PÞ !

ð1SÞ and bð3PÞ ! ð2SÞ.

Separate fits are performed to the ~mkdistributions of the selectedþ candidates reconstructed from converted and unconverted photons to extract mass information from the observed bð3PÞ signals. The higher threshold for unconverted photons (2.5 GeV, versus 1 GeV for converted photons) prevents the reconstruction of the soft photons frombð2P; 3PÞ decays into ð2SÞ.

An unbinned extended maximum likelihood fit is per- formed to the ~m1¼ m þ mð1SÞ distribution of the se- lected unconvertedþ candidates. The three peaks in the distribution are each modeled by a Gaussian probabil- ity density function (PDF) with an independent normaliza- tion parameter Nn, mean value mn, and width parameter

n. The background distribution is parametrized by the PDFNBexpðAm þ Bm2Þ where NB,A, and B are all free parameters. The three mean values mn¼1;2;3 deter- mined by the fit are shown in Table I. The mean value m3 is an estimate of the mass barycenter of the observed

bð3PÞ signal.

Likewise, the m~1¼ m þ mð1SÞ and m~2 ¼

m þ mð2SÞdistributions for the sample ofþ can- didates reconstructed from converted photons are fitted using an unbinned extended maximum likelihood method.

A simultaneous fit is performed on the ~m1 and ~m2 distri- butions for the bðnPÞ ! ð1SÞ (for n ¼ 1; 2; 3) and

bðnPÞ ! ð2SÞ (for n ¼ 2; 3 only) signals, with the distributions modeled by three signal components [two of which are shared between the ð1SÞ and ð2SÞ distribu- tions] and two background distributions.

In the m distribution for the converted photon candi- dates the typical mass resolution is found to be in the range 16–20 MeV, of similar magnitude to the hyperfine split- tings, motivating the need for multiple signal components for each of the bðnPÞ peaks. For n ¼ 1; 2, the radiative branching fractions of theJ ¼ 0 states are suppressed with

respect to the J ¼ 1; 2 states [9] and therefore a J ¼ 0 component is not included in the fit. Similar behavior is assumed for then ¼ 3 case. Each of the three peaks (n ¼ 1; 2; 3) is therefore parametrized by a doublet of Crystal Ball (CB) [10] functions (corresponding toJ ¼ 1; 2 states) with resolution and radiative tail parameters common to all peaks. Forn ¼ 1 and n ¼ 2, the peak mass values and hyperfine splittings are fixed to the world averages [9] for the respective b states (see Table I). For n ¼ 3, the hyperfine mass splitting is fixed to the theoretically pre- dicted value of 12 MeV [4], while the average mass is left as a free parameter. The unknown relative normalization of the J ¼ 1 and J ¼ 2 CB peaks is taken to be equal and treated as a systematic uncertainty (for all doublets) for the baseline fit.

In order to take into account energy loss from the photon conversion electrons due to bremsstrahlung and other pro- cesses, the measured values of m in the ~m1 and ~m2

distributions are scaled by a common parameter  ¼ 0:961  0:003, which determines the energy scale and is derived from the fit to the bð1P; 2PÞ signals. The back- ground components of the m distributions for the ð1SÞ

and ð2SÞ final states are each modeled by the PDF NkBðm  q0kÞAkexp½Bkðm  q0kÞ for m > q0k, and zero otherwise, where NBk, q0k, Ak, and Bk (k ¼ 1; 2) are all free parameters. The mean value m3 determined by the fit is shown in TableI.

In the fit using unconverted photons, the signal is refitted using an alternative (two Gaussians) model for each of the threebstates, resulting in a negligible change in the peak positions. Alternative fits to the background are also used, either including constraints on the m distribution using dimuon pairs from the low-mass (8:0 GeV < m<

8:8 GeV) sideband or different background PDFs. The systematic uncertainty on the bð3PÞ mass barycenter from the modeling of the background distribution is deter- mined to be 21 MeV. The systematic uncertainty asso- ciated with the unconverted photon energy scale is estimated to be 2% on the m position, corresponding to a systematic uncertainty on m3 of 22 MeV. The un- certainties due to background modeling and photon energy scale comprise the dominant sources of systematic uncertainty.

For the fit using converted photons, alternative signal and background models are compared, and various TABLE I. The fitted mass of thebðnPÞ signals for both converted and unconverted photons. The systematic uncertainty on the mass of candidates reconstructed with unconverted photons is determined in the same way for all three states. Also included are theoretical predictions [3,4] for the spin-averaged masses of theb states.

State Model predictions [3,4] [MeV]

Fitted masses [MeV]

Unconverted photons Converted photons

bð1PÞ 9900 9910 6ðstatÞ  11ðsystÞ Fixed tob1¼ 9892:78 and b2¼ 9912:21 [9]

bð2PÞ 10 260 10 246 5ðstatÞ  18ðsystÞ Fixed tob1¼ 10 255:46 and b2 ¼ 10 268:65 [9]

bð3PÞ 10 525 10 541 11ðstatÞ  30ðsystÞ 10 530 5ðstatÞ  9ðsystÞ

(4)

constraints in the fit model are also released. The unknown relative normalizations of theJ ¼ 1 and J ¼ 2 CB peaks are varied both coherently and incoherently between the 1P, 2P, and 3P doublets by 0:25, resulting in a maximum variation in m3 of 5 MeV. Smaller variations are ob- tained if the common value of the relative normalization is allowed to be determined freely by the fit to the three doublets. Background modeling variations, decoupled fits to the ~m1 and ~m2 distributions, and individually released constraints on the mass position of then ¼ 1; 2 doublets each result in deviations of the order of 5 MeV or smaller. Furthermore, if the constraints on the masses of then ¼ 1; 2 peaks are released, the values obtained from the fit are consistent with expectations [9], within statistical errors and uncertainty in the relative contributions from J ¼ 1 and J ¼ 2 states. The effect of symmetrizing the

ð2SÞ mass window is studied and found to have a negli- gible effect on the fittedbmasses while increasing back- ground contamination. The resulting shifts in m3 for these independent variations are added in quadrature to provide an estimate of the systematic uncertainty.

The bð3PÞ signal significance is assessed from logðLmax=L0Þ, where LmaxandL0are the likelihood values from the nominal fit and from a fit with nobð3PÞ signal included, respectively. The fit is repeated with each of the systematic variations in the model, as discussed above, and the likelihood ratio reevaluated. The significance of the

bð3PÞ signal is found to be in excess of 6 standard deviations in each of the unconverted and converted photon selections independently.

The mass barycenter for thebð3PÞ signal, determined from the fit using unconverted photon candidates is

m 3¼ 10:541  0:011ðstatÞ  0:030ðsystÞ GeV:

The mass barycenter for the bð3PÞ signal, determined from the fit using converted photon candidates is

m 3¼ 10:530  0:005ðstatÞ  0:009ðsystÞ GeV:

The measured mass barycenters of thebð1PÞ, bð2PÞ, andbð3PÞ systems are summarized in TableI. The results of the converted and unconverted photon analyses for the

bð3PÞ are found to be compatible. Given the substantially smaller systematic uncertainties in the conversion mea- surement, the final mass determination for m3 is quoted solely on the basis of this analysis.

In conclusion, the production of the heavy quarkonium statesbðnPÞ in proton-proton collisions at ffiffiffi

ps

¼ 7 TeV is observed through the reconstruction of the radiative decay modes ofbðnPÞ ! ð1S; 2SÞ. Mass peaks correspond- ing tobð1P; 2PÞ decays are observed, together with addi- tional structures at higher mass, which are consistent with theoretical predictions for bð3PÞ ! ð1SÞ and

bð3PÞ ! ð2SÞ. These observations are interpreted as the bð3PÞ multiplet, the mass barycenter of which is measured to be 10:530  0:005ðstatÞ  0:009ðsystÞ GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina;

YerPhI, Armenia; ARC, Australia; BMWF, Austria;

ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN;

CONICYT, Chile; CAS, MOST, and NSFC, China;

COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union;

IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands;

RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia;

DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan;

TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowl- edged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[1] K. Han et al.,Phys. Rev. Lett. 49, 1612 (1982); G. Eigen et al.,Phys. Rev. Lett. 49, 1616 (1982); C. Klopfenstein et al. (CUSB Collaboration), Phys. Rev. Lett. 51, 160 (1983); M. Artuso et al. (CLEO Collaboration), Phys.

Rev. Lett. 94, 032001 (2005).

[2] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett.

160B, 331 (1985); W. S. Walk et al. (Crystal Ball Collaboration), Phys. Rev. D 34, 2611 (1986); T.

Affolder et al. (CDF Collaboration),Phys. Rev. Lett. 84, 2094 (2000).

[3] F. Daghighian and D. Silverman,Phys. Rev. D 36, 3401 (1987); W. Kwong and J. L. Rosner,Phys. Rev. D 38, 279 (1988).

[4] L. Motyka and K. Zalewski,Eur. Phys. J. C 4, 107 (1998). [5] ATLAS Collaboration,JINST 3, S08003 (2008).

[6] ATLAS Collaboration,Phys. Lett. B 705, 9 (2011). [7] ATLAS Collaboration,Phys. Rev. D 83, 052005 (2011). [8] ATLAS Collaboration,Phys. Lett. B 705, 452 (2011). [9] K. Nakamura et al. (Particle Data Group),J. Phys. G 37,

075021 (2010).

[10] M. J. Oreglia, Report No. SLAC-R-236, 1980; J. E. Gaiser, Report No. SLAC-R-255, 1982; T. Skwarnicki, Report No. DESY F31-86-02, 1986.

(5)

G. Aad,47B. Abbott,110J. Abdallah,11A. A. Abdelalim,48A. Abdesselam,117O. Abdinov,10B. Abi,111M. Abolins,87 O. S. AbouZeid,157H. Abramowicz,152H. Abreu,114E. Acerbi,88a,88bB. S. Acharya,163a,163bL. Adamczyk,37 D. L. Adams,24T. N. Addy,55J. Adelman,174M. Aderholz,98S. Adomeit,97P. Adragna,74T. Adye,128S. Aefsky,22

J. A. Aguilar-Saavedra,123b,bM. Aharrouche,80S. P. Ahlen,21F. Ahles,47A. Ahmad,147M. Ahsan,40 G. Aielli,132a,132bT. Akdogan,18aT. P. A. A˚ kesson,78G. Akimoto,154A. V. Akimov,93A. Akiyama,66M. S. Alam,1

M. A. Alam,75J. Albert,168S. Albrand,54M. Aleksa,29I. N. Aleksandrov,64F. Alessandria,88aC. Alexa,25a G. Alexander,152G. Alexandre,48T. Alexopoulos,9M. Alhroob,20M. Aliev,15G. Alimonti,88aJ. Alison,119 M. Aliyev,10B. M. M. Allbrooke,17P. P. Allport,72S. E. Allwood-Spiers,52J. Almond,81A. Aloisio,101a,101b R. Alon,170A. Alonso,78B. Alvarez Gonzalez,87M. G. Alviggi,101a,101bK. Amako,65P. Amaral,29C. Amelung,22 V. V. Ammosov,127A. Amorim,123a,cG. Amoro´s,166N. Amram,152C. Anastopoulos,29L. S. Ancu,16N. Andari,114 T. Andeen,34C. F. Anders,20G. Anders,57aK. J. Anderson,30A. Andreazza,88a,88bV. Andrei,57aM-L. Andrieux,54

X. S. Anduaga,69A. Angerami,34F. Anghinolfi,29A. Anisenkov,106N. Anjos,123aA. Annovi,46A. Antonaki,8 M. Antonelli,46A. Antonov,95J. Antos,143bF. Anulli,131aS. Aoun,82L. Aperio Bella,4R. Apolle,117,dG. Arabidze,87

I. Aracena,142Y. Arai,65A. T. H. Arce,44S. Arfaoui,147J-F. Arguin,14E. Arik,18a,aM. Arik,18aA. J. Armbruster,86 O. Arnaez,80C. Arnault,114A. Artamonov,94G. Artoni,131a,131bD. Arutinov,20S. Asai,154R. Asfandiyarov,171

S. Ask,27B. A˚ sman,145a,145bL. Asquith,5K. Assamagan,24A. Astbury,168A. Astvatsatourov,51B. Aubert,4 E. Auge,114K. Augsten,126M. Aurousseau,144aG. Avolio,162R. Avramidou,9D. Axen,167C. Ay,53G. Azuelos,92,e

Y. Azuma,154M. A. Baak,29G. Baccaglioni,88aC. Bacci,133a,133bA. M. Bach,14H. Bachacou,135K. Bachas,29 M. Backes,48M. Backhaus,20E. Badescu,25aP. Bagnaia,131a,131bS. Bahinipati,2Y. Bai,32aD. C. Bailey,157T. Bain,157

J. T. Baines,128O. K. Baker,174M. D. Baker,24S. Baker,76E. Banas,38P. Banerjee,92Sw. Banerjee,171D. Banfi,29 A. Bangert,149V. Bansal,168H. S. Bansil,17L. Barak,170S. P. Baranov,93A. Barashkou,64A. Barbaro Galtieri,14

T. Barber,47E. L. Barberio,85D. Barberis,49a,49bM. Barbero,20D. Y. Bardin,64T. Barillari,98M. Barisonzi,173 T. Barklow,142N. Barlow,27B. M. Barnett,128R. M. Barnett,14A. Baroncelli,133aG. Barone,48A. J. Barr,117 F. Barreiro,79J. Barreiro Guimara˜es da Costa,56P. Barrillon,114R. Bartoldus,142A. E. Barton,70V. Bartsch,148 R. L. Bates,52L. Batkova,143aJ. R. Batley,27A. Battaglia,16M. Battistin,29F. Bauer,135H. S. Bawa,142,fS. Beale,97

T. Beau,77P. H. Beauchemin,160R. Beccherle,49aP. Bechtle,20H. P. Beck,16S. Becker,97M. Beckingham,137 K. H. Becks,173A. J. Beddall,18cA. Beddall,18cS. Bedikian,174V. A. Bednyakov,64C. P. Bee,82M. Begel,24

S. Behar Harpaz,151P. K. Behera,62M. Beimforde,98C. Belanger-Champagne,84P. J. Bell,48W. H. Bell,48 G. Bella,152L. Bellagamba,19aF. Bellina,29M. Bellomo,29A. Belloni,56O. Beloborodova,106,gK. Belotskiy,95 O. Beltramello,29S. Ben Ami,151O. Benary,152D. Benchekroun,134aC. Benchouk,82M. Bendel,80N. Benekos,164 Y. Benhammou,152E. Benhar Noccioli,48J. A. Benitez Garcia,158bD. P. Benjamin,44M. Benoit,114J. R. Bensinger,22 K. Benslama,129S. Bentvelsen,104D. Berge,29E. Bergeaas Kuutmann,41N. Berger,4F. Berghaus,168E. Berglund,104 J. Beringer,14P. Bernat,76R. Bernhard,47C. Bernius,24T. Berry,75C. Bertella,82A. Bertin,19a,19bF. Bertinelli,29 F. Bertolucci,121a,121bM. I. Besana,88a,88bN. Besson,135S. Bethke,98W. Bhimji,45R. M. Bianchi,29M. Bianco,71a,71b

O. Biebel,97S. P. Bieniek,76K. Bierwagen,53J. Biesiada,14M. Biglietti,133aH. Bilokon,46M. Bindi,19a,19b S. Binet,114A. Bingul,18cC. Bini,131a,131bC. Biscarat,176U. Bitenc,47K. M. Black,21R. E. Blair,5J.-B. Blanchard,135

G. Blanchot,29T. Blazek,143aC. Blocker,22J. Blocki,38A. Blondel,48W. Blum,80U. Blumenschein,53 G. J. Bobbink,104V. B. Bobrovnikov,106S. S. Bocchetta,78A. Bocci,44C. R. Boddy,117M. Boehler,41J. Boek,173

N. Boelaert,35J. A. Bogaerts,29A. Bogdanchikov,106A. Bogouch,89,aC. Bohm,145aV. Boisvert,75T. Bold,37 V. Boldea,25aN. M. Bolnet,135M. Bona,74V. G. Bondarenko,95M. Bondioli,162M. Boonekamp,135C. N. Booth,138

S. Bordoni,77C. Borer,16A. Borisov,127G. Borissov,70I. Borjanovic,12aM. Borri,81S. Borroni,86

V. Bortolotto,133a,133bK. Bos,104D. Boscherini,19aM. Bosman,11H. Boterenbrood,104D. Botterill,128J. Bouchami,92 J. Boudreau,122E. V. Bouhova-Thacker,70D. Boumediene,33C. Bourdarios,114N. Bousson,82A. Boveia,30J. Boyd,29

I. R. Boyko,64N. I. Bozhko,127I. Bozovic-Jelisavcic,12bJ. Bracinik,17A. Braem,29P. Branchini,133a G. W. Brandenburg,56A. Brandt,7G. Brandt,117O. Brandt,53U. Bratzler,155B. Brau,83J. E. Brau,113H. M. Braun,173

B. Brelier,157J. Bremer,29R. Brenner,165S. Bressler,170D. Britton,52F. M. Brochu,27I. Brock,20R. Brock,87 T. J. Brodbeck,70E. Brodet,152F. Broggi,88aC. Bromberg,87J. Bronner,98G. Brooijmans,34W. K. Brooks,31b G. Brown,81H. Brown,7P. A. Bruckman de Renstrom,38D. Bruncko,143bR. Bruneliere,47S. Brunet,60A. Bruni,19a

G. Bruni,19aM. Bruschi,19aT. Buanes,13Q. Buat,54F. Bucci,48J. Buchanan,117N. J. Buchanan,2P. Buchholz,140

(6)

R. M. Buckingham,117A. G. Buckley,45S. I. Buda,25aI. A. Budagov,64B. Budick,107V. Bu¨scher,80L. Bugge,116 O. Bulekov,95M. Bunse,42T. Buran,116H. Burckhart,29S. Burdin,72T. Burgess,13S. Burke,128E. Busato,33

P. Bussey,52C. P. Buszello,165F. Butin,29B. Butler,142J. M. Butler,21C. M. Buttar,52J. M. Butterworth,76 W. Buttinger,27S. Cabrera Urba´n,166D. Caforio,19a,19bO. Cakir,3aP. Calafiura,14G. Calderini,77P. Calfayan,97 R. Calkins,105L. P. Caloba,23aR. Caloi,131a,131bD. Calvet,33S. Calvet,33R. Camacho Toro,33P. Camarri,132a,132b

M. Cambiaghi,118a,118bD. Cameron,116L. M. Caminada,14S. Campana,29M. Campanelli,76V. Canale,101a,101b F. Canelli,30,hA. Canepa,158aJ. Cantero,79L. Capasso,101a,101bM. D. M. Capeans Garrido,29I. Caprini,25a M. Caprini,25aD. Capriotti,98M. Capua,36a,36bR. Caputo,80C. Caramarcu,24R. Cardarelli,132aT. Carli,29 G. Carlino,101aL. Carminati,88a,88bB. Caron,84S. Caron,103G. D. Carrillo Montoya,171A. A. Carter,74J. R. Carter,27

J. Carvalho,123a,iD. Casadei,107M. P. Casado,11M. Cascella,121a,121bC. Caso,49a,49b,a

A. M. Castaneda Hernandez,171E. Castaneda-Miranda,171V. Castillo Gimenez,166N. F. Castro,123aG. Cataldi,71a F. Cataneo,29A. Catinaccio,29J. R. Catmore,29A. Cattai,29G. Cattani,132a,132bS. Caughron,87D. Cauz,163a,163c

P. Cavalleri,77D. Cavalli,88aM. Cavalli-Sforza,11V. Cavasinni,121a,121bF. Ceradini,133a,133bA. S. Cerqueira,23b A. Cerri,29L. Cerrito,74F. Cerutti,46S. A. Cetin,18bF. Cevenini,101a,101bA. Chafaq,134aD. Chakraborty,105K. Chan,2

B. Chapleau,84J. D. Chapman,27J. W. Chapman,86E. Chareyre,77D. G. Charlton,17V. Chavda,81

C. A. Chavez Barajas,29S. Cheatham,84S. Chekanov,5S. V. Chekulaev,158aG. A. Chelkov,64M. A. Chelstowska,103 C. Chen,63H. Chen,24S. Chen,32cT. Chen,32cX. Chen,171S. Cheng,32aA. Cheplakov,64V. F. Chepurnov,64 R. Cherkaoui El Moursli,134eV. Chernyatin,24E. Cheu,6S. L. Cheung,157L. Chevalier,135G. Chiefari,101a,101b

L. Chikovani,50aJ. T. Childers,29A. Chilingarov,70G. Chiodini,71aA. S. Chisholm,17M. V. Chizhov,64 G. Choudalakis,30S. Chouridou,136I. A. Christidi,76A. Christov,47D. Chromek-Burckhart,29M. L. Chu,150 J. Chudoba,124G. Ciapetti,131a,131bK. Ciba,37A. K. Ciftci,3aR. Ciftci,3aD. Cinca,33V. Cindro,73M. D. Ciobotaru,162

C. Ciocca,19aA. Ciocio,14M. Cirilli,86M. Citterio,88aM. Ciubancan,25aA. Clark,48P. J. Clark,45W. Cleland,122 J. C. Clemens,82B. Clement,54C. Clement,145a,145bR. W. Clifft,128Y. Coadou,82M. Cobal,163a,163cA. Coccaro,171 J. Cochran,63P. Coe,117J. G. Cogan,142J. Coggeshall,164E. Cogneras,176J. Colas,4A. P. Colijn,104N. J. Collins,17 C. Collins-Tooth,52J. Collot,54G. Colon,83P. Conde Muin˜o,123aE. Coniavitis,117M. C. Conidi,11M. Consonni,103 V. Consorti,47S. Constantinescu,25aC. Conta,118a,118bF. Conventi,101a,jJ. Cook,29M. Cooke,14B. D. Cooper,76 A. M. Cooper-Sarkar,117K. Copic,14T. Cornelissen,173M. Corradi,19aF. Corriveau,84,kA. Cortes-Gonzalez,164

G. Cortiana,98G. Costa,88aM. J. Costa,166D. Costanzo,138T. Costin,30D. Coˆte´,29R. Coura Torres,23a L. Courneyea,168G. Cowan,75C. Cowden,27B. E. Cox,81K. Cranmer,107F. Crescioli,121a,121bM. Cristinziani,20

G. Crosetti,36a,36bR. Crupi,71a,71bS. Cre´pe´-Renaudin,54C.-M. Cuciuc,25aC. Cuenca Almenar,174 T. Cuhadar Donszelmann,138M. Curatolo,46C. J. Curtis,17C. Cuthbert,149P. Cwetanski,60H. Czirr,140 P. Czodrowski,43Z. Czyczula,174S. D’Auria,52M. D’Onofrio,72A. D’Orazio,131a,131bP. V. M. Da Silva,23a

C. Da Via,81W. Dabrowski,37T. Dai,86C. Dallapiccola,83M. Dam,35M. Dameri,49a,49bD. S. Damiani,136 H. O. Danielsson,29D. Dannheim,98V. Dao,48G. Darbo,49aG. L. Darlea,25bW. Davey,20T. Davidek,125 N. Davidson,85R. Davidson,70E. Davies,117,dM. Davies,92A. R. Davison,76Y. Davygora,57aE. Dawe,141 I. Dawson,138J. W. Dawson,5,aR. K. Daya-Ishmukhametova,22K. De,7R. de Asmundis,101aS. De Castro,19a,19b P. E. De Castro Faria Salgado,24S. De Cecco,77J. de Graat,97N. De Groot,103P. de Jong,104C. De La Taille,114

H. De la Torre,79B. De Lotto,163a,163cL. de Mora,70L. De Nooij,104D. De Pedis,131aA. De Salvo,131a U. De Sanctis,163a,163cA. De Santo,148J. B. De Vivie De Regie,114S. Dean,76W. J. Dearnaley,70R. Debbe,24

C. Debenedetti,45D. V. Dedovich,64J. Degenhardt,119M. Dehchar,117C. Del Papa,163a,163cJ. Del Peso,79 T. Del Prete,121a,121bT. Delemontex,54M. Deliyergiyev,73A. Dell’Acqua,29L. Dell’Asta,21M. Della Pietra,101a,j D. della Volpe,101a,101bM. Delmastro,4N. Delruelle,29P. A. Delsart,54C. Deluca,147S. Demers,174M. Demichev,64 B. Demirkoz,11,lJ. Deng,162S. P. Denisov,127D. Derendarz,38J. E. Derkaoui,134dF. Derue,77P. Dervan,72K. Desch,20

E. Devetak,147P. O. Deviveiros,104A. Dewhurst,128B. DeWilde,147S. Dhaliwal,157R. Dhullipudi,24,m A. Di Ciaccio,132a,132bL. Di Ciaccio,4A. Di Girolamo,29B. Di Girolamo,29S. Di Luise,133a,133bA. Di Mattia,171 B. Di Micco,29R. Di Nardo,46A. Di Simone,132a,132bR. Di Sipio,19a,19bM. A. Diaz,31aF. Diblen,18cE. B. Diehl,86

J. Dietrich,41T. A. Dietzsch,57aS. Diglio,85K. Dindar Yagci,39J. Dingfelder,20C. Dionisi,131a,131bP. Dita,25a S. Dita,25aF. Dittus,29F. Djama,82T. Djobava,50bM. A. B. do Vale,23cA. Do Valle Wemans,123aT. K. O. Doan,4

M. Dobbs,84R. Dobinson,29,aD. Dobos,29E. Dobson,29,nJ. Dodd,34C. Doglioni,48T. Doherty,52Y. Doi,65,a J. Dolejsi,125I. Dolenc,73Z. Dolezal,125B. A. Dolgoshein,95,aT. Dohmae,154M. Donadelli,23dM. Donega,119 J. Donini,33J. Dopke,29A. Doria,101aA. Dos Anjos,171M. Dosil,11A. Dotti,121a,121bM. T. Dova,69J. D. Dowell,17

(7)

A. D. Doxiadis,104A. T. Doyle,52Z. Drasal,125J. Drees,173N. Dressnandt,119H. Drevermann,29C. Driouichi,35 M. Dris,9J. Dubbert,98S. Dube,14E. Duchovni,170G. Duckeck,97A. Dudarev,29F. Dudziak,63M. Du¨hrssen,29 I. P. Duerdoth,81L. Duflot,114M-A. Dufour,84M. Dunford,29H. Duran Yildiz,3aR. Duxfield,138M. Dwuznik,37

F. Dydak,29M. Du¨ren,51W. L. Ebenstein,44J. Ebke,97S. Eckweiler,80K. Edmonds,80C. A. Edwards,75 N. C. Edwards,52W. Ehrenfeld,41T. Ehrich,98T. Eifert,142G. Eigen,13K. Einsweiler,14E. Eisenhandler,74 T. Ekelof,165M. El Kacimi,134cM. Ellert,165S. Elles,4F. Ellinghaus,80K. Ellis,74N. Ellis,29J. Elmsheuser,97 M. Elsing,29D. Emeliyanov,128R. Engelmann,147A. Engl,97B. Epp,61A. Eppig,86J. Erdmann,53A. Ereditato,16

D. Eriksson,145aJ. Ernst,1M. Ernst,24J. Ernwein,135D. Errede,164S. Errede,164E. Ertel,80M. Escalier,114 C. Escobar,122X. Espinal Curull,11B. Esposito,46F. Etienne,82A. I. Etienvre,135E. Etzion,152D. Evangelakou,53

H. Evans,60L. Fabbri,19a,19bC. Fabre,29R. M. Fakhrutdinov,127S. Falciano,131aY. Fang,171M. Fanti,88a,88b A. Farbin,7A. Farilla,133aJ. Farley,147T. Farooque,157S. M. Farrington,117P. Farthouat,29P. Fassnacht,29 D. Fassouliotis,8B. Fatholahzadeh,157A. Favareto,88a,88bL. Fayard,114S. Fazio,36a,36bR. Febbraro,33P. Federic,143a

O. L. Fedin,120W. Fedorko,87M. Fehling-Kaschek,47L. Feligioni,82D. Fellmann,5C. Feng,32dE. J. Feng,30 A. B. Fenyuk,127J. Ferencei,143bJ. Ferland,92W. Fernando,108S. Ferrag,52J. Ferrando,52V. Ferrara,41A. Ferrari,165

P. Ferrari,104R. Ferrari,118aD. E. Ferreira de Lima,52A. Ferrer,166M. L. Ferrer,46D. Ferrere,48C. Ferretti,86 A. Ferretto Parodi,49a,49bM. Fiascaris,30F. Fiedler,80A. Filipcˇicˇ,73A. Filippas,9F. Filthaut,103M. Fincke-Keeler,168 M. C. N. Fiolhais,123a,iL. Fiorini,166A. Firan,39G. Fischer,41P. Fischer,20M. J. Fisher,108M. Flechl,47I. Fleck,140

J. Fleckner,80P. Fleischmann,172S. Fleischmann,173T. Flick,173A. Floderus,78L. R. Flores Castillo,171 M. J. Flowerdew,98M. Fokitis,9T. Fonseca Martin,16D. A. Forbush,137A. Formica,135A. Forti,81D. Fortin,158a

J. M. Foster,81D. Fournier,114A. Foussat,29A. J. Fowler,44K. Fowler,136H. Fox,70P. Francavilla,11 S. Franchino,118a,118bD. Francis,29T. Frank,170M. Franklin,56S. Franz,29M. Fraternali,118a,118bS. Fratina,119 S. T. French,27F. Friedrich,43R. Froeschl,29D. Froidevaux,29J. A. Frost,27C. Fukunaga,155E. Fullana Torregrosa,29 J. Fuster,166C. Gabaldon,29O. Gabizon,170T. Gadfort,24S. Gadomski,48G. Gagliardi,49a,49bP. Gagnon,60C. Galea,97

E. J. Gallas,117V. Gallo,16B. J. Gallop,128P. Gallus,124K. K. Gan,108Y. S. Gao,142,fV. A. Gapienko,127 A. Gaponenko,14F. Garberson,174M. Garcia-Sciveres,14C. Garcı´a,166J. E. Garcı´a Navarro,166R. W. Gardner,30 N. Garelli,29H. Garitaonandia,104V. Garonne,29J. Garvey,17C. Gatti,46G. Gaudio,118aB. Gaur,140L. Gauthier,135 I. L. Gavrilenko,93C. Gay,167G. Gaycken,20J-C. Gayde,29E. N. Gazis,9P. Ge,32dC. N. P. Gee,128D. A. A. Geerts,104

Ch. Geich-Gimbel,20K. Gellerstedt,145a,145bC. Gemme,49aA. Gemmell,52M. H. Genest,54S. Gentile,131a,131b M. George,53S. George,75P. Gerlach,173A. Gershon,152C. Geweniger,57aH. Ghazlane,134bN. Ghodbane,33 B. Giacobbe,19aS. Giagu,131a,131bV. Giakoumopoulou,8V. Giangiobbe,11F. Gianotti,29B. Gibbard,24A. Gibson,157 S. M. Gibson,29L. M. Gilbert,117V. Gilewsky,90D. Gillberg,28A. R. Gillman,128D. M. Gingrich,2,eJ. Ginzburg,152 N. Giokaris,8M. P. Giordani,163cR. Giordano,101a,101bF. M. Giorgi,15P. Giovannini,98P. F. Giraud,135D. Giugni,88a M. Giunta,92P. Giusti,19aB. K. Gjelsten,116L. K. Gladilin,96C. Glasman,79J. Glatzer,47A. Glazov,41K. W. Glitza,173

G. L. Glonti,64J. R. Goddard,74J. Godfrey,141J. Godlewski,29M. Goebel,41T. Go¨pfert,43C. Goeringer,80 C. Go¨ssling,42T. Go¨ttfert,98S. Goldfarb,86T. Golling,174A. Gomes,123a,cL. S. Gomez Fajardo,41R. Gonc¸alo,75

J. Goncalves Pinto Firmino Da Costa,41L. Gonella,20A. Gonidec,29S. Gonzalez,171S. Gonza´lez de la Hoz,166 G. Gonzalez Parra,11M. L. Gonzalez Silva,26S. Gonzalez-Sevilla,48J. J. Goodson,147L. Goossens,29 P. A. Gorbounov,94H. A. Gordon,24I. Gorelov,102G. Gorfine,173B. Gorini,29E. Gorini,71a,71bA. Gorisˇek,73

E. Gornicki,38S. A. Gorokhov,127V. N. Goryachev,127B. Gosdzik,41M. Gosselink,104M. I. Gostkin,64 I. Gough Eschrich,162M. Gouighri,134aD. Goujdami,134cM. P. Goulette,48A. G. Goussiou,137C. Goy,4 S. Gozpinar,22I. Grabowska-Bold,37P. Grafstro¨m,29K-J. Grahn,41F. Grancagnolo,71aS. Grancagnolo,15 V. Grassi,147V. Gratchev,120N. Grau,34H. M. Gray,29J. A. Gray,147E. Graziani,133aO. G. Grebenyuk,120

T. Greenshaw,72Z. D. Greenwood,24,mK. Gregersen,35I. M. Gregor,41P. Grenier,142J. Griffiths,137 N. Grigalashvili,64A. A. Grillo,136S. Grinstein,11Y. V. Grishkevich,96J.-F. Grivaz,114M. Groh,98E. Gross,170 J. Grosse-Knetter,53J. Groth-Jensen,170K. Grybel,140V. J. Guarino,5D. Guest,174C. Guicheney,33A. Guida,71a,71b

S. Guindon,53H. Guler,84,oJ. Gunther,124B. Guo,157J. Guo,34A. Gupta,30Y. Gusakov,64V. N. Gushchin,127 P. Gutierrez,110N. Guttman,152O. Gutzwiller,171C. Guyot,135C. Gwenlan,117C. B. Gwilliam,72A. Haas,142 S. Haas,29C. Haber,14H. K. Hadavand,39D. R. Hadley,17P. Haefner,98F. Hahn,29S. Haider,29Z. Hajduk,38

H. Hakobyan,175D. Hall,117J. Haller,53K. Hamacher,173P. Hamal,112M. Hamer,53A. Hamilton,144b,p S. Hamilton,160H. Han,32aL. Han,32bK. Hanagaki,115K. Hanawa,159M. Hance,14C. Handel,80P. Hanke,57a

J. R. Hansen,35J. B. Hansen,35J. D. Hansen,35P. H. Hansen,35P. Hansson,142K. Hara,159G. A. Hare,136

Cytaty

Powiązane dokumenty

80 Department of Physics and Astronomy, University College London, London, United Kingdom 81 Louisiana Tech University, Ruston LA, United States of America. 82

The hadroproduction cross section (in arbitrary units) as a function of the transverse m om entum of the vector meson p and the transverse m om entum flowing

The correlated Pomeron loop was numerically first analyzed at the level of the partonic cross section as a function of the transverse momentum of the produced vector meson and

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

Keywords: Cd 2 and CdAr van der Waals complexes; vibrational energy structure; rotational energy structure; molecular potentials; supersonic expansion

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

a Also at Department of Physics, K in g ’s College London, London, United Kingdom b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and