• Nie Znaleziono Wyników

A survey of ruderal vegetation in Poland: phytocenoses with Lycium barbarum L. - Biblioteka UMCS

N/A
N/A
Protected

Academic year: 2021

Share "A survey of ruderal vegetation in Poland: phytocenoses with Lycium barbarum L. - Biblioteka UMCS"

Copied!
28
0
0

Pełen tekst

(1)

A N N A L E Ś

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N - P O L O N I A

VOL. LII SECTIO C 1997

Instytut Biologii UMCS Zakład Geobotaniki

FLORIAN ŚWIĘS

A survey of ruderal vegetation in Poland: phytocenoses with Lycium barbarum L.

Przegląd roślinności ruderalnej na obszarze Polski: fitocenozy z Lycium barbarum L.

INTRODUCTION

The natural rangę of Lycium barbarum L. (L. halimifolium M ili.) covers the area extending from South West Asia in the temperate zonę to the regions around the Mediterranean in the meridional zonę (41). This shrub is occupying, through bringing in accidentally, larger and larger areas that are situated mainly beyond the north-western boundary of its natural rangę (33). Lycium barbarum has been spreading in Poland and other European countries sińce the mid-18th century as a holagriophyte of the ergasioepekophyte type, having been brought in from China to gardens and parks (12, 25, 26, 58). This is a shrub 3.5-4 to 10 m high, with dynamics of vegetative (sprouts and layers) and generative propagation on thermophilous ruderal habitats (39, 42). This plant is commonly planted as a shrub with a practical antierosion property and is used for setting up fences and reclamation of all manner of rubbish heaps and wasteland (42). In Poland stations of phytocenoses with Lycium barbarum, planted or gone wild, are recorded most often in the warmer lowland-upland and submontane regions (2, Fig. 1).

The autor would like to extend his thanks for receiving unpublished phytosociological records

for this study, to: Bożena M a c i e j c z a k , PhD (Kielce) and Grażyna P a w la k , PhD (Poznań)

and to Prof. Eugeniusz Ć w i k l i ń s k i , PhD (Siedlce) and Marek K u c h a r c z y k , PhD (Lublin).

(2)

8 F L O R IA N Ś W IĘ S

SCOPE AND METHODS OE RESEARCH

Communities with Lycium barbarum investigated in Europę for several dozen years do not yet have a definitive phytosociological structure and rank. That is why the present study presents a comprehensive syntaxonomic and ecological characteristics of this ruderal community that was formed in Poland. The investigations were based on materials collected from all available studies.

both published and ready for publication. The materials utilized contain 155 phytosociological records and 10 soil pits examined for their Chemical properties.

First, all the collected phytosociological records of the studied community with Lycium barbarum were listed in a working table1 according to their similarity with respect to the percentage by quantity of major plant species. The basie data of the phytosociological records used and their assigning to the distinguished secondary communities with Lycium barbarum were listed in Table 6.

Stations of phytosociological records were presented in Figurę 1. Comprehensive data on Chemical properties of soils and on the floristic and phytosociological structure of all the identified forms of communities with Lycium barbarum were shown in Tables 1-5. The slatistical examination of those phytocenoses was carried out using the Pawłowski nrethod (38).

The taxonomy of pteridophytes and flower plants, and bryophytes was given alter J a s i e w i c z (18) and K o p o n e n et al. (23) respectively. Assigning of those plants to their particular syntaxonomic and ecological groups was determined mainly after M a t u s z k i e w i c z (31) and partly after other phytosociologists (36, 49. 50). The appended photographs show major stations and succession forms of expanses of communities with Lycium barbarum (Fig. 2-7).

Basic statistical and floristic data on communities with Lycium barbarum were presented in such a way that they could, if necessary, be supplemented with new materials of phytosociological records. A syntaxonomic study of phytocenoses with Lycium barbarum like the present one has so far been prepared only on phytocenoses with Reynoutria sachalinensis and R. japonica and with Rudbeckia laciniata, Solidago canadensis and S. gigantea (49, 50).

GENERAL STATE OF STUDIES ON PHYTOCENOSES WITH LYCIUM BARBARUM

The studied phytocenoses with Lycium barbarum have so far been described only from anthropogenic habitats in some European countries, most frequently from Poland. According to S o ó (45) the phytocenosis in ąuestion was first char- acterized by B o j k o (3) from the Seewinkel district in Germany as a phytoso- ciologically indeterminate facies with Lycium halimifolium. The first and com- paratively detailed phytosociological characteristics of the studied phytocenosis having the rank of association with Lycium halimifolium in the alliance of Prunion spinosae and a group of communities of Aestifruticetea was presented only by F e l f ó l d y (11) on the basis of 5 phytosociological records from Hungary. The phytocenosis under study is also classified as an association Lycietum hamilifolii within the alliance Eu-Arction (= Arction lappae) and the order Onopordetalia in the class Rudero-Secalinetea (5, 43-45, 54) or the class Chenopodietea (43^15).

1 Not included in the study on account of large size.

(3)

A S U R Y E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N D . 9

Fig. I. Map of 155 stations of phytosociological records (Table 6) of Lycietum barbari association in the variants: thick undergrowth (rec. 1-20), ruderal (rec. 21-127) and impoverished (rec.

128-155)

That phytocenosis was first characterized from Poland (Chełm) by F i j a ł ­

k o w s k i (13) as a community with Lycium halimifolium from the alliance Eu-

-Arction, order Onopordetalia acanthii and the class Artemisietea. While first

characterizing in Slovakia the association with Lycium halimifolium, described

earlier by F e 1 f ó 1 d y (II), J u r k o (19) gave new names both to the association

{Anthrisco-Lycietum halimifolii) and to higher syntaxonomic units (order Robinio-

-Lycietalia, class Robinio-Lycietea [Robinietea]). At a further stage of studies on

(4)

10 FL O R IA N ŚW IĘ S

phytocenoses with Lycium barbarum, an association of Lycio-Syringetum was described from K ó h l (Germany) on the basis of 3 phytosociological records.

B o r n k a m m (4) assigns it probably after O b e r d o r f e r (35) to the Berberidion alliance of the Querco-Fagetea class. The first two phytosociological records con- cerning the Lycio-Syringetum association refer, without doubt, to the typical phy- tocenosis with Lycium barbarum while the third one belongs to a separate com- munity with Syringa vulgaris. According to B o r n k a m m , the Lycio-Syringetum phytocenosis was first characterized by K r a u s c h (24) from Brandenburg.

The phytocenoses with Lycium barbarum described in Poland are classified within different basie and higher phytosociological units (Table 6). Those phyto­

cenoses are uncritically assigned the rank of an alliance called Lycietum halim­

ifolii or Anthrisco-Lycietum halimifolii, or as phytosociologically indeterminate community with Lycium halimifolium. Those forms of phytocenoses with Lyci­

um barbarum are most often classified within the class Artemisietea vulgaris of the order Onopordetalia acanthii and the alliance Eu-Arction (= Arction lappae) and exceptionally in the alliance Onopordion (acanthii). They are very seldom placed within the Artemisietea class alone or the Epilobietea angustifolii class, order Epilobietalia angustifolii and the Epilobion angustifolii alliance or in the or­

der Sambucetalia and the alliance Sambuco-Salicion (Table 6). It must be added that in older phytosociological studies, both at home and abroad, most of the aforementioned orders and alliances of associations were included in the class Rudero-Secalietea (= Rudero-Secalinetea) or in the class of Chenopodietea (Ta­

ble 6; e.g. 32, 45).

Worth noting is the first attempt to comprehensively characterize phytocenoses with Lycium halimifolium by W o j t e r s k a (56) on the basis of 50 phytosoci­

ological records, 48 taken from several regions in Poland and 2 from K ó h l (Germany). According to W o j t e r s k a ’ s study, those phytocenoses with L. bar­

barum belong to the Lycietum halimifolii association of the Eu-Arction alliance, the order of Onopordetalia acanthii and the Artemisietea class. It should be noted that in Polish and foreign phytosociological literaturę the almost identical syntax- onomic treatment for phytocenoses with L. barbarum as given by W o j t e r s k a (56) was earlier applied by S o ó (43,45), U b i r z s y (54, 55), F i j a ł k o w s k i (13) and K ę p c z y ń s k i (20).

Apart from the often described classical forms of the association Lycietum barbari, attention should be drawn to lower units, less often characterized, of separate plant associations with a large percentage of Lycium barbarum.

These include: a subassociation Artemisietum vulgaris lycietosum (22, 55) and

an association Balloto-Chenopodietum in a facies with Lycium halimifolium

(48). The two forms of phytocenoses in the rank of subassociation and facies

with Lycium barbarum most probably represent succession transition stages

(5)

A S U R Y E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N D ... 11 between the associations Tanaceto-Artemisietum and Balloto-Chenopodietum, and the association Lycietum barbari.

THE PHYTOSOCIOLOGICAL AND ECOLOGICAL STRUCTURE OF PHYTOCENOSES WITH LYCIUM BARBARUM IN POLAND

T a x o n o m y a n d P h y t o s o c i o l o g i c a l R a n k

Particular expanses of phytocenoses with Lycium barbarum can be classified either as a weakly emerging association with Lycietum barbari or as a phytoso- ciologically indeterminate cominunity with Lycium barbarum. This is a generał property of the phytosociological structure of most plant communities of the shrub type (49, 50).

In the first case the naming, taxonomy, phytosociological rank and variability of phytocenoses with Lycium barbarum should go as follows:

Cl. Artemisietea vulgaris L o h m ., P r s g . et Tx. 1950 O. Onopordetalia acanthii Br.-BI. et Tx. em. G o r s 1966 Al. Eu-Arction R. Tx. 1937, em. S i s s 1946

association: Lycietum barbari (B oj k o 1934) F e l f . 1942, S o ó 1947, Ś w i ę s em. n. nomen

1. variant: thick undergrowth, 2. variant: ruderal,

3. variant: typical.

The suggested criteria concerning the name, phytosociological rank and position of the Lycietum barbari association formed in Poland, are basically the same as those defined by the main authors of this association (3, II), and subsequently accepted and verified by other Polish and foreign phytosociologists (13, 43^45, 53, 56; Table 6). In the present monograph characterization of the association only its oldest name has been changed: from Lycietum halimifolii to Lycietum barbari in accordance with the latest binding name for Lycium barbarum, from which the naming was derived for the association in question.

The right authors of the association were also named. It must also be noted that

the accepted simplified name for the studied association as Lycietum barbari, or as

Lycietum halimifolii, is morę appropriate than the often used name of Anthrisco-

-Lycietum halimifolii for the same association on account of the following two

main reasons: its very simplified floristic structure at the stage of its optimum

growth, then composed of mainly Lycium barbarum', except for Lycium barbarum,

no other species can be recognized as a diagnostic species for that association

formed in the territory of Poland.

(6)

12 FL O R IA N Ś W IĘ S

In an alternative case, it should be noted that phytocenoses with Lycium barbarum do not represent a classically formed association also for the following reasons: a highly heterogeneous floristic composition (Tables 3-5); the entire absence of the so-called specific combination of characteristic and accompanying species; a semi-artificial origin.

In that case, the assigning of phytosociologically indeterminate phytocenoses with Lycium barbarum to higher phytosociological units can greatly vary, de- pending on their origin, the surrounding plant communities, the stage of growth and their habitat conditions. The following classes would primarily apply: mainly Artemisietea vulgaris, less often Robinio-Lycietea, Festuco-Brometea and Epilo- bietea angustifolii.

T h e I n t e r n a l V a r i a b i l i t y a n d D y n a m i c s o f t h e A s s o c i a t i o n It turns out that the Lycietum barbari association does not exhibit in Poland a distinct diversity of permanent lower phytosociological units with a regional or ecological characteristics. In the association in question on the basis of a definite composition of plant species and their percentage, no morę than three lower phytosociological units were distinguished bearing the rank of variants, (thick undergrowth, ruderal, typical) each containing several facies systems. The variants and facies distinguished in the Lycietum barbari association do in fact represent particular succession stages and phases of the association’s development.

I. The thick undergrowth variant. This variant of the Lycietum barbari association was characterized on the basis of 20 phytosociological records taken from the following habitats:

— roadsides, fallows, wasteland (rec. 1, 5),2

— old rubble and garbage heaps (rec. 6, 17),

— fences and fenceside ground (rec. 13, 14, 20),

— the sides of scarps, excavations, smali valleys and road embankments (rec.

9, 10, 16, 18, 19),

— indeterminate ruderal habitats, probably of the above types (rec. 2-4, 7, 8, 11, 12, 15).

Floristically, the variant in ąuestion is characterized in the association by comparatively the most frequent and largest presence of numerous species of herbal, thick undergrowth, forest, and shrub plants. They include: Rubus caesius, R. plicatus, R. idaeus, Coronilla varia, Torilis japonica, Aegopodium podagraria, Solidago canadensis and Humulus lupulus. Out of other plants in some expanses

2 Not of all phytosociological records are identical with those in Figurę 1 and Table 6,

according to their successive order in the working table.

(7)

A S U R V E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N D ... 1 3

of this variant, the most numerous are: Achillea millefolium, Chenopodium album, Urtica dioica, U. urens, Artemisia vulgaris, Ballota nigra, Chelidonium majus, Convolvulus arvensis, Elymus repens, and Cirsium arvense. Those plants make up at the same time the main facies systems within the variant. The thick undergrowth variant can be regarded (with a large approximation) as a highły advanced initial development stage of the association. The variant in question is characterized by the comparatively least compact occurrence of Lycium barbarum, owing to which many accompanying plant species from the surrounding plant communities developed abnndantly.

2. The ruderal variant. The next distinguished ruderal variant of the Lycietum barbari association was identified basing on 107 phytosociological records taken from the following habitat types:

— rubbish dunrp (rec. 26),

— weathered brickwork of old military fortifications (rec. 39, 48),

— old, garbage-strewn rubble heaps (rec. 23, 49, 104, 119),

— wasteland, fallows, squares (rec. 42, 45, 69, 77, 81, 106),

— roadsides (rec. 31, 33, 40, 54, 63, 90, 97, 105),

— sides of scarps, and road and railway embankments (rec. 36, 47, 56, 67, 68, 76, 86, 87, 89, 95, 99, 100, 102, 111-114, 121, 122, 124, 127),

— fences and fenceside ground (rec. 24, 25, 30, 32, 38, 43, 50, 52, 55, 57, 58, 62, 73, 79, 85, 92, 94, 98, 101, 118),

— indeterminate synanthropic habitats, probably of the types defined above (rec. 21, 22, 27-29, 34, 35, 37, 41, 44, 46, 51, 53, 59, 60, 61, 64-66, 70, 72, 74, 75, 78, 80, 82-84, 88, 91, 93, 96, 103, 107-110, 115-117, 120, 123, 125, 126).

The ruderal variant is the most commonly described form of the Lycietum barbari association. It represents a fairly advanced stage of the association’s development, which is evidenced by: a fairly compact occurrence of Lycium bar­

barum in clumps and a comparatively complex composition of ruderal species that are scanty and are found chiefly anrong the least compact clumps of that shrub.

The plants that have comparatively the highest occurrence in particular phytosociological records of this variant include: Poa pratensis, Rumex acetosa, Anthriscus sylvestris, Chenopodium album, Atriplex patula, Sisymbrium loeseli, S. altissimum, Atriplex nitens, Bromus tectorum, Cardaria draba, Convolvulus arvensis, Elymus repens, Cirsium arvense, Artemisia vulgaris, Urtica dioica, Dipsacus fullonum, Ballota nigra, Chelidonium majus, Solidago canadensis, Polygonum dumetorum, Galeopsis tetrahit, Galium aparine, Bromus inermis, Melica altissima. Most of those species make up independent or mixed, weakly differentiated and impermanent facies systems.

3. The typical variant. It was characterized basing on 28 phytosociological

records taken in the following habitat types:

(8)

14 F L O R IA N ŚW IĘ S

— fences and fenceside ground (rec. 131, 142),

— old, garbage-strewn rubble heaps (rec. 130, 139, 144),

— sides of road and railway embankments (rec. 128, 138, 141, 143, 146, 153),

— indeterminate synanthropic habitats, probably of the above type (rec. 129, 132-137, 140, 145, 147-152, 154, 155).

This variant represents, without doubt, the optimum forms of the association’s succession development. It is primarily characterized by the most compact occurrence of Lycium barbarum. Moreover, this phytocenosis has an exceptionally heterogeneous floristic composition. The most freąuent plants include: Ballota nigra, Lamiurn album, Berteroa incana, Galium aparine, Conyza canadensis.

A greater degree of covering is found only with some bryophyte species, especially Amblystegium serpens. In the expanses of the association, due to a considerable overshadowing of the substratum, by largely overgrown shots of Lycium barbarum, there occurs with time an extreme reduction of the earlier settled stations, of herbal plants morę sensitive to overshadowing.

O c c u r r e n c e a n d B i o t o p i e C o n d i t i o n s

In the territory of Poland the stations of the studied phytocenoses with Lycium barbarum are grouped like a wide belt that extends from south-west to north-west (Fig. 1). It is interesting that there are no stations of the association in ąuestion taken from colder regions in the south and north-east of Poland (Fig. 1).

The succesion development of phytocenoses with Lycium barbarum starts most often with planting this shrub for various practical purposes. For example, plantations with Lycium barbarum are set up primarily in the areas exposed to intense erosion: steep slopes of scarps, excavations, road and railway embank­

ments. This shrub is often planted for reclamation of nuisant ruderal places like rubbish or rubble heaps. It is also used for hedging various buildings. When planted, Lycium barbarum exhibits the highest expansion on drier, sun-lit loess or sandy slopes (Fig. 2-7). Although this shrub grows on garbage-strewn rubble heaps, i I does not exhibit greater expansion there. Lycium barbarum probably does avoid very overshadowed, humid and weakly permeable soils in natural and anthropogenic habitats.

The soils in the Lycietum barbari association do not significantly stand out

with respect to their Chemical properties studied (Table 1). They are most often

highly alkaline soils, not particularly diversified for the content of humus, CaCO.j,

P2O5 and K2O. These soils contain few N-NO3 and N-NH^" compounds. The

investigation ration C:N in those soils shows that they are weakly biologically

active.

(9)

A S U R Y E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N D ... 15

va ri an t: 1. th ic k u nd er g ro w th , 2 . ru d e ra l, 3 . im p o v e ris h e d

T O )ł u t

X c o .

0 2 H

o c d - 4 o > 4 o u a u a - 4 o ua b © o > © r - u A © c d © c n r o r - b b b \ X ) i n t - - b b b b vO aDaDaDaO © ©aCaDaD © O T ©

© oj b - i s - j b o * © r - uan k y o i a © m m c o w © \d o b ©b b b - b b b b b © b b b b © b b AD b b b b

Contentin

£ on - n

H

■H

g

J hh - n

M O

hc 2 w

O o

M 0 Z M

B

O O O UA O O

O OT 4 © © HA

Cd b UA O HA v-

c d - 4 cd o o ” T~

o © © r\j ha o a o© t- <\j

U A b © b - 4 © b © c o " 4

Cd T~ Cd r -

OTUAO © © © r - HA o O O © O O O b O © O O o o o

© © O T hao t- 00 Cd T- b - b Cd 4 Cd O \D O «D 00 O U A O O HA t- r - t- r - 1 - Cd HA Cd CJ T—T—cd HA CAJ T“ t- r - V-

OUACO O CAJ UA U A b Cd O UA b O> O UA O Cd O © © O b U A O t—4 UA o HA Cd OA CO © Cd O A O A O © b O OA CO UA -4CTACO Cd UA \ O - 3 UA tr - T- r - Cd HA HA UA Cd HA Cd Cd Cd t- i - c j

N / 0

N

*

3

O HA O O Cd O O t- O O O OT O UA Cd b © HA © © ©

UA UA b Ot- Oa Cd HA t- O O O O O O O

0 4 0 ' HA t - CAJOAUA4 Oa© U A U A © b 4

t-t- O O O t- O O O t-t- O U A O O O

O O O O O O O O O O O O O o o o

O O O UAOT ł - OAHA \D CO b-U A t- b O HA r - T— T - C d © Cd r - UA CO Cd 00 b O r - b b © © O H A b -H A b - U A 4 Cd UAHAt- O O r - O O HA H At-t- O HA Cd O O O O O O

O O O O O O O O HA UA o O O O O O O O O O O O O O O T - C d - 4 CO- 4 © HA O AOb-C dO A CO © © C d - 4 O © Ot- O b T-OT Cd r - 4 4 Cd OT HA HA CJ O OA T“ T~ t- Cd UA O C d T - 4 UA HA U A © O O O C d T - T - O O O O O T - T - O

m o u y n o z y j o n j o ^ y d s a

O U A O - 4 0 0 0 C d O C D O o O U A O § O O O HA OT t- b OA Cd Cd Cd T- HA 4 OA Cd t~ 4 b T- t-UACO

b b b I I I I I 1 I 1 l i ii 1 1 1 1 1 I I I

Ot- © o© i n iA iA ohat- OA UA O l A O Ó O O O

H A © T - H A 4 HAaD OA 4 b

o

Ł

<U XJ B 3 2

6 P J O O 3 J

© HA

4 T- UA b b

UA t- © OA HA T— Cd

c - e - b \ \ \ \ \ \ \ b b

1 1 AD O T— T- 4

b O HA - 4 4

y u c y j E A HA HA

t- 4 - Cd Cd HA HA H A K A HA

m U O X5

■P 3

HA

© OA

JE S OA X . T-

b Cd N

© O U

OA U ®

c 5 s

o >

Jd 3 1

O b iZ OJ UA UA

© N J ć © b

s - ' O \ O » ■ OA OA

HA T- u . > T- T-

© <a x o

OA £ X HA

t- a o j: p o ' -h

.* 3 b —« ® O A J d

« N > N i - W

■H > o o « c

i ć ® ► u - ■ o S

O H a d « ® « N

® a ®* -C W -H OH o

C tfl T d O - H O - H O .

<0 N > 3 > ® > « H

O U K O J a J H O S -M «

(10)

16 F L O R IA N Ś W IĘ S

F l o r i S tic A f f i n i t y C o e f f i c i e n t s (Table 2)

undergrowth, 2. ruderal, 3. impoverished. NB calculated according to the 1

A,B

r -

75 53

3 88

2

Table 2. Floristic affinity coefficients m Lycietum barbari association between variants: I. thick The floristic affinity coefficients listed were u l c z y ń s k i formula (38)

C

E Z Z

64 53

2 59

3

D

p - 59 30

2 70

3

A-D

1 1 ’ 1 - 65 55

2 62

3

Floristic affinity coefficients were calculated for the three discriminated variants of the Lycietum barbari association. Plant species were taken into account that came both from all (A-C) and from separate plant layers: trees and shrubs (A, B), the undergrowth (C), and bryophytes (D). It tumed out that between the three successively characterized variants of the association Lycietum barbari there are elear differences regarding the values of their floristic affinity coefficients. It must be emphasized that the differences in the values of floristic affinity coefficients are morę marked with bryophyte species (D) than with species from the trees and shrubs layer (A, B) or from the undergrowth (C), or even with species taken from all the layers (A-D). It is also worth noting that in regard of the values of floristic affinity coefficients in the species from the trees and shrubs layer the thick undergrowth variant is closer to the impovershed rather than ruderal variant.

F l o r i s t i c S t r u c t u r e (Table 3 and 5)

The association Lycietum barbari is characterized by a very rich and yet ex- ceptionally heterogeneous floristic composition. In all the three variants discrim­

inated of this association 256 plant species were reported, of which: 10 tree and shrubs species, 227 herbal plants and semi-subshrubs, and 9 bryophyte species.

On one variant of the Lycietum barbari association fali 92-225 plant species from

all the layers. Plants with the lowest classes of frequency and covering (addition-

(11)

Table 4. Syntaxonomic plant groups. x-variants of Lycietum barbari association: 1. thick undergrowth, 2. ruderal, 3. typical; xx — calculation parameters: z — number of species, g — sum total of species occurrences from all syntaxonomic groups; G — systematic value of species. NB. These values were calculated

basing on data in Table 5, according to the formula given by Pawłowski (38)

Number o f v a r i a n t x 1-3 1 2 3

S y n ta x o n o m ic al u n i t s

and s y s te m a tic y a lu e * * Z z g D Z g D Z g D

I . Al A, B. T re e s and s h ru b s

E u -A rc tio n 2 2 20 3 ,0 9 6 2 110 3 ,497 2 29 4 ,1 6 0

Al A l l i a r i o n 1 1 1 0 ,0 1 5 1 6 0,021

Cl ( t o t a l ) E p il o b i e t e a a n g u s t i f o l i i 1 1 6 0 ,557 1 29 0 ,4 8 5 1 3 0 ,0 8 9

Cl ( t o t a l ) R ham no-Prunetea 5 4 4 0,061 2 3 0 ,0 0 2

Xs o t h e r s y n a n th r o p ic s p e c ie s 7 3 3 0 ,0 4 6 4 12 0,021 1 2 0 ,0 2 9

I I . Cl O u e rco -F ag e tea 2 1 5 0 ,0 1 4 2 3 0 ,0 4 4

0 F a g e t a l i a s i l v a t i c a e 1 1 1 0 ,0 0 5

Al A ln o -P ad io n 1 1 1 0 ,0 0 5

Al C a rp in io n b e t u l i 1 1 1 0 ,0 1 5

XI o t h e r f o r e s t s p e c ie s 1 1 1 0 ,0 1 5 • • • •

I Cl

C. H e rb ac e au s p l a n t s

( t o t a l ) P h ra g m ite te a 2 1 1 0 ,0 0 5 2 3 0 ,0 4 4

Cl 0 B id e n te te a t r i p a r t i t i , B i d e n t e t a l i a t r i p a r t i t i 1 1 3 0 ,0 0 5

Al Chenopodion f l u v i a t i l e 2 2 2 0,001

Cl A ln e te a g l u ti n o s a e 1 1 1 0 ,0 0 5

Xb o t h e r m arshy s p e c ie s 1 • • • • 1 1 0 ,0 0 9

I I . Cl M o lin io - A r r h e n a th e r e te a 10 4 13 0 ,6 5 3 9 73 0 ,3 4 2 3 9 0 ,2 6 7

0 M o l i n i e t a l i a c o e r u le a e 1 1 1 0 ,0 1 5 1 1 0 ,0 0 5

Al M o lin io n c o e r u le a e 1 1 1 0 ,0 0 5

0 A r r h e n a t h e r e t a l i a 7 5 13 0 ,5 2 3 6 80 0 ,6 1 6 5 16 0 ,5 6 6

Al A r r h e n a th e r id n 3 2 4 0,1 2 3 3 10 0 ,0 1 9 2 3 0 ,0 4 4

Al C y n o su rio n 3 1 2 0,061 3 7 0 ,0 0 9

I I I . 0 ( t o t a l ) T r i f o l i o - f r a g i f e r i - A g r o s t i e t a l i a 5 3 3 0 ,0 4 6 5 10 0,011 3 3 0 ,0 2 9

0 ( t o t a l ) P l a n t a g i n e t a l i a m a jo r is 2 2 3 0 ,0 6 9 2 28 0 ,2 2 6 2 7 0 ,2 4 2

Cl ( t o t a l ) P o ly g o n o -P o S tea annuae 5 2 4 0,1 2 3 5 45 0 ,2 3 4 2 15 1,112

IV. Cl S e c a l i e t e a 1 1 1 0 ,0 1 5 1 2 0 ,0 0 2

0 S e c a l i e t a l i a 1 1 2 0,061 1 3 0 ,0 0 5

0 A p e r e t a li a 2 2 2 0 ,0 3 0 1 1 0 ,0 0 5

Al Aphanion 3 2 3 0 ,0 6 9 3 6 0 ,0 0 6 • •

V. Cl C h e n o p o d ie tea 4 4 7 0 ,1 8 9 4 76 0 ,8 3 4 4 31 2,3 7 6

0 P o ly g o n o -C h e n o p o d ie ta lia 4 2 2 0 ,0 3 0 3 4 0 ,0 0 3

Al E u-Polygono-C henopodion 6 3 3 0 ,0 4 6 5 15 0 ,0 2 5 4 21 1 ,0 9 0

Al P a n ic o - S e ta r io n 1 1 3 0 ,0 0 5

o . Al S i s y m b r i e t a l i a , S isy m b rio n 19 9 21 0 ,7 5 8 19 120 0 ,4 3 7 5 15 0 ,4 4 5

o , Al E r a g r o s t i e t a l i a , E r a g r o s tio n 1 1 1 0 ,0 0 5

Cl ( t o t a l ) A g ro p y re te a i n t e r m e d i i - r e p e n t i s 7 4 23 2,0 4 7 7 140 1 ,6 1 8 4 25 1,5 4 5

V I. Cl A r te m is ie te a v u l g a r i s 5 4 31 3,718 5 168 3 ,2 6 2 5 44 3 ,8 3 0

0 O n o p o r d e ta lia a c a n t h i i 7 4 14 0 ,7 5 8 7 60 0 ,2 9 7 2 6 0 ,1 7 8

Al O nopordion a c a n t h i i 14 6 11 0,3 1 2 14 65 0 ,1 7 4 5 17 0,571

Al E u -A rc tio n 9 5 20 1 ,2 3 8 9 157 1,582 5 39 3,0 0 9

Al A l l i a r i o n 5 5 13 0 ,5 2 3 8 50 0,181 4 9 0 ,2 0 0

0 C o n v o lv u le ta lia sepium 1 1 1 0 ,0 1 5 1 7 0 ,0 2 8 1 1 0 ,0 0 9

Al S e n e c io n f l u v i a t i l i s 3 2 5 0 ,1 9 3 3 13 0 ,0 3 2 3 9 0 ,2 6 7

Xs o t h e r s y n a n th r o p ic s p e c ie s 50 16 35 1 ,1 8 8 36 162 0,421 14 33 0 ,7 6 9

V II. Cl ( t o t a l ) S e d o - S c le r a n th e te a 7 2 2 0 ,0 3 0 7 12 0,011 2 2 0 ,0 1 9

Cl ( t o t a l ) F e stu c o -B ro m e tea 10 4 7 0 ,1 8 9 10 38 0 ,0 8 3 1 1 0 ,0 0 9

Xk o t h e r x e ro th e rm ic s p e c ie s 3 • 3 7 0 ,0 0 9 1 1 0 ,0 0 9

V III .C l ( t o t a l ) E p il o b i e t e a a n g u s t i f o l i i 3 3 8 0 ,3 3 0 3 19 0 ,0 6 9 1 3 0 ,0 8 9

Cl ( t o t a l ) R ham no-Prunetea 2 2 3 0 ,0 6 9

Cl ( t o t a l ) T r i f o l i o - G e r a n i e t e a s a n g u in e i 2 2 6 0 ,2 7 8 2 9 0 ,0 2 3

Xz o t h e r s p e c ie s o f s c ru b 3 5 10 0 ,3 1 0 6 36 0 ,1 2 4 5 7 0 ,0 9 6

IX . Cl O u e rco -F ag e tea 1 2 4 0 ,1 2 3 1 3 0 ,0 0 5

0 F a g e t a l i a s i l y a t i c a e 1 1 1 0 ,0 1 5

XI o t h e r f o r e s t s p e c ie s 4 3 8 0 ,3 3 0 3 8 0 ,0 1 2 • •

I . Cl

D. Mosses

( t o t a l ) S e d o - S c le r a n th e te a 1 1 2 0 ,0 0 2

I I . Xu o t h e r s p e c ie s f o r e s t and a l l 7 2 2 0 ,0 3 0 6 9 0 ,0 0 7 3 3 0 ,0 2 9

(12)

A S U R Y E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N O ... 17 ally differentiated and marked as r, + and s, + respectively) outnumber plants with somewhat higher classes of frequency and covering (I-II, 1-3) several times. In individual variants of this association there are no morę than 1 to 3 species with higher classes of frequency and covering (IV—V, 4-5). In all the three variants of the association only Lycium barbarum is commonly found.

Table 3. Distribution of frequency classes (a) and mean covering grade (b) of plant species in the trees and shrubs layer (A, B), the undergrowth (C), bryophytes (D) and their total (A-D) in definite variants of the association Lycietum barbari: (after Table 5): I. thick undergrowth,

2. ruderal, 3. impoverished

P e r c e n t an d N u m b e r 0 f v a r i a n t

c l a s s e o f L a y e r o f P h y t o c e n o s i a

p r e a e n c e / a / a n d c o v e r

s p e c l e a / b /

1

2 5

A-D A,B C D A-D A.B C D A-D A.B C D

a .

< 5 ;1 :3 % s 69 10 57 2 80 5 72 5 37 2 32 5

6 ; 2 ; 4 - 9 104 6 94 4 17 2 15

1 0 - 2 0 I 44 44 26 26 19 1 18

2 1 - 4 0 I I 11 1 10 8 1 7 14 • 14

4 1 - 6 0 I I I 4 4 5 5 1 • 1

6 1 - 8 0 IV 1 1 2 2 5 • 5

8 1 - 1 0 0 V 1 1 1 1 • 1 1 •

b

< 0 , 0 9 * r 7 9 8 69 2 174 9 158 7 87 5 81 1

0 , 1 - 0 , 1 9

4-

17 17 2 1 1

0 , 2 - 5 , 0 1 49 5 46 50 2 28 2 • 1 1

5 , 1 - 1 7 , 5 2 1 1 1 • 1 • •

1 7 . 6 - 5 7 , 5 5 • •

5 7 , 6 - 6 2 , 5 4 • •

6 2 , 6 - 8 7 - 5 5 1 1 1 1 1 1 • •

T o t a l 15 0 12 116 2 224 15 204 7 92 6 85 5

S y n t a x o n o m i c S t r u c t u r e (Tables 4 and 5)

The structure of the Lycietum barbari association and its three variants is highly complex and difficult to unequivocally define as far as the generał syntaxo- nomic composition of species and their group values are concerned. What is worth noting is first of all the occurrence of plant species recognized as characteristic of very different habitats and phytocenoses, from mesophilous wetland plants to xerophilous species and plants growing on sand. The greatest differentation in the syntaxonomic composition is found in herbal plants and semi-subshrubs, by far lowest — in trees, shrubs and bryophytes. For all this diversity and syntaxonomic

i*

(13)

18 F L O R IA N ŚW IĘ S

Tablc 5. Syntaxonomic groups, frequency and numerical strength of plant species

C o n s ta n c y (A, A c o v e r o f s p e c i e a (B , B^ ,

Number o f y a r i a n t * * 1

*1 A2 B1 B2

2 3 1 2 3 1 2 3 1 2 3

1 2

5

4 5

A ,B . T r e e s a n d s h r u b s

I . Ch: a ( A l) - E u - A r c ti o n , b ( A l) - A l l i a r i o n , c (C l , t o t a l - E p i l o b i e t e a a n g u s t i f o l i i , d ( C l, t o t a l - R h a m n o -P ru n e te a , e (X s) - o t h e r s y n a n th r o p l c s p e c i e s

107 28 V V V 1 1 3 0 .1 6 7 8 5 .0 2 4 0 0 ,0 5 5 5

3 5*2

o ’ i

b R o b in ia p s e u d o a c a c ia b ... 1 6 s ♦ 0 .1 2 2 ,9 r 1

c S am tu cu s n i g r a b / c (« V Ie ) . . . 6 29 3 I I I I

i

1 0 ,4 6 2 ,2 0 , 3 1 1 r

d P ru n u s s p i n o s a b ... 1 2 s ♦ 5 ,0 0 ,2 1 r

e A cer n eg u n d o b / c ... 1 3 s 4 0 ,1 0 ,3 r r

e S y r in g a y u l g a r l s b / c ... 7 2 +

+

1 0 ,5 0 .2 r r

I I . Ch: a ( C l) - O u e r c o - F a g e t e a , b ( 0 ) - Faa e t a l i a s i l v a t i c a e ( s s ) , C (A l! - A lno--P a d io n ( s s ) , d (A l) - C a r p i n io n b e t u l i ( s s ) e (XI - o t h e r f o r e s t s p e c i e s ( s s )

a F r a x in u s e x c e l s l o r b / c ... 5 2 4-

4

1 0 ,3 0 ,2

r

r

C. H e rb a c e a u s p l a n t s

I . Ch: a ( C l, t o t a l ) - P h r a g m l t e t e a , b ( C l , 0 ) - B i d e n t e t e a t r i p a r t i t i , B l d e n t e t a l i a t r i - p a r t l t i , c ( A l) - C h en o p o d io n f l u v i a t i l e ( a s ) , d ( C l) - A ln e t e a g l u t i n o s a e ( a s ) , e (X b) - o t h e r m a rsh y s p e c i e s ( s s )

a S olanum d u lc a r a a r a . . . . 1 . s 3 5 ,0 5 ,0 . 1 r .

a P h r a g m ite s a u s t r a l i s . 2 . .

4

0 ,2 . r .

b B id e n s t r i p a r t i t a . . . . 3

( 0 ) - ( A l)

4

. . 0 ,3 . r .

I I . C h: a ( C l) - M o l i n l o - A r r h e n a t h e r e t e a , c o e r u l e a e ( s s ) , d ( 0 ) - A r r h e n a t h e r e t a l i a , b , e

M o l i n i e t a l i a c o e r u l e a e , c - A r r h e n a t h e r i o n , f ( A l) •

( A l) - M o lin io n - C y n o s u r io n

a T r i f o l i u r a p r a t e n s e . . . ... 1 1 s 8 . 0 ,1 0 ,1 r r

a A c h i l l e a m i l l e f o l i u m . 42 5 I I I I I I 2 8 ,2 4 8 ,3 0 , 5 1 1 r

a Poa p r a t e n s i s ... 12 3 s I I 0 ,1 5 8 ,3 0 ,3 r 1 r

a Ruraex a c e t o s a ... 6 1

+

s 2 2 ,9 0 ,1 . 1 r

a P la n t a g o l a n c e o l a t a . . 8 . .

4

. . 0 , 8 . r

b D esch am p sia c a e s p i t o s a ... 1 1 . s

S

. 0 ,1 0 ,1 . r r

d Bromus h o r d e a c e u s . . . . ... 3 3 I

4

. 5 ,2 0 ,3 1 r .

d T arax acu m o f f i c i n a l e . ... 5 30 6 I I I I I I 2 , 3 2 7 ,5 0 ,6

4-

1 r

d A n th r is c u s s y l v e s t r i s ... 3 20 4 I I I 5 ,2 2 9 ,2 0 ,4 1 1 r

d D a c t y l i s g lo r a e r a ta . . . ... 1 24 4 s I I I 0 ,1 1 2 ,2 0 ,4 r

4-

r

d H eracleu ra sp h o n d y liu ra s s p . s p h . 1 2 1 s

+

s 0 ,1 1 7 ,6 0 ,1 r

4-

r

e P a s t i n a c a s a t i v a ... 4 1 s

4

s 0 ,1 0 ,4 0 ,1 r r r

e A rrh e n a th e ru m e l a t i u s 5 2 I

+ 4-

0 , 3 0 , 5 0 , 2 r r r

f C y n o s u ru s c r i s t a t u s . . ... 2 1 . I s 0 , 2 0 ,1 r r

f T r i f o l i u m r e p e n s ...

I I I . C h: a ( 0 , t o t a l )

... 5 . . + .

- T r i f o l i o f r a g i f e r i - A g r o s t i e t a l i a , 0 , 5 . r b ( 0 , t o t a l ) - P l a n t a g i n e t a l i a m a j o r i s , c ( C l , t o t a l ) - P o ly g o n o - P o e te a an n u a e

a Rumex c r i s p u s ... 1 2 1

3 4

S 0 ,1 5 ,1 0 , 5 r r r

a R a n u n c u lu s r e p e n s ... 1 2 1

S +

s 0 ,1 0 ,2 0 ,1 r r r

a A g r o s t i s a l b a ( s t o l o n i f e r a ) . . . 4 .

4

. 1 0 ,2 . r

b L o liu m p e r e n n e ... 2 19 4 I I I 5 .1 2 1 ,5 0 , 4 1 1 r

b P la n t a g o m a jo r ... 1 9 3 s

4

I 0 ,1 1 0 ,7 0 ,3 r

4

r

c C h am o m illa s u a v e o l e n s ... 1 1 . s s 0 ,1 0 ,1 . r r

12 6 I I

i i

0 , 3 6 Kl

c P olygonum a v i c u l a r e ... 19 9 . I i i 1 L 7 0 , 9 . 4 r

c C a p s e l l a b u r s a - p a s t o r i s ... 12 I

( ó ) . 1 .2 r

IV . Ch: a ( C l) - S e c a l l e t e a , b ( 0 ) - S e c a l i e t a l i a , , c - A p e r e t a l i a , d ( A l) - A p h an lo n

a P a p a v e r r h o e a s ... 1 2 . s

4

0 ,1 0 ,2 . r r

b A e th u s a cy n a p iu ra ... 2 3 I

4

0 , 2 0 , 3 . r r

c A p era s p i c a - v e n t i ... 1 1 . s

S

0 ,1 0 ,1 . r r

d M a t r i c a r i a p e r f o r a t a ... 2 4 I

4

0 ,2 5 ,3 . r r

d C o n s o lid a r e g a l i s ... 1 1 . s S 0 ,1 0 ,1 . r r

V. Ch: a ( C l) - C h e n o p o d ie te a , b ( 0 ) - P o l y g o n o - C h e n o p o d i e t a l i a , c (A l) - E u -P o ly g o n o -C h e - n o p o d io n , d ( A l) - P a n l c o - S e t a r i o n

E r a g r o s t i e t a l i a , E r a g r o s t i o n ( s s ) , e ( 0 ,

g ( C l,

A l) - S i s y r a b r i e t a l i a t o t a l ) - A g r o p y r e te a

, S is y m b r io n , f ( 0 , i n t e r m e d i i - r e p e n t i s

A l) -

a A t r i p l e x p a t u l a ... 2 21 6 I

I

I I 0 ,2 5 3 ,8 0 , 6 r 1 r

a C henopodium alb u m ... 1 43 20 s I I IV 1 7 ,5 9 7 ,9 2 , 0 1 1 r

a G eran iu m p u s i l l u r a ... 3 9 2 I

4 4

0 , 3 5 ,8 0 , 2 r r r

a Solanum n ig ru ra ... 1 3 3 s

4

I 0 ,1 0 , 3 0 , 3 r r r

b E c h in o c h lo a c r u s - g a l l i ... 1 1 s s . 5 ,0 0 ,1 1 r

b S o n ch u s a r y e n s i s ... . 2 . .

4

0 ,2 r .

b P olygonum l a p a t h i f o l i u r a ... 1 1 s

S

0 ,1 0 ,1 r r

c O x a li s s t r i c t a ... 1 1 . s

S

0 ,1 0 ,1 r r

1 2 3

i

0 ,1 0 , 2 0 , 3 r r r

c G a lin s o g a p a r v i f l o r a ...

1

3 9 s

4

i i 0 ,1 5 ,2 0 , 9 r r r

c S o n ch u s o l e r a c e u s ... 7 8

4

i i 0 ,7 0 , 8 r r

2 0 ,2

3 5 ,2

5 7 I 3 5 ,1 0 ,7

1 0 ,5

i

r

e C a n n a b is r u d e r a l i s ... 2 7 I

4

0 ,2 r r

e Bromus te c to r u r a ... 2 11

I

I 5 ,0 2 3 ,4 1 1

(14)

A S U R Y E Y O F R U D E R A L Y E G E T A T IO N IN P O L A N D ... 1 9

Table 5 — continued

1

2 3 4 5

e L a c tu c a s e r r i o l a ... 3 I ♦ 5 ,2 0 .3 1 r

e D e s c u r a ln l a s o p h ia ... 14 3 I I I I 0 , 5 1 .*♦ 0 , 3 r r r

e

S is y n b r lu m o f f i c i n a l e ... 2 15 7 I I I I 0 ,2 3 0 ,9 0 ,7 r 1 r

e S lsy m b rlu m l o e s e l i l ... 12 2 a I ♦ 0 ,1 8 3 ,2 0 ,2 r 1 r

e M alva n e g l e c t a ... 2 8 1 I ♦ 3 5 .1 0 , 8 0 ,1 1 r r

e C a n n a b is s a t l v a ... 2 2

8

♦ ♦ 0 ,1 0 ,2 0 , 2 r r r

e M alva s i l v e s t r i s ... 14 I 6 .3 r

e Hordeum m u rin u a ... 6 ♦ 2 7 ,8 1

e A t r i p l e x n i t e n s ... 6 ♦ 3 2 .7 1

e Bromus s t e r l l i s ... 5 ♦ 1 0 ,3 r

e S isy w b riu m a l t l s s l a u m ... 4 ♦ 1 7 ,8 ♦

e C henopodium o p u l i f o l l u m . . . . 2 ♦ 1 0 ,0 r

g C o n v o lv u lu s a r v e n s l s ... 11 48 11

i i i

I I I

i i

5 3 ,2 7 8 ,8 1 .1 1 1 r

g Elymus r f tp e n s ... 61 4 i i I I I i 5 0 ,3 4 1 0 ,5 0 ,4 1 1 r

5 1 7 ,7 3 8 ,9 0 ,9 1 1

g Poa co m p re 8 sa ... 5 1 8 ♦

8

O J 0 , 5 0 ,1 r r r

5 0 . 5

V I. Ch: a ( C l) - A r t e r a i s i e t e a v u l g a r i s , b (0 ) - O n o p o r d e ta l ia a c a n t h i l . c (A l) - O n o p o rd io n a c a n t h i l , d ( A l) - E u - A r c tio n e ( A l) - A l l i a r i o n , f ( 0 ) - C o n v o l v u l e t a l i a s e p iu ra , g (A l) - S e n e c io n f l u v l a t i l l s , h (X s) - o t h e r s y n a n t h r o p i c s p e c i e s

a A r te m is la v u l g a r l s ... 15 82 22 IV IV IV 9 0 ,9 3 2 6 ,2 2 , 2 1 1 r a U r t i c a d l o i c a ... 12 63 16 I I I I I I I I I 1 2 2 ,9 2 4 2 ,4 1 ,6 2 1 r

a T an acetu m v u l g a r e ... 2 10 3 I

I 0 , 2 1 0 ,8 0 , 3 r

4

r

2 7 2 I 5,1 0 , 7 0 , 2 1

a C ard u u s c r i s p u s ... 6 1

8

5 ,5 0 ,1 r r

b A nchusa o f f l c i n a l i s ... 4 2 . i

0 , 4 0 , 2 r r

b N e p e ta c a t a r l a ... 1 9 .

8

5 ,0 5 .8 1 r

b A r te m ls ia a b s in t h iu m ... 2 15 1 I I

8

5 .1 1 6 ,2 0 ,1 1

4

r

b S l l e n e a l b a ... 7 30 5 I I I I I 0 ,7 1 2 ,8 0 . 5 r

4

r

b A r c ti u o m in u s ... 2 .

0 ,2 . r .

c M e l i l o t u s a l b u s ... 2 3 . I

4-

0 ,2 0 . 3 r r

c Echlum v u l g a r e ... 1 3 . 8

4

. 5 .0 5 ,2 1 r

c B e r t e r o a ln c a n a ... 5 18 9 I I I I I 1 0 ,3 6 .7 0 , 9 1 r r

c C ard u u s a c a n t h o i d e s ... 1 16 3

8

I

4

0 ,1 2 1 ,2 0 , 3 r

4

r

c O nopordon a c a n th iu m ... 1 10 3 S

I 0 ,1 1 0 ,8 0 , 3 r

4

r

c O e n o th e ra b l e n n l s ... 1 3 1

S S

0 ,1 0 , 3 0 ,1 r r r

c M e l i l o t u s o f f l c i n a l i s ... 1 1 s

8

o ,1 0 ,1 r r

c H yoscyaraus n l g e r ... . 2 .

0 , 2 r

d A rm o racia r u s t l c a n a ... 1 2 . S

0 ,1 5 ,1 r r

d B a l l o t a n i g r a ... 9 84 19 I I I IV IV 6 0 ,2 5 7 7 ,8 6 , 8 1 2

i

d Lamium alb u m ... 4 20 11 I I I I 0 , 4 1 1 ,8 1 .1 r

4

r

3 16 2 I I 5 ,2 2 1 ,2 0 , 2 1

d L e o n u ru s c a r d l a c a ... 3 9 2 I

4

0 , 3 l 0 i 7 0 ’ 2 r

4

r

d Rumex o b t u s l f o l i u s ... 2 .

5 ,1 r

e B ry o n ia a l b a ... i 8 . s

o ,1 5 ,7 r r

e V io la o d o r a t a ... 2 I 0 , 2 r

e C h a e ro p h y llu m a ro m a tic u m ... 1 2 . s

5 ,0 5 ,1 1 r

e I m p a tie n s p a r v l f l o r a ... 2 2 . I

0 , 2 0 , 2 r r

e C h e lid o n lu m m a ju s ... 7 34 6 I I I I

i i

5 0 ,2 8 7 ,2 0 , 6 1 1 r

e A l l i a r i a p e t l o l a t a ... 1 1 a s 0 ,1 0 ,1 r r

e C h a e ro p h y llu m b u lb o su m ... 1 1 8

8

0 ,1 0 ,1 r r

f C a l y s t e g i a sep iu ra . ( - VI « ) . . . 1 7 1 s

S 0 ,1 5 ,6 0 ,1 r r r

g S o lid a g o c a n a d e n s l s ( - V Ie) . . 4 8 2 I

4 2 2 ,7 6 0 , 5 0 ,2 1 1 r

g S a p o n a r ia o f f l c i n a l i s ( - V Ie) 1 2 3 s

I 5 ,0 5 ,1 0 ,3 1 r r

g S o lid a g o g i g a n t e a (« V Ie ) . . . . . 3 6 .

I 0 , 3 0 ,4 r r

h G a le o o s l s t e t r a h l t ... 3 5 . I

4

0 , 3 - 2 2 , 8 r 1

2 . o ,1 0 , 2

h L l n a r i a v u l g a r i s ... 1 1 .

8

0 ,1 O J r r

h M edicago l u p u l i n a ... 1 2 . s

0 ,1 0 , 2 r r .

13 2 1 7 ,7 7 5 , 7 0 ,2 1 1

h B l l d e r d y k l a c o n v o l v u lu s ... 2 17 2 I I

4

0^2 1 1 .5 O’, 2 r

4

r

h G alium a p a r i n e ... 7 39 6 I I I I I I 1 8 ,1 2 6 1 ,6 0 , 6 1 1 r

h C onyza c a n a d e n s l s ... 3 12 9 I I I I 5 .2 6 .1 0 . 9 1 r r

h S t e l l a r i a m e d ia ... 3 4 2 I

4

5 ,2 0 , 6 0 ,2 1 r r

h G a le o p s i s p u b e s c e n s ... 1 6 1

8 8

o ,1 0 , 6 0 ,1 r r r

h L a p sa n a com m unis ... 3 5 1 I

8

0 . 3 0 , 5 0 ,1 r r r

h H y p ericu m p e r f o r a t u m ... 1 3 1

8 8

0 ,1 0 , 3 0 ,1 r r r

h C henopodium h y b rld u m ... 3 9 1 I

8

0 , 3 0 , 9 0 ,1 r r r

h A raaran th u s r e t r o f l e x u s ... 6 2

4

0 . 6 0 .2 r r

h S e n e c io v u l g a r i s ... 5 2

4

0 , 5 0 ,2 r r

h Solanum tu b e r o s u m ... 3 1

8

0 ,3 0 ,1 r r

h Erysiraum c h e i r a n t h o i d e s ... 2 2

4

0 , 2 0 , 2 r r

2 1 1 7 ,6 0 ,1 r

h A g r o s t i s t e n u l s ... 2 .

5 ,1 r

h C henopodium v l r i d e ... 2 .

5 .1 r

V I I . Ch: a ( C l , t o t a l ) - S e d o - S c l e r a n t h e t e a , b ( Ć l, t o t a l ) - F e s tu c o - B ro raetea C (X k) - o t h e r x e r o t h e r m i c s p e c i e s

a P o t e n t i l l a a r g e n t e a ... 1 . . 3

8

o ,1 0 ,1 r r .

a A r e n a r ia s e r p y l l l f o l l a ... 2 1

S 4

S 0 ,2 i t i

a Rumex a c e t o s e l l a ... 2 1

. 4 8

5 ,1

a 2 .

a H ie ra c iu ra p l l o s e l l a ... 2 .

. 4

0 , 2 . r

a M y o so tis s t r i c t a ... 2 .

. 4

0 , 2

(15)

20 FL O R IA N ŚW IĘ S

Table 5 — continued

1

b Bromus in e r r a ls ...

b G a llu n m o llu g o ...

b A r te m is ia c a m p e s t r l s . . . b A c h i l l e a p a n n o n lc a ...

b C e n ta u r e a r h e n a n a ...

b A c ln o s a r v e n a i s ...

c M e lic a a l t i s s i n a ...

c F a l c a r i a y u l g a r l s ...

V I I I . Ch: a ( C l , t o t a l ) t o t a l ) - T r i f o l i o - G e r a n i a T o r i l i s J a p o n ic a ...

a Rubus ld a e u s ...

a Rubus c a e s l u s ...

b Rubus p l l c a t u s ...

c M edlcago a a t l v a ...

d F e s tu c a o v in a ...

d C u s c u ta ep lth y n u m ...

d P lm p i n e ll a s a x i f r a g a . . . d V e r o n ic a c h a ra a e d ry s . . . . d G lechom a h e d e r a c e a ...

d C ic h o riu m l n t y b u s ...

d E u p h o rb ia e a u l a d S i l e n e v u l x a r l s

11 14 2 1 3 3 3 3

E p i l o b i e t e a a n g u s t i f o l i i , b ( C l, t o t a l ) d (X z) - o t h e r s p e c i e s o f s

2 8 ,3 6 . 3 5 .1 0 .1 0 ,3 5 .2 8 7 ,7

0 , 3

R h a m n o - P r u n e te a , c r u b )

( C l,

8 I

1 7 ,6 0 , 8 1 r

2

8

5 ,0 0 , 2 1 r

9 3 I I

i

3 7 ,5 5 ,8 0 , 3 1 r r

I 2 2 ,5 1 .

8 I I

2 5 ,0 0 , 8 1 r •

i

I

8

1 0 ,0 . o ,1 1 • r

1

8 8

5 ,0 0 ,1 1 r

2 I

0 ,2 0 .2 r r

3 s

0 ,1 0 , 3 r r •

4 14 4 I I

i

0 ,4 21 ,0 0 ,4 r

r

11 I 1 ,1 r

4 0 ,4 . r

2

0 ,2 . r

IX . C h: a ( C l) - O u e r c o - F a g e t e a , b ( 0 ) - F a g e t a l i a s l l v a t l c a e ( s s ) , c (X I) - o t h e r f o r e s t s p e c i e s

a A egopodiura p o d a g r a r l a ... 3 3 • c H umulus l u p u l u s ... 5 2 . c Geum urbanura ... 2 5

D. M osses

I . C h: ( C l, t o t a l ) - S e d o - S c l e r a n t h e t e a B r a c h y th e c iu m a l b i c a n s ... . 2 I I . Ch: (U) - o t h e r f o r e s t an d a l l s p e c i e s B ra c h y th e c iu m s a le b r o s u r a ... 1 2 1 A m b ly steg iu m s e r p e n s ... 1 • 1 B ra c h y th e c iu m r u ta b u lu m ... . 2 . L e p to b ry u m p u r if o r m e ... . 2

I I I I

7 2 ,5 4 0 ,2 0 ,2

5 ,2 0 ,2 0 ,5

0 ,1 0 ,1

0 ,2 0 ,2 5 J 0 ,2

5 , 0 3 7 ,5

S p o r a d ic s p e c i e s

A, B. T r e e s a n d s h r u b s : I d : 1 . C r a t a e g u s m onogyna b ( 1 ) , R o sa r u b i g i n o s a b ( + ) , R. s p . b / c ( + ) ; 2 . Euonymus e u r o p a e a b ( + ) . b ( + ) . I e : 1 . L ig u s tr u r a v u l g a r e b ( ♦ ) . S y r a p h o r ic a r - p o s a l b u s b ( + ) : 2 . A e s c u lu s h ip p o c a s ta n u m b ( ♦ ) , M orus a l b a b ( 1 ) , I l a ; 3 . A cer p l a t a - n o i d e s b ( + ) . I i b : 2» Ulraus m in o r b ( + ) . I l e : 2 . A cer p s e u d o p l a t a n u s c ( ♦ ) , l i d : 1 . P r u n u s aviura b ( ♦ ) . I l e : 1 . O u e rc u s r o b u r b ( ♦ ) .

C. H e rb a c e a u s p l a n t s : I c : 2 . A t r i p l e x h a s t a t a ( ♦ ) , C henopodiura ru b ru m ♦ . I d : 2 . L y co p u s e u r o p a e u s + . I e : 3 . E p llo b iu m ro seu ra + . I l a : 1 . P o a t r i v i a l i s v . s t r i c - t a 1 ; 2 . C e r a s tlu m v u lg a tu ra x , C e n ta u r e a J a c e a ♦ , Phleum p r a t e n s e ♦ , V ic i a c r a c c a ♦ . I l e : 2 . T h a llc tr u r a fla v u m ♦ . l i d : 2 . H e ra c le u m sp h o n d y liu m a s p . s i b i r l c u m ♦ ; 3« B e l l i s p e - r e n n i s ♦ . I l e : 2 . K n a u ti a a r v e n s l a ♦ . H f : 2 . L e o n to d o n a u t u m n a l ls ♦ . I l i a : 2 . P o te n - t i l l a r e p t a n s ♦ ; 3 . P . a n s e r i n a ♦ . I I I c : 2 . L e p id iu ra r u d e r a l e ♦ . IV c: V i c i a h i r s u t a

♦ . IV d: 2 . C h arao m llla r e c u t i c a + . V c: 3» G a lin s o g a ą u a d r i r a d i a t a ♦ . V e: 2 , A t r i p l e x t a t a r i c a ♦ , A. o b l o n g l f o l i u m + , B u n la s o r i e n t a l i s ♦ , I v a x a n t h i l f o l i a ♦ . V f: 2 . E r a g r o s t i s p o a e o id e s ♦ . Vg: 2 . C a r d a r i a d r a b a 2 , C a re x h l r t a ♦ . V Ib : 2 . A rc tiu m s p . ♦ , D ip s a c u a fu llo n u m 2 . V Ic : 1 . C ard u u s n u ta n s ♦ , C ynoglossum o f f i c i n a l e 1 , M arru b iu m v u l g a r e ♦ , L a p - p u l a s ą u a r r o s a ♦ , O e n o th e ra r u b r i c a u l l s ♦ . V Id : 2» H e l l a n t h u s t u b e r o s u s ( - V Ie ) ♦ . V Ie : 2 . B r y o n ia c r e t i c a ♦ , S ic y o s a n g u l a t a ♦ ; 3 . E c h i n o c y s t i s l o b a t a + . V Ih : 1 . C e n t a u r e a s t o e b e ( ♦ ) , Lamlura m acu latu ra 1 , S e c a le c e r e a l e ♦ ; 2 . A n th em is a r v e n s l s ♦ , B r a s s i c a n l g r a + . C r e p l s te c to r u r a + , C a m e lin a s a t i v a ♦ , Carum c a r v l ♦ , C henopodium s p . ♦ , E c h in o p s s p h a e r o c e - p h a l u s ♦ , E p ilo b lu m s p . ♦ , D i p l o t a x i s m u r a l l s 1 , E rynglum p lan u m 1 , M alva p u a i l l a ♦ , M e d ic a - go s a t i v a + , P a r t h e n o c i s s u s ą u i n ą u e f o l i a + , Polygonum p e r s i c a r i a 1 , P r u n e l l a v u l g a r i s ♦ , S i - n a p i s a r v e n s i s ♦ . V I I a : 2 . Sedum maximum ♦ . V I I b : 2 . A n th em is t i n c t o r i a ♦ , A lliu m o l e r a - ceum + , C e n ta u r e a s c a b i o s a + , E u p h o rb ia c y p a r i s s l a s ♦ . V I I c : 2 . C a r d a m in o p s is a r e n o s a ♦ . V I I I b : 1 . C le m a t is v i t a l b a 1 . V I I I c : 1 . C o r o n i l l a v a r i a 2 ; 2 . A g rlm o n ia e u p a t o r i a ♦ . V I I I d : 3 . P i c r i s h i e r a c i o i d e s + , V e r o n ic a h e d e r l f o l l a 1 . IX a: 1 . B rac h y p o d iu m s i l v a t i c u m

♦ . IX b: 1 . L y s ir a a c h la nemorura ♦ . IX c : 1 . H ed era h e l i x 1 j 2 . G le c h o a a h i r s u t a ♦ . D. M o sse s: I I : 2 . B a r b u la u n g u i c u l a t a + , C am p to th e clu m l u t e s c e n s 1 , T o r t u l a r u r a l i s ♦ ; 3 . B ra c h y th e c iu m s p . + .

Explanations. x: A — species frequency: Al — number of occurrences, A2 — class of percent frequency, B — species covering in percent: BI — total, B2 — class of mean percent species covering. xx: No of variant of Lycietum barbari association: 1. thick undergrowth (20 phytosocio- logical records), 2. ruderal (106 phytosociological records), 3. impoverished (28 phytosociological

records).

Data after Table 2. In the list of species occurring only in one phytosociological record with regard to all the variants examined (no. 1-3) the following order was given: no. of syntaxonomic group and variant no., and after a species listed — the grade of its covering in percent on a 5-grade scalę defined in Table 2. ss — mark of the syntaxonomic plant group containing only sporadic species

listed at the bottom of the Table.

(16)

Table 6. List of materials used for the syntaxonomic characteristics of Lycietum barbari association in Poland. x — author, publication year and rank (zp.

— association, zb. — community) of phytocenosis listed and its assignment to a higher phytosociological unit: RS — class Rudero-Secalietea, Av — class Artemisietea vulgaris, Oaa — order Onopordetalia acanthii, On — alliance Onopordion, EA — alliance Eu-Arction (=Arction lappae), Epa — class Epilobietea angustifolii, Eaa — order Epilobietalia angustifolii, Ean — alliance Epilobion angustiofolii, Sa — order Sambucetalia, SSn — alliance Sambuco-Salicion. xx — variant no. of association: 1. thick undergrowth, 2. ruderal, 3. impoverished. xxx — nos of phytosociological records: first — according to their succession order

in the working table (not included), and after ”/” — after the authors cited

B a s ic i n f o r m a tio n s a b o u t e x p lo i t e d p h y t o s o c i o l o g i c a l m a t e r i a ls *

N u m b e r o f v a r i a n t* *

1

N u m b e r o f r e c o r d s***

2 3

Ś w ięs, P i ó r e c k i (1 9 8 8 ). RS, S a , SSn, z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 9

16/141

H arasim (1 9 7 8 ). Av, Oaa,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 2 1 1 /7 5 6 1 /7 6 K ucharczyk (1 9 9 0 ). Av,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 36 9 / 1 , 1 8 /2 9 7 /3 K uczyńska i i n . (1 9 8 2 ). Av, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 12 3 / 4 . 4 / 2 . 7 / 3 , 1 5 /6

2 1 /5 , 44/1 Ć w ik liń s k i (1 9 7 4 ). Av, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 24 1 0 /3 6 8 /1 , 1 1 2 /2 , 1 1 5 /4 Ceynowa (1 9 6 8 ). RS, Oaa, EA,

z b . Lycium h a llm if o liu m . T ab. 34 1 3 /2 3 9 /5 , 4 7 /6 , 4 8 /4 , 9 5 /3 , 99/1 J a n e c k i (1 9 3 8 ). RS, O aa, On,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 10 8 / 7 , 1 2 /2 2 2 /5 , 2 8 /8 , 2 9 /6 , 3 5 /4 , 6 6 /1 0 , 7 0 /9 , 9 1 /1 1 , 1 2 3 /3 , 116/1 Sowa (1 9 7 1 ). Av, O aa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 24 1 /1 6 , 5 /9 ,

6 / 7 , 1 7 /3 2 4 /4 , 3 1 /1 4 , 3 2 /1 2 , 3 3 /8 , 4 0 /1 , 4 2 /1 3 , 4 9 /2 , 5 4 /1 1 , 5 8 /1 5 , 6 3 /6 , 6 7 /1 0 , 6 9 /5 A n ioł-K w iatkow ska (1 9 7 4 ). Av, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 27 1 4 /9 ,

2 0 /1 5 2 4 /4 , 2 5 /3 , 2 6 /1 3 . 3 0 /1 4 , 3 8 /7 , 4 3 /1 6 , 5 2 /1 7 , 5 5 /6 , 5 6 /9 , 5 7 /2 0 , 6 2 /2 , 7 3 /1 1 , 8 5 / 1 , 9 0 /8 , 9 2 /2 1 , 9 4 /1 2 , 1 1 8 /1 0

5 0 /1 8 , 7 9 / 5 , Paw lak (1 9 8 5 ). Av, Oaa, EA,

z p . L ycietum h a l i m i f o l i i . T ab. 68 2 /5 9 3 /1 , 1 0 7 /3 , 1 2 0 /2 1 3 6 /4

G ru szc zy ń sk a (1 9 8 6 ). Av, Oaa, EA,

z b . Lycium h a lim if o liu m . T ab. 8 1 9 /2 3 4 /1 0 , 3 7 /9 , 4 1 /6 , 4 6 /1 ,

5 9 /3 , 6 5 /8 , 8 3 /4 , 1 0 9 /7 1 5 3 /5

Ś w ię s, K ucharczyk (1 9 8 2 ). RS, S a , SSn,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 8 76/81 K ę p c z y ń sk i, Z ie n k ie w ic z (1 9 7 4 ). A v ,0 a a , EA,

z b . Lycium h a llm if o liu m . S t r . 43 119/1

F ija łk o w s k i (1 9 6 3 ). Av, Oaa, EA,

z b . Lycium h a lim if o liu m . T ab. 1 8 4 /3 6 , 1 1 5 /3 5

K u ch arczy k , K ucharczyk (1 9 8 3 ). RS, O aa,SSn,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 7 8 6 /9 4 , 8 7 /9 6 , 1 0 0 /9 5 t f e r t e l n i k (1 9 7 9 ). Av, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 18 8 9 /2 , 9 8 /1 , 1 0 5 /3 M isie w ic z (1 9 7 6 ). Av, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 44 4 5 /2 , 7 1 /3 , 7 7 /4 , 81/1 F ija łk o w s k i (1 9 6 7 ). Ch, Oaa, EA,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 4 7 2 /1 4 7 , 9 6 /1 4 6 , 1 0 3 /1 4 4 , 1 2 4 /1 4 5 , 1 2 6 /1 4 8 F ija łk o w s k i (1 9 7 8 ). E pa, SSn, Sa

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 28 2 7 /6 9 1 , 5 1 /6 9 8 , 5 3 /6 9 6 , 7 4 /6 8 9 , 7 5 /6 9 2 , 7 8 /6 9 7 , 8 2 /6 9 0 , 8 8 /6 9 3 , 1 1 7 /6 9 5 , 125/694 Św ięs (1 9 9 3 ). E pa, E aa,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . Tab. 13 1 0 1 /2 7 5 , 106/274 144/273

Ć w ik liń s k i (1 9 6 6 ). RS, Oaa, EA,

z b . Lycium h a lim if o liu m . Tab. 3 3 6 /2 , 1 0 2 /1 0 , 1 0 4 /8 , 1 1 1 /5 .

1 1 4 /1 , 1 2 1 /1 1 , 1 2 2 /7 , 1 2 7 /6 1 2 8 /9 , 1 3 8 /3 , 1 3 9 /4 W o jte rs k a (1 9 9 0 ). Av, Oaa, EA,

z p . L ycietum h a l i m i f o l i i . T ab. 20 6 0 /2 , 6 4 /4 , 8 0 /7 , 1 0 8 /5 , 1 1 0 /8 1 3 4 /3 , 1 3 5 /6 , 145/1 Ś w ię s, tfitkow ska-W aw er (1 9 8 8 ). E p a,E a a,S S n ,

z p . A n th ris c o -L y c ie tu m h a l i m i f o l i i . T ab. 17 1 3 0 /3 7 9 , 1 3 1 /3 7 8 , 1 4 2 /3 8 0

R o s ta ń s k l, G u tte ( 1 9 7 1 ) . Av, EA,

z p . "Lycium h a l i m i f o l i a " . T ab. 18 1 4 0 /9 , 1 5 4 /1 0 1 5 5 /8

M a c ie jc z a k (1 9 8 5 ). Av, Oaa, On,

z p . L ycietum h a l i m i f o l i i . Tab. 57 1 4 1 /1 , 1 4 3 /2 , 146/3

K ęp czy ń sk i (1 9 7 5 ). Av, Oaa, On,

z p . L ycietum h a l i m i f o l i i . T ab. 63 1 2 9 /7 , 1 3 2 /8 ,

1 4 7 /4 , 1 4 8 /5 , 1 5 1 /1 0 , 1 5 2 /6

1 3 3 /9 , 1 4 9 /3 , 1 3 7 /1 ,

1 5 0 /2 ,

Cytaty

Powiązane dokumenty

The following easy result shows that countably incomplete ultrapowers of infinite structures are always non-trivial..

The claim of the theorem concerned Galois module properties of class groups of towers of cyclotomic fields and was reformulated by Iwasawa in [I2] as a conjecture, later named the

with the structure of other species of the genus Dicraeus L w, it should be said that because of the structure of styliform processes and gonopods the described species ought to

one typical and the rem aining eight characterized by specific plant species dom inating as single or in groups. In Lublin this is the most common form of the association

In Meromyza sibirica posterior femora are nearly four times thicker than the tibiae, scutellum is light with a pattern lacking band in the middle, different anterior parameres

(ss) — syntaxonomic group with only sporadic species listed at.. Syntaxonomic values of plant species in particular syntaxonomic groups: 1. Solidaginctum giganteae,

In the two studied associations the main role falls to characteristic species of the Molinio-Arrhenatheretea class, of the Plantaginetalia order, of the Artemisietea

Two sections of late Valdai (late Würm) loess deposits in the Desna drainage basin have been studied palynologically (including the species determination of pollen and