• Nie Znaleziono Wyników

Experimental investigation of water impact on axisymmetric bodies

N/A
N/A
Protected

Academic year: 2021

Share "Experimental investigation of water impact on axisymmetric bodies"

Copied!
14
0
0

Pełen tekst

(1)

Applied Ocean Research 31 (2009) 143-156

Contents lists a v a i l a b l e at ScienceDirect

Applied Ocean Research

ELSEVIER

j o u r n a l hiomepage: w w w . e l s e v i e r . c o m / l o c a t e / a p o r

O C E A N ]

R E S E A R C l

Experimental investigation of water impact on axisymmetric bodies

G. De Backer^'*, M. Vantorre^ C. Beels^ J. De P r é ^ S. Victor^ J. De Rouck^ C. Blommaert^

W. Van Paepegem ^

^ Department of Civil Engineering, Ghent University, Technologiepark Zwijnaarde 904, B 9052 Zwijnaarde, Belgium '' Department of Materials Science and Engineering. Ghent University, Sint-Pietersnieuwstraat 41, B 9000 Gent, Belgium

A R T I C L E I N F O A B S T R A C T Article history: Received 31 October 2008 Received i n revised f o f m 27 A p r i l 2009 Accepted 15 July 2009 Available online 20 August 2009

Keywords: Slamming Drop tests Point absorbers Wave energy Experimental study

The results of an elaborate experimental investigation on b o t t o m slamming of axisymmetric objects are presented. Drop tests have been performed on a hemisphere and t w o conical shapes w i t h different deadrise angles. The test setup is designed so as to prevent small rotations of the test objects w h i c h cause scatter in the measurement data. The pressure distribution and evolution as well as the body m o t i o n parameters are measured during impact. By means of a high speed camera the water uprise is visualized and the w e t t i n g factor is determined for the cones. The results are compared w i t h a three-dimensional asymptotic theory for axisymmetric rigid bodies w i t h constant entry velocity. The ratio between the registered peak pressures and the asymptotic theory are in accordance w i t h comparable experiments in the literature. The asymptotic theoty, however, is found to be quite conservative, since the measured peak pressure levels appear to be approximately 50% to 75% of the theoretical levels.

® 2009 Elsevier Ltd. All rights reserved.

1. I n t r o d u c t i o n A n e x p e r i m e n t a l t e s t p r o g r a m m e has b e e n e x e c u t e d t o i n v e -stigate b o t t o m s l a m m i n g p h e n o m e n a o n p o i n t absorbers. P o i n t a b s o r b e r s y s t e m s are w a v e e n e r g y c o n v e r t e r s c o n s i s t i n g o f o s c i -l -l a t i n g bodies w i t h h o r i z o n t a -l d i m e n s i o n s t h a t are s m a -l -l c o m p a r e d t o t h e i n c i d e n t w a v e l e n g t h . E x a m p l e s o f p o i n t a b s o r b e r devices are t h e FO^ [1] a n d W a v e Star E n e r g y [ 2 ] . The p o i n t a b s o r b e r b u o y s m o v e a c c o r d i n g t o one o r m o r e degrees o f f r e e d o m (heave, surge, p i t c h , r o l l ) as a response t o i n c o m i n g w a v e s a n d t h e i r k i n e t i c e n e r g y is t r a n s f e r r e d i n t o e l e c t r i c a l e n e r g y e i t h e r d i r e c t l y o r by m e a n s o f a h y d r a u l i c i n t e r m e d i a t e stage. Since t h e b u o y s g e n e r a l l y have a h i g h e r n a t u r a l f r e q u e n c y t h a n t h e d o m i n a n t i n c i d e n t w a v e f r e q u e n c i e s , t h e p o i n t a b s o r b e r response is o f t e n t u n e d t o t h e c h a r a c t e r i s t i c s o f t h e i n c o m i n g w a v e s p e c t r u m b y i n c r e a s i n g t h e s y s t e m i n e r d a o r b y a p p l y i n g l a t c h i n g c o n t r o l [ 3 ] . T h i s enables t h e p o i n t a b s o r b e r t o o p e r a t e closer t o resonance c o n d i t i o n s , w h i c h increases t h e e n e r g y c a p t u r e . H o w e v e r , i t m i g h t cause t h e b u o y s t o rise o u t o f t h e w a t e r w h i c h results i n s l a m m i n g back i n t o t h e w a t e r surface o n r e - e n t r y . This p h e n o m e n o n occurs p a r t i c u l a r l y f o r p o i n t absorbers w i t h a s m a l l d r a f t i n a n e n e r g e t i c w a v e c l i m a t e . S l a m m i n g can be r e d u c e d b y i n f l u e n c i n g t h e c o n t r o l p a r a m e t e r s o f t h e b u o y , i.e. b y i n c r e a s i n g t h e d a m p i n g a n d / o r b y d e t u n i n g

* Corresponding author. Tel.: +32 9 264 54 93; fax: +32 9 264 58 37.

E-mail address: griet.debacker@ugent.be (G. De Backer).

0141-1187/$ - see f r o n t matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.apor.2009.07.003 t h e b u o y . H o w e v e r , t h e s e measures r e s u l t i n p o w e r a b s o r p t i o n losses as s h o w n i n [ 4 , 5 ] . C o n s e q u e n t l y , a c e r t a i n l e v e l o f s l a m m i n g w i l l u s u a l l y be a l l o w e d . For t h i s reason i t is i m p o r t a n t t o k n o w t o w h i c h p r e s s u r e m a g n i t u d e s t h e b o d y is exposed w h e n s l a m m i n g occurs. This p a p e r a i m s t o i n v e s t i g a t e b o t t o m s l a m m i n g o n p o i n t absorbers b y means o f e x p e r i m e n t a l d r o p tests. The r e s u l t s are c o m p a r e d w i t h a n a l y t i c a l results o b t a i n e d b y C h u a n g [ 6 ] a n d F a l t i n s e n a n d Z h a o [ 7 ] . S l a m m i n g p h e n o m e n a have b e e n s t u d i e d o v e r s e v e r a l decades especially i n n a v a l h y d r o d y n a m i c s . P i o n e e r i n g r e s e a r c h has b e e n c a r r i e d o u t b y v o n K a r m a n [ 8 ] a n d W a g n e r [ 9 ] . W a g n e r s t u d i e d t h e w a t e r i m p a c t o n rigid t w o - d i m e n s i o n a l b o d i e s b y a p p r o x i m a t i n g t h e bodies w i t h a f l a t p l a t e a n d t a k i n g i n t o a c c o u n t t h e w a t e r u p r i s e o n t h e b o d y i n a s i m p l i f i e d w a y . Because o f t h e b l u n t b o d y a p p r o a c h , t h e bodies are a s s u m e d to have s m a l l d e a d r i s e angles i n t h e range o f 4 u p t o 2 0 degrees [ 1 0 ] . Zhao a n d F a l t i n s e n p r e s e n t e d n u m e r i c a l results, based o n t h e f i n d i n g s o f D o b r o v o l ' s k a y a [ 11 ] , f o r t w o - d i m e n s i o n a l bodies w i t h deadrise angles b e t w e e n 4 a n d 8 1 degrees [ 1 2 , 1 3 ] . I n s p i r e d b y Zhao's w o r k , M e i et al. [ 1 4 ] d e v e l o p e d a n a n a l y t i c a l s o l u t i o n f o r t h e w a t e r i m p a c t p r o b l e m o f g e n e r a l t w o -d i m e n s i o n a l bo-dies. T h e m a i n -d i f f e r e n c e w i t h t h e W a g n e r m e t h o -d is t h a t t h e exact b o d y b o u n d a r y c o n d i t i o n s are f u l f i l l e d , i n s t e a d o f a p p r o x i m a t i n g t h e b o d y b y a f l a t plate. T h e a d v a n t a g e o f W a g n e r ' s a p p r o x i m a t i o n is t h e a b i l i t y t o use a n a l y t i c a l e x p r e s s i o n s f o r t h e v e l o c i t y p o t e n t i a l . H o w e v e r , w i t h t h e g e n e r a l i z e d W a g n e r m e t h o d , a b r o a d e r range o f ( l o c a l ) deadrise angles can be i n v e s t i g a t e d i n a m o r e accurate w a y .

(2)

144 C. De Backer et al./Applied Ocean Research 31 (2009) 143-156 N o m e n c l a t u r e bo w e t r a d i u s at t h e u n d i s t u r b e d f r e e w a t e r surface [ m ] b w e t radius at t h e i m m e d i a t e f r e e w a t e r surface [ m ] s l a m m i n g pressure c o e f f i c i e n t [ - ] c o e f f i c i e n t o f v a r i a t i o n [ - ] w e t t i n g f a c t o r [ - ] F f o r c e [ N ] g g r a v i t a t i o n a l a c c e l e r a t i o n [ m / s ^ ] h d r o p h e i g h t [ m ] h* e q u i v a l e n t d r o p h e i g h t c o r r e s p o n d i n g t o t h e m e a -s u r e d i m p a c t v e l o c i t y [ m ] 'jet j e t h e i g h t [ m ] M b o d y mass [ k g ] i n f i n i t e f r e q u e n c y l i m i t o f t h e a d d e d mass [ k g ] P pressure [ b a r = 10^ Pa] r r a d i a l c o o r d i n a t e [ m ] radius o f h e m i s p h e r e [ m ] Pearson c o r r e l a t i o n c o e f f i c i e n t [ - ] t t i m e [s] U e n t r y v e l o c i t y [ m / s ] z v e r t i c a l c o o r d i n a t e [ m ] yfi deadrise angle [ d e g ] [ r a d ]

?

w a t e r e l e v a t i o n at i n t e r s e c t i o n w i t h b o d y [ m ] P mass d e n s i t y o f f l u i d [ k g / m ^ ] A s u b s t a n t i a l a m o u n t o f e x p e r i m e n t a l w o r k has b e e n p e r f o r m e d t o v a l i d a t e t h e a n a l y t i c a l a n d n u m e r i c a l m o d e l s . L i n a n d S h i e h [ 1 5 ] e x p e r i m e n t a l l y i n v e s t i g a t e d t h e pressure c h a r a c t e r i s t i c s o f a c y l i n d e r d u r i n g w a t e r i m p a c t . T h e y also v i s u a l i z e d t h e f l o w p a t t e r n d u r -i n g p e n e t r a t -i o n b y m a k -i n g use o f a d -i g -i t a l -i m a g -i n g s y s t e m a n d a h i g h speed data a c q u i s i t i o n s y s t e m . Zhao a n d F a l t i n s e n [ 1 3 ] perf o r m e d d r o p tests t o s t u d y t w o d i m e n s i o n a l perf l o w s i t u a t i o n s o perf h o r -i z o n t a l w e d g e s d r o p p e d o n t o t h e f r e e w a t e r surface. E x p e r -i m e n t s b y Y e t t o u [ 1 6 ] et a l . consist o f f r e e f a l l d r o p tests o n s y m m e t r i -cal wedges. They i n v e s t i g a t e d t h e i n f l u e n c e o f t h e d r o p h e i g h t , the d e a d r i s e angle a n d t h e mass o f t h e w e d g e a n d c o m p a r e d t h e results w i t h e x i s t i n g m o d e l s f r o m IVlei et a l . [ 14] a n d Zhao a n d F a l t i n -sen [ 1 3 ] .

M o s t studies have f o c u s e d o n t w o d i m e n s i o n a l i m p a c t p r o b -l e m s since s -l a m m i n g o n ships has been a m a j o r c o n c e r n . H o w e v e r , t h e r e is a n e e d f o r t h r e e - d i m e n s i o n a l s o l u t i o n s because real i m p a c t p h e n o m e n a are t h r e e d i m e n s i o n a l . I n t h i s paper, v e r t i c a l s l a m m i n g o f t h r e e - d i m e n s i o n a l objects, m o r e s p e c i f i c a x i s y m m e t r i c bodies, is c o n s i d e r e d . Early studies i n t h i s area have b e e n p u b l i s h e d by S h i f f m a n a n d Spencer [ 1 7 , 1 8 ] . They i n v e s t i g a t e d v e r t i c a l s l a m m i n g p h e n o m e n a o n spheres a n d cones a n a l y t i c a l l y b y a p p r o x i m a t i n g t h e bodies as a lens a n d an e l l i p s o i d a n d p r e s e n t e d s o l u t i o n s f o r the i m p a c t f o r c e o n these a x i s y m m e t r i c o b j e c t s . W a g n e r ' s t h e o r y has b e e n e x t e n d e d t o a x i s y m m e t r i c bodies b y C h u a n g [ 6 ] a n d F a l t i n -sen a n d Zhao [ 7 ] . I n t h e case o f a x i s y m m e t r i c objects, t h e b o d y shape is a p p r o x i m a t e d w i t h a g r o w i n g flat disc analogous t o W a g -ner's flat p l a t e a p p r o x i m a t i o n f o r t w o - d i m e n s i o n a l shapes. Based o n t h i s p r i n c i p l e , C h u a n g [ 6 ] d e v e l o p e d an a n a l y t i c a l e x p r e s s i o n f o r t h e pressure d i s t r i b u t i o n o n a cone w i t h s m a l l deadrise an-gle. I n 1997 Faltinsen a n d Zhao [ 7 ] p r e s e n t e d an a s y m p t o t i c t h e o r y f o r w a t e r e n t r y o f h e m i s p h e r e s a n d cones w i t h s m a l l ( l o c a l ) d e a d -rise angles based o n t h e a s s u m p t i o n s b e h i n d t h e W a g n e r t h e o r y . A n o t h e r i m p o r t a n t c o n t r i b u t o r t o a x i s y m m e t r i c s l a m m i n g p r o b -l e m s is M i -l o h [ 1 9 - 2 1 ] w h o d e v e -l o p e d a n a -l y t i c a -l expressions f o r t h e s l a m m i n g forces o n a x i s y m m e t r i c bodies. One o f the m a i n d i f -ferences b e t w e e n his w o r k a n d W a g n e r ' s t h e o r y is t h a t t h e b o d y b o u n d a r y c o n d i t i o n s are s a t i s f i e d e x a c t l y o n t h e a c t u a l b o d y sur-face i n s t e a d o f o n a flat disc.

I n 2 0 0 3 B a t t i s t i n a n d l a f r a t i [ 2 2 ] n u m e r i c a l l y s t u d i e d i m p a c t loads a n d pressure d i s t r i b u t i o n s o n t w o - d i m e n s i o n a l a n d ax-i s y m m e t r ax-i c bodax-ies. T w o years later Faltax-insen a n d C h e z h ax-i a n [ 2 3 ] p r e s e n t e d a g e n e r a l i z e d W a g n e r m e t h o d f o r t h r e e - d i m e n s i o n a l s l a m m i n g based o n t h e a p p r o a c h p r e s e n t e d b y Zhao e t a l . [ 1 3 ] f o r t w o d i m e n s i o n a l w a t e r i m p a c t p r o b l e m s . To v a l i d a t e t h e n u m e r i -cal s i m u l a t i o n s , t h e y p e r f o r m e d d r o p tests o n a t h r e e - d i m e n s i o n a l s h i p l i k e c o m p o s i t e s t r u c t u r e f r o m w h i c h t h e y o b t a i n e d several f o r c e m e a s u r e m e n t s . Peseux, C o r n e t a n d D o n g u y [ 2 4 ] s o l v e d t h e t h r e e - d i m e n s i o n a l W a g n e r p r o b l e m n u m e r i c a l l y f o r b o t h r i g i d a n d d e f o r m a b l e bodies. T h e n u m e r i c a l m o d e l is v a l i d a t e d w i t h a n i n t e r e s t i n g e x p e r i m e n t a l i n v e s t i g a t i o n c o n s i s t i n g o f d r o p tests o f c o n -ical shapes w i t h s m a l l deadrise angles ( 6 ° — 1 0 ° — 1 4 ° ) . K i m a n d H o n g [ 2 5 ] n u m e r i c a l l y s t u d i e d t h e i m p a c t o f a r b i t r a r y t h r e e -d i m e n s i o n a l bo-dies w i t h a n e x t e n -d e -d v o n K a r m a n a n -d an e x t e n -d e -d W a g n e r a p p r o a c h , i n c l u d i n g t h e presence o f i n c o m i n g w a v e s . T h e y also p r e s e n t e d e x p e r i m e n t a l results o n t h e i m p a c t loads d u r i n g w a t e r e n t r y o f t h r e e - d i m e n s i o n a l s t r u c t u r e s .

V e r y f e w e x p e r i m e n t s are available f o r v a l i d a t i o n o f t h e o r e t ical pressure p r e d i c t i o n s f o r a x i s y m m e t r i c bodies. I n 1 9 6 1 N i s e -w a n g e r [ 2 6 ] p e r f o r m e d d r o p tests o n a l u m i n i u m h e m i s p h e r e s a n d m e a s u r e d pressure d i s t r i b u t i o n s w i t h s e l f m a d e p r e s s u r e t r a n s -ducers. For c o n i c a l shapes, e x p e r i m e n t a l research has been c a r r i e d o u t b y C h u a n g a n d M i l n e [ 2 7 ] i n 1971 a n d m o r e r e c e n t l y b y Peseux et a l . as m e n t i o n e d above. I n t h e f o r m e r s t u d y i m p a c t pressures are m e a s u r e d o n cone shapes w i t h s m a l l deadrise angles v a r y i n g f r o m 1° to 1 5 ° . P o i n t absorbers w i t h a c o n i c a l shape are v e r y l i k e l y t o h a v e l a r g e r deadrise angles ( > 2 0 ° ) . I n t h i s p a p e r t h e r e s u l t s o f n e w i m p a c t e x p e r i m e n t s o n a h e m i s p h e r e a n d o n c o n e shapes w i t h l a r g e r d e a d r i s e angles are presented.

2. E x p e r i m e n t a l d e s i g n

Z J . Test setup and test objects

Table 1 s h o w s t h e t h r e e d i f f e r e n t bodies t h a t h a v e b e e n t e s t e d : a h e m i s p h e r e a n d t w o cones w i t h deadrise angles o f 2 0 ° a n d 4 5 ° . The m o d e l s are m a d e f r o m p o l y u r e t h a n e a n d have a large t h i c k n e s s f r o m 30 m m t o 5 0 m m . As m e n t i o n e d i n Table 1 t h e d i a m e t e r o f t h e o b j e c t s is 0.30 m , w h i c h is s u f f i c i e n t t o r e d u c e s u r f a c e t e n s i o n e f f e c t s . The bodies are d r o p p e d i n a w a t e r basin w i t h h o r i z o n t a l d i m e n s i o n s o f 1.20 m b y 1.00 m a n d a h e i g h t o f 1.25 m . T w e l v e d i f f e r e n t d r o p h e i g h t s b e t w e e n 0.05 m a n d 2.00 m h a v e been e v a l u a t e d , c o r r e s p o n d i n g t o i m p a c t v e l o c i t i e s o f 1.0 m/s a n d 6.3 m/s. A r e a l i s t i c s t r o k e f o r a p o i n t absorber b u o y is a b o u t 5 t o 10 m . D e p e n d e n t o n t h e c o n t r o l parameters, a f r e e f a l l o f 2 m can be c o n s i d e r e d as an e x t r e m e case. S m a l l e r d r o p h e i g h t s w i l l o c c u r m o r e f r e q u e n t l y and are t h e r e f o r e r e l e v a n t as w e l l . Because o f reasons o f s i m i l i t u d e , t h e cone shape tests can be c o n s i d e r e d as f u l l - s c a l e tests, a p a r t f r o m t h e f a c t t h a t t h e masses are n o t c o r r e c t l y scaled. I n case o f t h e h e m i s p h e r e , t h e r e s u l t s f r o m t h e s m a l l e s t d r o p h e i g h t s (0.05 m - 0 . 2 0 m ) need t o be u p s c a l e d t o p r o t o t y p e values, a c c o r d i n g t o t h e d i m e n s i o n s o f a f u l l - s c a l e b o d y . E x p e c t e d scaling e f f e c t s m i g h t arise f r o m surface t e n s i o n a n d v i s c o u s e f f e c t s . For c o m p l e t e n e s s , the tests w i t h t h e h e m i s p h e r e are also p e r f o r m e d f o r l a r g e r d r o p h e i g h t s .

I n t h i s paper, t h e results o f an i m p r o v e d test s e t u p are p r e -s e n t e d . I n i t i a l l y t h e te-st-s w e r e c a r r i e d o u t w i t h o u t a n y g u i d i n g s t r u c t u r e . A l t h o u g h t h e test objects w e r e b a l a n c e d p r e c i s e l y , t h e scatter i n t h e m e a s u r e d data a p p e a r e d to be s i g n i f i c a n t . I n o r d e r t o p r e v e n t s m a l l r o t a t i o n s o f t h e floaters w h i l e f a l l i n g d o w n , t h e s e t u p w a s e q u i p p e d w i t h a g u i d i n g s y s t e m c o n s i s t i n g o f tightened steel w i r e s [ 5 ] . The results discussed i n t h i s paper, h o w e v e r , are o b t a i n e d f r o m a test s e t u p w i t h a n i m p r o v e d g u i d i n g s y s t e m . The t i g h t e n e d steel rods are r e p l a c e d by a r a i l m o u n t e d o n s t i f f a l u m i n i u m p r o f i l e s . The test bodies are a t t a c h e d t o a p r o f i l e s t r u c t u r e e q u i p p e d

(3)

C. De Backer et al. / Applied Ocean Research 31 (2009) 143-156 145 g u i d i n g system: p r o f i l e s w i t h r a i l wheels Table 1

Test object characteristics.

II

II

H fl

. II

/ B a l l a s t ^_ ^ . a b

Fig. 1 . Schematic view o f the experimental test setup [ m m ] .

Fig. 2. Picture o f t h e experimental test setup.

w i t h w h e e l s , r o l l i n g d o w n t h e r a i l as s h o w n i n Fig. 1. W i t h t h i s t e s t s e t u p t h e v e r d c a l i t y o f t l i e i m p a c t i n g o b j e c t is assured a n d t h e tests are v e r y w e l l r e p r o d u c i b l e . The masses m e n t i o n e d i n Table 1 c o r r e s p o n d t o the t o t a l f a l l i n g mass, i.e. t h e s u m o f t h e mass o f t h e p o l y u r e t h a n e bodies a n d t h e a l u m i n i u m carriage. The d r o p h e i g h t ,

h, is l i m i t e d to 2 m , c o m p a r e d t o 4 m f o r t h e o r i g i n a l test s e t u p .

A 10 m m plexiglass sheet is i n s t a l l e d i n the b a s i n w h i c h a l l o w s t o film t h e i m p a c t p h e n o m e n a . A p i c t u r e o f t h e t e s t s e t u p is g i v e n i n Fig. 2.

Test objects (dimensions in mm) Characteristics

1 4ÓT ,5f) 1 g

Hemisphere

Local deadrise angles: 7 . 7 ° and 18.4° Radius: 0.15 m Material thickness: 0.05 m Mass: 11.5 kg Cone Deadrise angle: 2 0 ° Max. radius: 0.15 m Material thickness: 0.03 m Mass: 9.8 kg Cone Deadrise angle: 4 5 ° Max. radius: 0.15 m Material thickness: 0.03 m Mass: 10.2 kg 1 40 1 60 Table 2 Sensor characteristics.

Sensor Measurement range Resonance frequency (kHz)

A07 3.45 bar > 250

K30, K31 2 bar > 150

Shock accelerometer 500 g > 54

2.2. Instrumentation

2.2.1. Pressure sensors and shock accelerometer

T h e p r e s s u r e t i m e h i s t o r y , t h e p o s i t i o n a n d d e c e l e r a t i o n o f t h e b o d y w e r e r e c o r d e d d u r i n g i m p a c t . T h r e e h i g h f r e q u e n c y p i e z o e l e c t r i c p r e s s u r e sensors w e r e used. One ICP p r e s s u r e s e n s o r ( A 0 7 ) has a b u i l t - i n m i c r o e l e c t r o n i c a m p l i f i e r w h i l e t w o o t h e r h i g h f r e q u e n c y pressure sensors ( K 3 0 , K 3 1 ) h a v e e x t e r n a l a m p l i f i e r s . T h e m e a s u r e m e n t range f o r these devices is 3.45 b a r a n d 2 bar, r e s p e c t i v e l y . The pressure cells have a s m a l l d i a p h r a g m o f 5.5 m m a n d a v e r y h i g h r e s o n a n c e f r e q u e n c y , see Table 2. C o n s e q u e n t l y t h e sensors are v e r y w e l l s u i t e d f o r m e a s u r i n g i m p a c t p h e n o m e n a . T h e sensors are flush-mounted at a h o r i z o n t a l d i s t a n c e o f 0.04 m a n d 0.09 m , r e s p e c t i v e l y f r o m t h e s y m m e t r y axis, as i l l u s t r a t e d i n Table 1. T h e d e c e l e r a t i o n o f t h e o b j e c t d u r i n g i m p a c t w a s m e a s u r e d b y a s h o c k a c c e l e r o m e t e r w i t h a m e a s u r e m e n t r a n g e u p t o 5 0 0 g a n d a r e s o n a n c e f r e q u e n c y o f 5 4 k H z .

Fig. 3 s h o w s t h e c o n f i g u r a t i o n o f t h e p r e s s u r e cells. T h e first t h r e e c o n f i g u r a t i o n s ( a - c ) r e p r e s e n t t h e sensor p o s i t i o n s f o r t h e h e m i s p h e r e . T h e sensors i n Fig. 3(a) are m o u n t e d o n t w o o p p o s i t e m e r i d i a n s i n o r d e r to e v a l u a t e t h e v e r d c a l i t y o f t h e p e n e t r a t i o n . W i t h t h e c o n f i g u r a t i o n i n Fig. 3 ( b ) a c o m p a r i s o n b e t w e e n t h e t w o l o c a l d e a d r i s e angles can be m a d e a n d i n Fig. 3(c) t h e s a m p l i n g f r e q u e n c y is increased u p t o 100 k H z f o r o n e p r e s s u r e sensor a n d t h e s h o c k a c c e l e r o m e t e r . I n Fig. 3 ( d ) a n d ( e ) t h e c o n f i g u r a t i o n o f t h e p r e s s u r e sensors is g i v e n f o r t h e 2 0 ° cone. I n each c o n f i g u r a t i o n t w o d i f f e r e n t p r e s s u r e sensors are m o u n t e d o n m e r i d i a n s close t o each o t h e r , a l l o w i n g f o r t h e assessment o f t h e d i f f e r e n t sensors. Fig. 3 ( f ) s h o w s t h e p r e s s u r e sensor c o n f i g u r a t i o n i n case o f t h e 4 5 ° cone, w h i c h is s i m i l a r t o Fig. 3(a) c o m b i n e d w i t h ( b ) . Each case has b e e n t e s t e d at least t h r e e t i m e s f o r e v e r y d r o p h e i g h t , v a r y i n g b e t w e e n 0.05 m a n d 2 m .

A s a m p l i n g f r e q u e n c y (SF) o f at least 30 k H z w a s u s e d f o r r e c o r d i n g . Such h i g h s a m p l i n g f r e q u e n c i e s are r e q u i r e d , since t h e

(4)

1 4 6 G. De Backer et al./Applied Ocean Research 31 (2009) 143-156 3 0 0 3 0 0 Hemisphere 3 0 0 3 0 0 300 Cone 2 0 ° Cone 4 5 °

Fig. 3. Pressure sensor positions [ m m ] for tlie hemisphere: (a) Sensors K30A and K31A - SF = 30 kHz, (b) Sensors K30B, K31B and A07B - SF = 30 kHz, (c) Sensor K31C - SF = 100 kHz, f o r the 2 0 ° cone : (d) Sensors K30A, K31A and A07A - SF = 30 kHz, (e) Sensors K30B and A07B - S F = 30 kHz, for the 4 5 ° cone: ( f ) Sensors K30, K31 and A07 - SF = 30 kHz. 4 3.5 3 is 2.5 £ 1.5 1 0.5 0 1 0.03 Asymptotic theory - 1 = 0.002 s - h = 2 m 0.035 0.04 r [ m ] 0.045

Fig. 4. Theoretical pressure d i s t r i b u t i o n as a f u n c t i o n of r for a cone w i t h deadrise angle 2 0 ° and drop height 2 m .

p r e s s u r e peal<s o c c u r i n a v e r y s m a l l t i m e i n t e r v a l ( o r d e r o f m a g n i -t u d e m i l l i s e c o n d s ) . For -t h e same r e a s o n -t h e r e s o n a n c e f r e q u e n c y o f t h e sensors s h o u l d be h i g h e n o u g h . A s m a l l pressure cell d i -a p h r -a g m -are-a is necess-ary since t h e pressure pe-aks -are -also v e r y m u c h l o c a l i z e d i n space as w e l l , as can be seen i n Fig. 4, s h o w i n g the t h e o r e t i c a l l y p r e d i c t e d p r e s s u r e d i s t r i b u t i o n a c c o r d i n g t o a s y m p -t o -t i c -t h e o r y a-t -t = 0 . 0 0 2 s f o r a cone w i -t h deadrise angle 2 0 ° a n d d r o p h e i g h t 2 m .

T a b l e s

Influence of pressure sensor diameter: estimated deviations f r o m peak pressure for drop heights of 1 m and 4 m .

Sensor diameter ( m m ) h = 1 m (%) ft = 4 m (%)

5.5 10.8 13.9

19 30.5 34.2

I n e a r i i e r i n v e s t i g a t i o n s , sensors w i t h l a r g e r d i a m e t e r s have s o m e t i m e s b e e n used, w i t h values u p t o 19 m m i n [ 1 6 ] . I n t h a t case t h e pressure peaks m i g h t have a s m a l l e r s p a t i a l e x t e n t t h a n t h e sensor area. Even p r e s s u r e cells w i t h d i a m e t e r 5.5 m m m i g h t m e a s u r e a space-averaged pressure, w h i c h is s l i g h t i y d i f f e r e n t f r o m t h e p e a k pressure. T h e p r e s s u r e d i s t r i b u t i o n is p a r t i c u l a r l y m o r e p e a k e d w h e n t h e ( l o c a l ) deadrise angle is s m a l l a n d t h e i m p a c t v e l o c i t y h i g h . A s s u m i n g t h a t a pressure cell r e g i s t e r s t h e space-averaged pressure w h e n s u b j e c t to a n o n - u n i f o r m p r e s s u r e d i s t r i b u t i o n , t h e d e v i a t i o n b e t w e e n t h e p e a k pressure a n d t h e sensor r e c o r d c a n be d e t e r m i n e d . I n [ 2 3 ] , F a l t i n s e n e s t i m a t e d t h a t t h e t h e o r e t i c a l peak pressure is at m a x i m u m 11% h i g h e r t h a n t h e space-averaged pressure, m e a s u r e d b y a sensor w i t h a d i a m e t e r o f 4 m m . D e v i a t i o n s o f t h e same m a g n i t u d e can be d e r i v e d , based o n t h e t h e o r e t i c a l l y p r e d i c t e d pressure d i s t r i b u t i o n b y t h e t h r e e -d i m e n s i o n a l a s y m p t o t i c t h e o r y . For pressure cells w i t h -d i a m e t e r 5.5 m m i t is e s t i m a t e d w i t h t h e l a t t e r m e t h o d t h a t t h e m e a s u r e d pressure o n a cone w i t h d e a d r i s e angle 2 0 ° deviates b e t w e e n 10% a n d 14% f r o m t h e peak pressure f o r d r o p h e i g h t s o f 1 m a n d 4 m . I n a s i m i l a r w a y as above, i t is e x p e c t e d t h a t a pressure sensor w i t h a d i a m e t e r o f 19 m m , w o u l d u n d e r e s t i m a t e t h e peak p r e s s u r e w i t h m o r e t h a n 30% f o r the same case o f a cone w i t h deadrise a n g l e 2 0 ° , as s h o w n i n Table 3.

(5)

C. De Backer et al. /Applied Ocean Research 31 (2009) 143-156 147

2.2.2. High speed camera

A h i g h speed c a m e r a w a s u s e d t o r e c o r d t h e p e n e t r a t i o n o f t h e i m p a c t i n g bodies as a f u n c t i o n o f t i m e . The camera p r o v i d e d i n f o r m a t i o n o n t h e w a t e r u p r i s e a l o n g t h e b o d y a n d o n the p o s i t i o n a n d v e l o c i t y o f t h e i m p a c t i n g b o d y . For t h i s p u r p o s e a m a r k e r t r a c k i n g t e c h n i q u e has b e e n a p p l i e d . The h i g h speed camera is able to d e l i v e r images u p t o 2 5 0 0 0 0 f r a m e s per second ( f p s ) a n d has f u l l m e g a p i x e l r e s o l u t i o n at 3 0 0 0 f p s . I n t h i s test case, i t has b e e n used at 5 0 0 0 u p t o 18 0 0 0 f p s , d e p e n d e n t o n the desired p i x e l r e s o l u t i o n . Because o f t h e h i g h f r a m e rate, t h e camera s h u t t e r t i m e is e x t r e m e l y s h o r t . I n o r d e r t o o v e r c o m e l o w i l l u m i n a t i o n a n d to a v o i d i n t e r f e r e n c e w i t h t h e g n d f r e q u e n c y , special f l i c k e r f r e e l i g h t s have b e e n used. T w o lasers are m o u n t e d o n t o p o f t h e basin a n d serve as a t r i g g e r f o r the data a c q u i s i t i o n s y s t e m . W h e n t h e d r o p p e d o b j e c t s i n t e r s e c t t h e laser beams, t h e r e c o r d i n g o f t h e pressure sensors, a c c e l e r o m e t e r a n d c a m e r a s i g n a l starts a u t o m a t i c a l l y .

3. A n a l y t i c a l f o r m u l a t i o n

The e x p e r i m e n t a l results are c o m p a r e d w i t h e x i s t i n g a s y m p -t o -t i c s o l u -t i o n s based o n -t h e classical W a g n e r m e -t h o d e x -t e n d e d -t o a x i s y m m e t r i c bodies, as i t w a s p r o p o s e d b y C h u a n g [ 6 ] a n d F a l t i n -sen et a l . [ 7 ] . Despite t h e i n t e r e s t i n g w o r k t h a t has a l r e a d y been c a r r i e d o u t i n the f i e l d o f w a t e r i m p a c t , W a g n e r ' s m e t h o d is e v e n n o w a d a y s s t i l l v e r y v a l u a b l e , since i t p r o d u c e s a n a l y t i c a l f o r m u -las t h a t are easy t o h a n d l e a n d g i v e a v e i y g o o d first i n s i g h t i n t o t h e p r o b l e m . The f l u i d flow is d e s c r i b e d b y p o t e n t i a l t h e o r y a n d a c o n s t a n t e n t r y v e l o c i t y U is a s s u m e d . The i n i t i a l time i n s t a n t fo is d e f i n e d as t h e time w h e r e the b o d y touches t h e c a l m w a t e r s u r face. A t a t i m e t , t h e p e n e t r a t i o n d e p t h r e l a t i v e t o t h e c a l m w a -t e r surface (z = 0) equals U-t a n d -t h e c o r r e s p o n d i n g i n s -t a n -t a n e o u s r a d i u s at t h e w e t s e c t i o n o f t h e cone is fao(t), as s h o w n i n Fig. 5. T h e i n s t a n t a n e o u s radius b ( t ) at t h e i n t e r s e c t i o n p o i n t b e t w e e n t h e b o d y a n d the w a t e r is f o u n d b y i n t e g r a t i n g t h e v e r t i c a l v e l o c -i t y o f t h e w a t e r part-icles at z = 0. For a cone shape t h -i s results -i n

b(t) = 4Ut/ {n t a n / 3 ) [ 7 ] . I t s h o u l d be m e n t i o n e d t h a t Fig. 5 gives

a s i m p l i f i e d p r e s e n t a t i o n o f t h e w a t e r u p r i s e , since i n r e a l i t y a j e t flow occurs w h i c h m i g h t e n d i n a spray, d e p e n d i n g o n the c o n v e x -i t y o f t h e o b j e c t .

The pressure o n a cone shape w i t h deadrise angle ;S, at a c e r t a i n d i s t a n c e r f r o m t h e s y m m e t r y axis, is expressed b y : 1 9 Vcone = - p L f 1 -6 4 j r ^ t a n ^ ^ 16

iwrY

( 1 )

Eq. ( 1 ) is c o m p o s e d o f t h r e e t e r m s . The first t e r m expresses t h e s t a g n a t i o n pressure. The s e c o n d t e r m is a consequence o f t h e p e r m a n e n t flow a r o u n d t h e disc a n d t h e t h i r d t e r m accounts f o r t h e e x p a n s i o n o f the disc, r e p r e s e n t i n g t h e e f f e c t o f t h e n o n - s t a t i o n a r y b e h a v i o u r o f the f l o w a r o u n d t h e disc. As m e n t i o n e d b e f o r e , t h e b l u n t b o d y a s s u m p t i o n i n W a g n e r ' s m e t h o d i m p l i e s t h a t bodies s h o u l d have s m a l l local deadrise angles. I n t h e l i t e r a t u r e , i t is s t a t e d t h a t t h e classical W a g n e r t h e o r y gives q u i t e accurate results f o r w e d g e s w i t h deadrise angles i n t h e range o f 4 to 2 0 degrees [ 1 3 ] . W h e n deadrise angles are s m a l l e r t h a n 4 degrees, a n air c u s h i o n is f o r m e d , w h i c h reduces t h e pressure o n t h e s t r u c t u r e a n d as a r e s u l t , W a g n e r t h e o r y o v e r e s t i m a t e s t h e pressure b y a large m a r g i n .

For a h e m i s p h e r e t h e r e l a t i o n s h i p b e t w e e n t h e p e n e t r a t i o n d e p t h a n d i n s t a n t w e t radius b is n o t as s t r a i g h t f o r w a r d as i t is f o r a cone shape. Faltinsen a n d Zhao [7 ] suggested a q u a d r a t i c r e l a t i o n b e t w e e n Ut a n d b w h i c h is o n l y v a l i d f o r s m a l l s u b m e r g e n c e s

Fig. 5. Cone penetrating t h r o u g h originally calm water: clarification o f parameters.

(Ut/R < 1 / 5 ) : b = V^RUt. The pressure o n a n i m p a c t i n g

h e m i s p h e r e w i t h r a d i u s R, at a distance r f r o m t h e s y m m e t r y axis, is expressed as f o l l o w s :

Phemisphere = 2^^^ 1 - (2)

The m e a s u r e d p e n e t r a t i o n a n d a c c e l e r a t i o n w i l l be c o m p a r e d w i t h t h e o r e t i c a l values t h a t are based o n t h e c o m p u t a t i o n o f t h e h y d r o d y n a m i c i m p a c t f o r c e , F3, a c t i n g o n a b o d y p e n e t r a t i n g t h e f r e e w a t e r surface. This f o r c e is c a l c u l a t e d i n t w o w a y s . By m a k i n g use o f the a d d e d mass t h e o r e m ( A M ) , F3 can be expressed as:

d{Ma,,U) d h diMo33 dz

(3) d t ^'dt2 d t d t

w h e r e Ma^^ is t h e h i g h f r e q u e n c y l i m i t o f t h e a d d e d mass. The second t e r m i n Eq. ( 3 ) can also be c o m p u t e d b y i n t e g r a t i o n o f t h e pressures g i v e n i n Eqs. ( 1 ) a n d ( 2 ) . This w i l l be r e f e r r e d t o as t h e pressure i n t e g r a t i o n (PI) m e t h o d . W h e n F3 is k n o w n , t h e accelera-t i o n aaccelera-t each accelera-t i m e saccelera-tep is d e r i v e d and accelera-t h e v e l o c i accelera-t y a n d p e n e accelera-t r a accelera-t i o n d e p t h are o b t a i n e d b y n u m e r i c a l i n t e g r a t i o n o f t h e a c c e l e r a t i o n . 4. E x p e r i m e n t a l test r e s u l t s

4 . 1 . Water uprise and impact velocity

Fig. 6 s h o w s a selected n u m b e r o f images o f a h e m i s p h e r e p e n e t r a t i n g t h e f r e e w a t e r surface, d r o p p e d f r o m 1 m . A s o f t w a r e p r o g r a m recognizes t h e p a t t e r n o f t h e m a r k e r a n d d e t e r m i n e s its c o o r d i n a t e s at each t i m e step. C o n s e q u e n t l y t h e p o s i t i o n o f the b o d y is k n o w n as a f u n c t i o n o f time a n d t h e v e l o c i t y can be d e t e r m i n e d . The p i c t u r e s c l e a r i y s h o w t h e w a t e r u p r i s e a l o n g t h e h e m i s p h e r e . The j e t flow is q u i c k l y d e t a c h e d f r o m t h e b o d y s u r f a c e e n d i n g u p i n a spray. This p h e n o m e n o n has also b e e n o b s e r v e d f o r c y l i n d e r s b y G r e e n h o w a n d L i n i n [ 2 8 ] a n d [ 2 9 ] . Figs. 7 a n d 8 s h o w c a m e r a i m a g e s o f t h e i m p a c t i n g cones f o r a d r o p h e i g h t o f 1 m . The c r e a t i o n a n d p r o p a g a t i o n o f a j e t a l o n g t h e cone s u r f a c e can be c l e a r l y seen a n d m e a s u r e d . F r o m t h e p h o t o g r a p h s o f t h e cones t h e r a t i o C„, can be d e -t e r m i n e d a n d c o m p a r e d w i -t h -t h e o r e -t i c a l values. The C„, f a c -t o r is d e f i n e d as t h e r a t i o b e t w e e n the h e i g h t s o f t h e i m m e d i a t e a n d u n d i s t u r b e d f r e e w a t e r surfaces m e a s u r e d f r o m t h e b o t t o m p o i n t o f t h e f a l l i n g o b j e c t :

c.. = . +

i

^

w i t h f t h e z c o o r d i n a t e o f t h e i n t e r s e c t i o n p o i n t b e t w e e n t h e o b -j e c t a n d t h e f r e e w a t e r surface, see Fig. 5. W h e n flow s e p a r a t i o n occurs above f , as i n t h e case o f the h e m i s p h e r e , Cy, has t h e p h y s -ical m e a n i n g o f a w e t t i n g f a c t o r . H o w e v e r , i n t h e case o f a cone a t h i n j e t flow m i g h t o c c u r above this i n t e r s e c t i o n p o i n t as o b s e r v e d i n Figs. 7 a n d 8. The w e t t i n g f a c t o r C„; f o r a cone w i t h a t t a c h e d j e t flow can t h e n be d e f i n e d as:

C„ 1 +

? ( b , 0 + /jer

Ut

bo

Ut

(5) w h e r e /jet is t h e h e i g h t o f t h e j e t . C o n s i d e r i n g t h e o u t e r flow

(6)
(7)

G. De Backer et al./Applied Ocean Research 31 (2009) 143-156 149

Fig. 8. Cone ( f t

t . = 0.028 s.

4 5 ° ) penetrating the w a t e r - (a) t = 0.000 s, (b) f = 0.004 s, (c) t = 0.008 s, (d) t = 0.012 s, (e) f = 0.016 s, ( f ) t = 0.020 s, (g) f = 0.024 s, (h)

d o m a i n , Faltinsen et al. [ 7 ] f o u n d a r a t i o b/bo e q u a l t o 4/7t f o r cones based o n W a g n e r ' s b l u n t b o d y a p p r o a c h . By m a t c h i n g t h e o u t e r t h r e e - d i m e n s i o n a l s o l u t i o n f o r a x i s y m m e t r i c f l o w w i t h t h e i n n e r t w o - d i m e n s i o n a l j e t f l o w s o l u t i o n b y W a g n e r , F a l t i n s e n d e s c r i b e d t h e j e t f l o w d u r i n g w a t e r e n t r y o f a cone. Based o n F a l t i n sen's c o n s i d e r a t i o n s , t h e h e i g h t o f t h e j e t is f o u n d t o be —cos/?, r e -s u l t i n g i n a w e t d n g f a c t o r C „ e q u a l t o ^ ( 1 -j-co-s/S) f o r a cone w i t h a t t a c h e d j e t f l o w . The f o r m u l a b y F a l t i n s e n et a l . [ 7 ] is s l i g h t l y d i f f e r e n t f r o m the l a t t e r , p r o b a b l y d u e to a t y p i n g e r r o r i n [ 7 ] . I n n u -m e r i c a l -m o d e l s t h a t s a t i s f y t h e r e a l b o d y b o u n d a r y c o n d i d o n s , t h e d e s c r i p t i o n o f the j e t f l o w can be v e r y c o m p l e x . Zhao a n d F a l t i n -sen [ 1 2 ] d e v e l o p e d a n u m e r i c a l m o d e l t h a t s i g n i f i c a n t l y s i m p l i f i e s t h e d e s c r i p t i o n o f t h e j e t f l o w . This a p p r o a c h has been a d o p t e d b y B a t t i s d n a n d l a f r a t i [ 2 2 ] w h o d e t e r m i n e d t h e w a t e r surface e l e -v a t i o n n u m e r i c a l l y f o r a x i s y m m e t r i c bodies, a m o n g t h e m a cone w i t h d e a d r i s e angle 3 0 ° . H o w e v e r , t h e j e t s are t r u n c a t e d at t h e t o p , w h i c h m a k e s i t i m p o s s i b l e t o d e r i v e t h e c o r r e c t w e t d n g f a c t o r . Figs. 9 a n d 10 i l l u s t r a t e t h e w e t t i n g f a c t o r as a f u n c t i o n o f p e n e t r a -t i o n d e p -t h f o r -three d i f f e r e n -t d r o p h e i g h -t s f o r -t h e 4 5 ° cone a n d t h e 2 0 ° cone, r e s p e c t i v e l y . The v a l u e o f C„, is r e l a t i v e l y c o n s t a n t d u r i n g p e n e t r a t i o n , a l t h o u g h i n b o t h cases s l i g h t l y h i g h e r v a l u e s are m e a s u r e d f o r s m a l l p e n e t r a t i o n d e p t h s . F u r t h e r m o r e t h e i n f l u -ence o f t h e d r o p h e i g h t appears t o be n o t v e r y s i g n i f i c a n t a n d a s m a l l e r w e t t i n g f a c t o r is f o u n d f o r the h i g h e s t d e a d r i s e angle. O n average t h e m e a s u r e d values are 19% a n d 23% s m a l l e r t h a n t h e v a l -ues f o u n d b y F a l t i n s e n e t al. f o r t h e 4 5 ° a n d 2 0 ° cone, r e s p e c t i v e l y . For t h e h e m i s p h e r e i t is n o t possible t o d e r i v e t h e w e t t i n g f a c t o r b y m e a n s o f t h e c a m e r a images, since i t is d i f f i c u l t t o c o r r e c t l y d e t e r -m i n e t h e i n t e r s e c t i o n p o i n t b e t w e e n t h e f r e e w a t e r s u r f a c e a n d t h e b o d y , d u e to t h e d i s t u r b i n g e f f e c t o f t h e t h r e e - d i m e n s i o n a l spray. I n o r d e r t o b e t t e r v i s u a l i z e t h e f l o w s e p a r a t i o n at t h e h e m i s p h e r e , i t w o u l d be necessary t o create a l i g h t sheet t h r o u g h t h e s y m m e t r y axis o f t h e h e m i s p h e r e b y m e a n s o f a s t r o n g laser. I n t h a t case t h e w a t e r s p r a y p a r t i c l e s i n f r o n t o f t h e h e m i s p h e r e are n o t i l l u m i n a t e d a n d d o n o t d i s t u r b the m e a s u r e m e n t .

Fig. 11 i l l u s t r a t e s t h e v e l o c i t y d u r i n g t h e i n i t i a l i m p a c t stage d e t e r m i n e d b y t h e h i g h speed camera as a f u n c t i o n o f t h e e n t r y d e p t h . For each shape t h r e e i n i t i a l v e l o c i t i e s , Lfo, are c o n s i d e r e d :

(8)

ISO

O 2.5

1.5

0.5

C. De Backer et al./Applied Ocean Research 31 (2009) 143-156 6 | O * O d : * oa * o <?P : * o O h = 0.50 m - p = 45° • h = 1 . 0 0 m - p = 45° * h = 1 . 7 5 m - p = 45° C^ = 4(1 + cos (7t/4))/jt 0 0.02 0.04 0.06 0.08 0.1 Ut [m]

Fig. 9. W e t t i n g factor as a f u n c t i o n o f penetration depth on the 4 5 ° cone.

O 2.5 1.5 0.5 , 9 o h = 0.50 m - P = 20° • h = 1.00 m - P = 20°

*

h = 1.75 m - P = 20° - C w = 4(1 + cos (;t/9))/7c 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 U t [ m ]

Fig. 10. W e t t i n g factor as a f u n c t i o n o f penetration d e p t h on the 2 0 ° cone.

Uo < 3 m / s , (Jo « 4 m / s a n d UQ > 4.6 m / s . A l t h o u g h t h e mass o f t h e h e m i s p h e r e is t h e largest o f t h e t h r e e t e s t e d objects, t h e v e l o c i t y decrease d u r i n g t h e i n i t i a l stage o f t h e i m p a c t is m o s t p r o n o u n c e d f o r t h i s shape. This is especially t h e case f o r h i g h e r d r o p h e i g h t s , c o r r e s p o n d i n g t o larger values o f UQ a n d c o n s e q u e n t l y h i g h e r i m p a c t forces.

For t h e 4 5 ° c o n e t h e s l a m m i n g f o r c e is so s m a l l t h a t t h e i m p a c t v e l o c i t y r e m a i n s q u i t e c o n s t a n t . N o t e t h a t t h e v e l o c i t y increases f o r b o t h cone shapes i n p a r t i c u l a r f o r s m a l l values o f UQ. I m m e d i a t e l y a f t e r c o n t a c t i n g the w a t e r surface, the i m p a c t forces o n t h e cones are s t i l l r a t h e r s m a l l c o m p a r e d t o t h e g r a v i t y f o r c e . For t h i s r e a s o n t h e i m p a c t v e l o c i t y f i r s t b u i l d s u p f o r a v e r y s h o r t p e r i o d o f t i m e b e f o r e s t a r t i n g t o decrease. The g r a p h i l l u s t r a t e s t h a t t h e a s s u m p -tion o f a c o n s t a n t e n t r y v e l o c i t y can be b e t t e r j u s t i f i e d f o r s m a l l e r i n i t i a l v e l o c i t i e s UQ. The r e c o r d e d v e l o c i t y t i m e h i s t o r y is s h o r t f o r t h e 2 0 ° cone, because t h e m a r k e r p a t t e r n b e c o m e s q u i c k l y u n c l e a r d u e to t h e w a t e r uprise. Longer v e l o c i t y t i m e h i s t o r i e s are o b t a i n e d w i t h t h e a c c e l e r o m e t e r , as w i l l be i l l u s t r a t e d i n S e c t i o n 4.2.

4.2. Pressure distribution, impact velocity and deceleration

4.2.1. Hemisphere

Figs. 12 a n d 13 s h o w the pressure c o e f f i c i e n t Cp = P/(0.5PUQ) o n the h e m i s p h e r e as a f u n c t i o n o f t i m e f o r a d r o p h e i g h t o f 1 m at 5.5 ' Hemisphere • Cone 20° • Cone 4 5 ° 0.01 0.02 0.03 0.04 Entry depth [m] 0.05 0.06

Fig. 11. Velocity measured by the high speed camera f o r three d i f f e r e n t initial impact velocities f o r each shape.

r = 0 . 0 4 m a n d r = 0.09 m , r e s p e c t i v e l y . T h e i n i t i a l t i m e is d e f i n e d as t h e m o m e n t w h e r e t h e b o t t o m o f the h e m i s p h e r e t o u c h e s t h e w a t e r s u r f a c e . T h e p r e s s u r e m e a s u r e m e n t s are c o m p a r e d w i t h t h e a s y m p t o t i c s o l u t i o n s , a s s u m i n g a c o n s t a n t e n t r y v e l o c i t y . T h e f i g u r e i n d i c a t e s t h a t t h e a s y m p t o t i c t h e o r y o v e r e s t i m a t e s t h e pressures s i g n i f i c a n t l y , p a r t i c u l a r l y f o r s m a l l local d e a d r i s e angles. This w a s also o b s e r v e d i n t h e e x p e r i m e n t s o f L i n a n d S h i e h [ 1 5 ] f o r a c y l i n d e r . T h e p r e s s u r e p r o f i l e s i n d i c a t e t h a t s m a l l e r local d e a d r i s e angles l e a d t o h i g h e r pressures w h i c h h a v e a s h o r t e r d u r a t i o n i n t i m e . T h e rising t i m e o f t h e f i r s t p r e s s u r e p e a k (Fig. 12) is o n l y 0.2 m s . D u e t o the decrease i n v e l o c i t y , t h e time intei-val b e t w e e n t h e m e a s u r e d p r e s s u r e peaks is l a r g e r t h a n b e t w e e n t h e t h e o r e t i c a l l y p r e d i c t e d peaks. F u r t h e r m o r e i t can be n o t e d t h a t t h e pressure d i s t r i b u t i o n o f t h e f o u r sensors at r = 0 . 0 4 m o b t a i n e d f r o m t h e t h r e e d i f f e r e n t test c o n f i g u r a t i o n s i n Fig. 3 ( a - c ) c o i n c i d e v e r y w e l l . T h i s i m p l i e s f i r s t l y t h a t t h e h e m i s p h e r e p e n e t r a t e d p e r f e c t l y a l o n g a v e r t i c a l l i n e a n d s e c o n d l y t h a t a s a m p l i n g f r e q u e n c y o f 30 k H z is s u f f i c i e n t l y large since n o h i g h e r p e a k has b e e n r e g i s t e r e d at 100 k H z . Figs. 1 4 - 1 6 s h o w t h e m e a s u r e d a n d t h e o r e t i c a l a c c e l e r a t i o n , v e l o c i t y a n d e n t r y d e p t h , r e s p e c t i v e l y . T h e t h e o r e t i c a l values are based o n t h e pressure i n t e g r a t i o n m e t h o d (PI) a n d a d d e d mass m e t h o d ( A M ) as e x p l a i n e d i n S e c t i o n 3. T h e p r e s e n t e d v e l o c i t y a n d p o s i t i o n d a t a f r o m t h e h i g h speed c a m e r a are m e a s u r e d at 1 8 0 0 0 f p s f o r t h e t h r e e shapes. The a c c e l e r a t i o n s i g n a l i n Fig. 14 is d i s t u r b e d b y a h i g h f r e q u e n c y noise, p r o b a b l y o r i g i n a t i n g f r o m o s c i l l a t i o n s o f t h e h o r i z o n t a l a l u m i n i u m b e a m since t h e noise w a s n o t r e g i s t e r e d i n the o r i g i n a l s e t u p . N e v e r t h e l e s s t h e a c c e l e r o m e t e r s i g n a l is s t i l l v a l u a b l e , as can be seen i n Fig. 15. T h e v e l o c i t y , based o n n u m e r i c a l i n t e g r a t i o n o f t h e a c c e l e r o m e t e r s i g n a l c o i n c i d e s v e r y w e l l w i t h t h e v e l o c i t y d e r i v e d f r o m t h e h i g h s p e e d c a m e r a images. The t h e o r e t i c a l v e l o c i t i e s d r o p m o r e q u i c k l y , w h i c h is d u e t o t h e f a c t t h a t t h e forces a n d c o n s e q u e n t l y t h e accelerations are o v e r e s t i m a t e d b y b o t h m e t h o d s . T h e m e a s u r e d i n i t i a l v e l o c i t y is 4.0 m/s, w h e r e a s t h e c a l c u l a t e d speed Uo =

y/2gh w o u l d be 4.4 m / s . This d i f f e r e n c e can be a t t r i b u t e d m a i n l y

to f r i c t i o n i n the g u i d i n g s y s t e m . For this reason a l l t h e o r e t i c a l v a l u e s are c a l c u l a t e d based o n t h e m e a s u r e d i n i t i a l s p e e d . N o t e t h e v e r y s h o r t time s p a n o f 12 m s i n t h e p l o t s . I n t h i s t i m e s p a n t h e h e m i s p h e r e has r e a c h e d a s u b m e r g e n c e o f a b o u t R/3 (see Fig. 16) a n d t h e r e l e v a n t i m p a c t p h e n o m e n a have o c c u r r e d .

(9)

O 35 30 25 20 15 10 5 O - 5 1 1 ,,: Exp - K30A - r = 4 cm • E x p - K 3 1 A - r = 4 c m 1 1 i E x p - K 3 1 B - r = 4 c m E x p - K 3 1 C - r = 4 c m Asymptotic theory - r = 4 cm • } " i' i' E x p - K 3 1 B - r = 4 c m E x p - K 3 1 C - r = 4 c m Asymptotic theory - r = 4 cm • } " i' i'

\

: : , . :

1 ;

J

V • V v ^ ^ ' ^ -:

G. De Backer el al. /Applied Ocean Research 31 (2009) 143-156 600 I

151

0.002 0.004 0.006 0.008 Time [s]

Fig. 12. Measured and calculated pressure distribution on the hemisphere at r 0.04 m for Uo = 4.0m/s. CL O 3 5 30 25 20 15 10 Exp - A07B - r = 9 cm • Exp - K30B - r = 9 cm •Asymptotic theory - r = 9 cm 0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 13. Measured and calculated pressure distribution on the hemisphere at r = 0.09 m for Uo = 4.0 m / s .

4.2.2 Cone 2 0 °

Fig. 17 s h o w s t h e m e a s u r e d a n d c a l c u l a t e d pressure d i s t r i b u -t i o n o n -t h e 2 0 ° cone f o r a m e a s u r e d i m p a c -t v e l o c i -t y Üq = 3 . 8 5 m / s . It c a n be n o d c e d t h a t t h e pressures m e a s u r e d w i t h t h e d i f f e r -e n t s-ensor typ-es c o r r -e s p o n d v -e r y w -e l l i n b o t h s-ensor p o s i t i o n s r = 0 . 0 4 m a n d r = 0 . 0 9 m . A c c o r d i n g t o t h e a s y m p t o t i c t h e -o r y , t h e p e a k pressure l e v e l d-oes n -o t change a l -o n g t h e -o b j e c t . I n t h e e x p e r i m e n t s t h e s e c o n d pressure peak is s l i g h t l y larger t h a n t h e f i r s t o n e . O n average o v e r a l l t h e tests, t h e d i f f e r e n c e i n peak pressure b e t w e e n t h e t w o p o s i t i o n s is 3.8%. This p h e n o m e n o n w a s also o b s e r v e d b y Peseux et a l . [ 2 4 ] w i t h e v e n m o r e p r o n o u n c e d d i f -ferences f o r cones w i t h s m a l l e r deadrise angles ( 1 4 ° - 1 0 ° - 6 ° ) . T h e reason f o r t h i s t r e n d is n o t e n t i r e l y clear. I t c o u l d p o s s i b l y be a t t r i b u t e d t o m o u n t i n g p r o b l e m s d u e t o the s m a l l r a d i u s o f c u r v a -t u r e a-t r = 0 . 0 4 m c o m p a r e d -t o r = 0.09 m . The sensors, h a v i n g a f l a t m e m b r a n e area, d i s t u r b t h e g e o m e t r y o f t h e cone m o r e at Exp (Accelerometer) Theoretical (AM) Theoretical (PI) -600 0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 14. Measured and calculated acceleration on the hemisphere.

4.5

„ 4

3.1

I

2.5

O Exp (High Speed Camera) • Exp (Accelerometer) •= = ° Theoretical (AM)

• •• - Theoretical (PI)

—1

O Exp (High Speed Camera) • Exp (Accelerometer) •= = ° Theoretical (AM) • •• - Theoretical (PI) 1 1 i i 1 0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 15. Measured and calculated velocity on the hemisphere.

0.06

0.05

O Exp (High Speed Camera) • Exp (Accelerometer) • - - T h e o r e t i c a l (AM) " ° Theoretical (PI)

0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 16. Measured and calculated position o n the hemisphere.

a s m a l l e r r a d i u s o f c u r v a t u r e and t h i s m i g h t s l i g h t l y i n f l u e n c e t h e pressure m e a s u r e m e n t .

I n Fig. 18 a q u i t e h i g h d e c e l e r a t i o n peak o f a b o u t - 1 0 0 m / s ^ can be n o t i c e d , w h i c h results i n a n o n - n e g l i g i b l e v e l o c i t y decrease (Fig. 19). As i n t h e case o f t h e h e m i s p h e r e , t h e t h e o r y is r a t h e r

(10)

152 G. De Backer et nl. / Applied Oceaa Research 31 (2009) 143-156 ' Exp - K30A - r = 4 cm • Exp - A 0 7 A - r = 9 cm - E x p - K 3 1 A - r = 9 c m • Exp - A07B - r = 4 cm ' Exp - K30B - r = 4 cm •Asymptotic theory - r = 4 cm • Asymptotic theory - r = 9 cm Ü 35 30 25 20 15 10 5 0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 17. IMeasured and calculated pressure d i s t r i b u t i o n on cone ( f i = 2 0 ° ) f o r

Va = 3.85 m / s . 100 50 c % - 5 0

I

- 1 0 0 -150 -200 • Exp (Accelerometer) - - - Theoretical (AM) • " - • T h e o r e t i c a l (PI)

^

0.002 0.004 0.006 0.008 Time [s] 0.01 0.012

Fig. 18. Measured and calculated acceleration on cone (fi = 2 0 ° ) .

c o n s e r v a t i v e , especially t h e a d d e d mass m e t h o d . The h e i g h t o f t h e tested cone shape is 0.055 m , w h i c h m e a n s i t is a l m o s t c o m p l e t e l y s u b m e r g e d a f t e r 12 ms (Fig. 2 0 ) .

4.2.3. Cone 45°

Figs. 2 1 2 4 s h o w the pressure d i s t r i b u d o n , a c c e l e r a t i o n , v e l o c -i t y a n d e n t r y d e p t h f o r t h e 4 5 ° cone w -i t h an -i m p a c t v e l o c -i t y o f 4.05 m / s . A l t h o u g h the classical W a g n e r p r i n c i p l e assumes s m a l l deadrise angles, a q u i t e g o o d c o r r e s p o n d e n c e is f o u n d b e t w e e n t h e o r y a n d e x p e r i m e n t s f o r t h e f i r s t sensor p o s i t i o n . H o w e v e r , the peak at the second sensor p o s i t i o n seems t o be s i g n i f i c a n t l y s m a l l e r t h a n t h e f i r s t peak w h e r e a s t h e t h e o r y p r e d i c t s t h e same values because o f t h e s i m i l a r i t y o f the p r o b l e m . The d i s c r e p a n c y b e t w e e n t h e t w o sensor p o s i t i o n s has b e e n o b s e r v e d f o r a l l i m p a c t v e l o c i t i e s a n d is o n average 35%. This pressure d r o p c a n n o t be e x p l a i n e d b y a s m a l l e r i n s t a n t a n e o u s v e l o c i t y , since t h e v e l o c i t y d u r -i n g the second peak -is a b o u t t h e same v a l u e as d u r -i n g t h e f -i r s t peak. H o w e v e r , t h e a c c e l e r o m e t e r measures a s m a l l a c c e l e r a t i o n ( d u r -i n g the f -i r s t 10 m s ) f o l l o w e d b y a d e c e l e r a t -i o n . The -i n f l u e n c e o f t h i s a c c e l e r a t i o n a n d d e c e l e r a t i o n o n t h e pressure is n o t t a k e n i n t o

4.5

2,5

O Exp (High Speed Camera) • Exp (Accelerometer) • - - Theoretical (AM)

• •Theoretical (PI)

0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 19. Measured and calculated velocity on cone (fi = 2 0 ° ) .

0.06 0.05 0.04 Q. (D •o C O •.^ 2

£

CL 0.03 0.02 0.01 0

O Exp (High Speed Camera) • Exp (Accelerometer) - - - Theoretical (AM) '•=••-Theoretical (PI)

0 0.002 0.004 0.006 0.008 0.01 0.012 Time [s]

Fig. 20. Measured and calculated position on cone (/J = 2 0 ° ) .

a c c o u n t b y t h e a s y m p t o t i c t h e o r y . A s s u m i n g a u n i f o r m pressure d i s t r i b u t i o n o r i g i n a t i n g f r o m t h e p a r t o f t h e i m p a c t f o r c e p r o p o r tional to t h e a c c e l e r a t i o n ( M ^ j j ^ ) , i t is e s t i m a t e d t h a t t h i s c o n -t r i b u -t i o n -t o -t h e pressure is b e -t w e e n 5% a n d 15% o f -t h e m e a s u r e d pressure, w h i c h is r a t h e r s m a l l a n d does n o t e x p l a i n t h e pressure d r o p . A s m a l l t i m e s h i f t o f 0.5 ms is o b s e r v e d b e t w e e n t h e pressure signals o f sensor 1(30 a n d K 3 1 . As t h i s c o r r e s p o n d s t o a v e r t i -cal distance o f 2.0 m m , w h i c h is a f r a c t i o n o f t h e sensor d i a m e t e r o f 5.5 m m , t h i s s h i f t m i g h t be caused b y i m p e r f e c t i o n s i n the sensor m o u n t i n g .

The d e c e l e r a t i o n , v e l o c i t y a n d p e n e t r a t i o n are w e l l p r e d i c t e d b y t h e a n a l y t i c a l approaches f o r s m a l l e n t r y d e p t h s , since t h e pressures c o r r e s p o n d w e l l w i t h t h e e x p e r i m e n t s i n t h i s case. The d e c e l e r a t i o n peak is —25 m / s ^ , w h i c h is o n l y o n e q u a r t e r o f the peak m e a s u r e d f o r t h e cone 2 0 ° .

For t h i s range o f i m p a c t v e l o c i t i e s the t h e o r e t i c a l a s s u m p t i o n o f a c o n s t a n t i m p a c t v e l o c i t y is acceptable f o r t h e 4 5 ° cone a n d the h e m i s p h e r e . The 2 0 ° cone experiences t h e largest v e l o c i t y d r o p , w h i c h is s t i l l s m a l l e r t h a n 20% a f t e r a l m o s t c o m p l e t e s u b m e r g e n c e .

4.3. Comparison between shapes

Fig. 2 5 - 2 6 s h o w t h e s l a m m i n g pressure c o e f f i c i e n t as a f u n c t i o n o f t h e d i m e n s i o n l e s s e n t r y d e p t h Uot/R at r/R = 0.267,

(11)

G. De Backer et al./Applied Ocean Research 31 (2009] 143-156 153 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 O -0.5 1 r Exp - K30 - r = 4 cm Exp - K31 - r = 4 cm — • Exp - AO? - r = 9 cm Asymptotic theory - r = 4 cm ' Asymptotic theory - r = 9 cm \dk : ; ' ,..; . K .

: I J

^' ' ^ ' V . - w i : f : : i j f : ^ ^ ^ ' ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.15 0 0.005 0.01 0.015 0.02 0.025 0.03 Time [s]

g. 21. Measured and calculated pressure d i s t r i b u t i o n on cone (/J = 4 5 ° ) for = 4.05 m / s . 50

Ï

s -50 -100 • Exp (Accelerometer) - - - Theoretical (AM) - ' " • Theoretical (PI) 0.005 0.01 0.015 0.02 Time [s] 0.025 0.03

Fig. 22. Measured and calculated acceleration on cone (ji = 4 5 ° ) .

4.5 „ 4

i

t

3-5

5

3 2.5

O Exp (High Speed Camera) • Exp (Accelerometer) • - -Theoretical (AM)

Theoretical (PI)

0 0.005 0.01 0.015 0.02 0.025 0.03 Time [s]

Fig. 23. Measured and calculated velocity o n cone ( f i = 4 5 ° ) .

Q . 0 •a c •2 s 0.1 S 0.05 0

© Exp (High Speed Camera) • Exp (Accelerometer) - - - Theoretical (AM) • " Theoretical (PI) i j i 1 0 0.005 0.01 0.015 0.02 0.025 0.03 Time [s]

Fig. 24. Measured and calculated position on cone (/i = 4 5 ° ) . 35

30 25 20

-Asymptotic theory hemisphere - • Asymptotic theory cone 20° — Asymptotic theory cone 4 5 °

Exp hemisphere - K31A Exp cone 2 0 ° - K30A Exp cone 4 5 ° - K30

Ugt/R[-]

Fig. 25. Slamming pressure coefficient at r / i ? = 0.267.

r e s p e c t i v e l y r / i ? = 0.300. A l t h o u g h , t h e a n a l y t i c a l s o l u t i o n is q u i t e c o n s e r v a t i v e i n p r e d i c t i n g the peak levels, the g l o b a l p r e s s u r e d i s t r i b u t i o n f i t s t h e e x p e r i m e n t s q u i t e w e l l . I n t h e b o t t o m area, t h e h e m i s p h e r e is s u b j e c t t o m u c h h i g h e r s l a m m i n g c o e f f i c i e n t s t h a n the cones. For v e r y s m a l l r - v a l u e s , the local d e a d r i s e angle o f t h e h e m i s p h e r e t e n d s t o zero a n d v e r y h i g h i m p a c t pressures m a y occur. M a t e r i a l designers s h o u l d pay s p e c i a l a t t e n t i o n t o t h i s z o n e . For l a r g e r values o f rJK t h e s l a m m i n g c o e f f i c i e n t o n t h e h e m i s p h e r e d r o p s r a p i d l y , w h i c h is n o t the case f o r t h e cones. N o t e i n Fig. 26 t h a t t h e p e a k v a l u e o f t h e h e m i s p h e r e is s m a l l e r t h a n f o r t h e 2 0 ° cone, w h e r e a s t h e l o c a l deadrise angle o f the f o r m e r is o n l y 1 8 . 4 ° .

4.4. Peak pressure

M a t e r i a l d e s i g n e r s are o f t e n i n t e r e s t e d i n m a x i m u m pressures. Figs. 2 7 - 3 0 g i v e t h e m a x i m u m pressures as a f u n c t i o n o f t h e e q u i v a l e n t d r o p h e i g h t , h*, w h i c h c o r r e s p o n d s t o t h e d r o p h e i g h t c a l c u l a t e d f r o m the m e a s u r e d i m p a c t v e l o c i t y . The use o f t h i s e q u i v a l e n t d r o p h e i g h t m a k e s i t possible t o c o m p a r e t h e m e a s u r e m e n t results w i t h o t h e r research results. Since the m a x i m u m p r e s -sure is p r o p o r t i o n a l t o the d r o p h e i g h t , a l i n e a r least squares f i t t i n g (LSF) has b e e n a d o p t e d . The v a l u e o f t h e s q u a r e d Pearson c o r r e l a -tion c o e f f i c i e n t , R^, is a l w a y s v e r y close to o n e , i n d i c a t i n g a h i g h l i n e a r c o r r e l a t i o n b e t w e e n t h e d i f f e r e n t d a t a p o i n t s o f each test

(12)

154 G. De Backer et al. / Applied Ocean Research 31 (2009) 143-156

O

0.2 0.3 0.4 U^t/R [ - ]

Fig. 26. Slamming pressure coefficient at r/R = 0.300.

Table 4

Coefficient of variation for the hemisphere and cone 2 0 ° , drop height = 1 m .

series. Tlie average d e v i a t i o n b e t w e e n t h e m e a s u r e d a n d a n a l y t -ical peak pressure levels can be easily assessed f r o m t h e g r a p h s . For t h e h e m i s p h e r e , t h e m e a s u r e d peak values are r e s p e c t i v e l y 58% a n d 55% o f the W a g n e r peak values, f o r t h e f i r s t a n d second sensor p o s i t i o n . For t h e 2 0 ° c o n e t h e r a t i o s are 66% a n d 68% r e s p e c t i v e l y a n d f o r the 4 5 ° cone 73% a n d 48%. The r a t i o b e t w e e n Chuang's e x -p e r i m e n t s [ 2 7 ] a n d a s y m -p t o t i c t h e o r y is 27% a n d 86% f o r a cone w i t h deadrise angle 3 ° a n d 1 5 ° , r e s p e c t i v e l y . I n [ 2 4 ] a n u m e r i c a l s o l u t i o n o f the W a g n e r t h r e e - d i m e n s i o n a l p r o b l e m is suggested a n d e v a l u a t e d b y e x p e r i m e n t s o n cone shapes w i t h deadrise a n gles 6 ° , 1 0 ° a n d 1 4 ° . The rarios b e t w e e n t h e e x p e r i m e n t s a n d n u -m e r i c a l s o l u t i o n are o n average 53%, 67% a n d 76%, r e s p e c t i v e l y a n d c o n s e q u e n t l y c o m p a r a b l e t o t h e r a d o s f o u n d i n t h i s paper. N i s e w a n g e r [ 2 6 ] f o u n d pressure peaks o n h e m i s p h e r e s t h a t are closer t o t h e a s y m p t o t i c t h e o r y levels u s i n g pressure t r a n s d u c e r s w i t h a d i a p h r a g m o f 6.4 m m . G e n e r a l l y t h e b l u n t b o d y a p p r o a c h is f o u n d t o be c o n s e r v a t i v e . This is c o n s i d e r e d as t h e m a i n reason f o r t h e discrepancies b e t w e e n e x p e r i m e n t s a n d t h e o r y . M i n o r d i f f e r -ences are a t t r i b u t e d t o t h e cell m e m b r a n e d i a m e t e r , w h i c h s h o u l d be as s m a l l as possible. The a s s u m p t i o n o f a c o n s t a n t e n t r y v e l o c -i t y m -i g h t also have a s m a l l -i n f l u e n c e , d e p e n d -i n g o n t h e shape a n d mass o f t h e b o d y . F u r t h e r m o r e t h e t h e o r y assumes r i g i d bodies, a c o n d i t i o n w h i c h is s e l d o m f u l f i l l e d i n practice. D e f o r m a b l e bodies m i g h t e x p e r i e n c e s i g n i f i c a n t l y s m a l l e r pressure as d e m o n s t r a t e d i n [ 2 4 ] .

I n o r d e r t o e v a l u a t e t h e r e p r o d u c i b i l i t y o f t h e tests, t h e h e m i -sphere a n d t h e 2 0 ° cone w e r e each d r o p p e d t e n t i m e s f r o m a d r o p h e i g h t o f 1 m . The sensor p o s i t i o n s c o r r e s p o n d t o t h e c o n f i g u r a -t i o n s i n Fig. 3(b) a n d ( d ) f o r -t h e h e m i s p h e r e and cone, r e s p e c -t i v e l y . Table 4 s h o w s t h e c o e f f i c i e n t o f v a r i a t i o n C„ t h e r a t i o o f the s t a n -d a r -d -d e v i a t i o n t o t h e m e a n - o f t h e m e a s u r e -d peak pressures. For sensor A 0 7 a n d K 3 1 t h e r e l a t i v e s p r e a d i n g o f t h e peak levels t o t h e m e a n is e x t r e m e l y s m a l l . This i n d i c a t e s t h a t these sensors m e a -sure v e r y a c c u r a t e l y a n d t h e tests are w e l l r e p r o d u c i b l e . The l a r g e r s p r e a d i n g f o u n d f o r sensor K 3 0 s h o u l d be a t t r i b u t e d to i n a c c u r a -cies o f t h e sensor i t s e l f b 3 • Exp - K30A - r = 4 cm 0 E x p - K 3 1 A - r = 4 c m ° E x p - K 3 1 B - r = 4 c m X E x p - K 3 1 C - r = 4 c m - - LSF K30A - p = 1.852 h - R " = 0.99 LSF K31A - p = 1.761 h - R " = 0.99 - - LSF K31B - p = 1.867 h - R " = 0.99 LSF K31C - p = 1.912 h - R " = 1.00 Asymptotic theory - r = 4 cm - p = 3.202 h

Coefficient of variation A07(%) K30(%) 1(31 (%) Fig. 27.

Hemisphere 0.66 8.48 0.44

Cone 20 0.93 12.22 1.25

0.5 1 Equivalent drop height [m]

Fig. 27. Peak pressure as a f u n c t i o n of drop height on hemisphere at r = 0.04 m.

1.2 £ 0.6 Ü. 0.4 0.2 • Exp - K30B - r = 9 cm • Exp - A07B - r = 9 cm LSF K30B - p = 0.452 h - R « = 0.98 LSF A07B - p = 0.325 h - R " = 0.99 Asymptotic theory - r = 9 cm - p = 0.711 h 0 0.5 1

Equivalent drop height [m]

Fig. 28. Peak pressure as a f u n c t i o n of drop height on hemisphere at r = 0.09 m.

5. C o n c l u s i o n

S l a m m i n g p h e n o m e n a o n a x i s y m m e t r i c bodies have b e e n ex-p e r i m e n t a l l y s t u d i e d by m e a n s o f d r o ex-p tests. A h e m i s ex-p h e r e a n d t w o cone shapes w i t h deadrise angle 2 0 ° a n d 4 5 ° are d r o p p e d o n t o i n i t i a l l y c a l m w a t e r . The w a t e r surface e l e v a t i o n is v i s u a l -i z e d w -i t h a h -i g h speed camera. A l o n g t h e h e m -i s p h e r e t h e w a t e r u p r i s e q u i c k l y ends i n a spray, w h e r e a s a j e t is a t i a c h e d t o t h e b o d y o f t h e cone shapes. The w e t i i n g f a c t o r is d e t e r m i n e d f o r t h e cones a n d is a b o u t one fifth s m a l l e r t h a n t h e v a l u e p r e d i c t e d b y m a t c h i n g t h e o u t e r t h r e e d i m e n s i o n a l flow w i t h W a g n e r ' s t w o -d i m e n s i o n a l j e t flow m o -d e l as -d e s c r i b e -d b y F a l t i n s e n i n [ 7 ] . The

Cytaty

Powiązane dokumenty

by Fathers of the English Dominican Province, Burns Oates &amp; Washbourne Ltd., Benziger Brothers, New York, Cincin- nati,

It should be emphasized that the described contribution is based on the previously mentioned research paper (Kopczy´nska, Nawrocki, and Ochodek 2018) published in Information

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

Convolutional weights are parameters of the model, so they are adjusted during the training process to filter out the most frequent features found in the data..

We stimulate neural networks with input data (usually affecting neurons in the input layer), for which neurons in subsequent layers make calculations until we obtain results (in

Train, dev (validation), and test sets should be set up in such a way that they share data of all distributions in the same way (be representative for the solved problem) to

a subset of training examples consisting of a defined number of training examples. In this case, training process is a compromise between the stability and speed, much better

Its operation is based on the conversion of external mechanical energy (for example, obtained from an electric or combustion engine) into hydraulic energy accumulated in the