• Nie Znaleziono Wyników

On approximation of generalized almost periodic functions •

N/A
N/A
Protected

Academic year: 2021

Share "On approximation of generalized almost periodic functions •"

Copied!
4
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I : PRACE MATEMATYCZNE X I I (1968)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I : COMMENTATIONES MATHEMATICAE X I I (1968)

Z.

St y p i ń s k i

(Poznań)

On approximation of generalized almost periodic functions •

1. R. A. Abbasow [1] discussed the pecularities of the basic the­

orems of the constructive theory of functions in the class of uniformly almost periodic functions. The purpose of this note is to investigate a constructive characterization of generalized almost periodic functions;

the set of these functions will be denoted by 88. (For definitions and basic properties of ^-spaces see [2].)

For readers convenience we give only the definition of a norm which we shall use in the sequel. Let /(•) denote a representant of the element oe88, then (see [2])

T

(*) ll/l!m = sup him

I

t

-*

oo

21

where = (flf(-); g(-) eA; SN(\g\) ^ 1}, and N denote the set of all real-valued or complex-valued functions g(t), defined on

— oo <

t <

o o ,

N — summable on every finite interval ( - T , T ), such that

T

SN(\g\) = lim f N[\g(t)\]dt <

o o ,

here N denoted the complementary functions (in the sense of Young) to a given functions ilf(-) which generates 88 (see [2], [3]). Elements of 88 are called 88-almost periodic functions. By the Bochner-Fejer kernel wo understand the function

—■ oo <

••• knp(Ppt)i . I щ в л / /М\2

t <

OO,

Jcn.(pit) = щ ^ sm —— j sin-^-l and p2, . .. , 0P are arbitrary real rationaly linearly independent numbers. This kernel is non-negative for every t and

T

lim - i - f KM)dt = 1.

T-*oo 2T J '

Roczniki PTM — P race M atem atyczne X I I 11

(2)

162

Z. Stypiński

2 . Let /(•) €$ł. we denote by /* and f M>v the Boehner-Fejór polyno­

mials:

T к

fl{x ) = И т - ^ г J

f M A x) lim-^—

T-t-oo %T

T

J ' /(со + ги)Кй(и)йи,

-T

by cok(fjt)m the modulus of smoothness of degree & > 1, k

" * ( /, t)n = supll V + = snpP*/|fe

|Л|«и±о V7 11

and by Е и(Лт ^ e best approximation by Bochner-Fejór polynomials

where the infimum is taken over all these Bochner-Fejór polynomials of degree

T

h eo rem

1 . Let f ( c o , y ) ^ 0 f o r all real x , y , f ( x , - ) € & and let

||f( x , *)||-e^, where ||f( x , -)||- is the norm (*) of f ( x , y ) as a function of y.

Then

t 1

Ит — Гf(ce, y)KA x)dx

t—*oo

2

T J

— T

Proof of this theorems is completely analogous to that given in Г2]

(Theorem 4.8, p. 61).

From the above it is obvious that the following theorems holds:

T

h eo rem

2. ! / / ( •) then

tf> /„ .О «Я, £ ( • ) « * ,

k

Oi) ll/Slfe < Ż (*) I O i < ( 2 * - l) ll/lt,

T

h eo rem

3. I /

T

f{' )e @ and lim f \u\kK A ^)du = 0(y~k),

»oo_у then

Ep(f)m < (i“ ) (/, *)m f o r h > l .

- < И т ^ - f \\f(x,-)\\-KAx)dx.

r~>oo «/

(3)

Approximation of generalized almost periodic functions

163 Proof. In account of Theorem 1 we have

В Д к < 11/2—/Urn

T к

И т ^ / 1{ ^ ) f ( X+ V' U)Z A U)du T~*°° _21 v=o ' I

T

l i m " ^ f \1АийтК Ли)йи Я -+oo J f

T

И т ^ I 0>k{f,u)mZ A U) du- T >«oo ЛА. J

Next, in view of the properties of the modulus of smoothness we obtain

T lim

~2T

/

T~>°° __

t

T

f [l + /*M f(»k(f, f*~l)mZ A U)du

T-yoo ЛА. yf

< lim Г

T—yoo Л A. JT

^_1)^(^)йм +

Т

+ Um^F Г

Т—>00

2k(°k(f, yT^K^du

< Ck(y)«>k(f, P~l)m-

COROLLARY 1 . I /

Т

^Нш Г = 0(1), /or ya^oo,

T-yoo ЛА. J

Йеп /or

a rb itra ry f u n c t i o n

Eft (/)m ^ (/ > *)m

w h ere ck is in d e p e n d e n t o f y .

We say t h a t / € ^ (p) if

f e 3 8

and/(-) possesses

p

absolutely continuous derivatives (^ (0) = Щ.

Th e o r e m 4 . B y all a s s u m p tio n s o f T h e o re m s 3 , f o r a n a rb itra ry f u n c t i o n

/ ( • ) e ^ ( p ) г о е T m o e

(4)

164 Z. S t y p i ń s k i

Proof. In virtue of Corollary 1, E ^ f ) - < ck+p(ok+p( f , р, for/e^?.

Thus from obvious properties of the modulus of smoothness we obtain В Д ) й < 0 t+vir'tOkU™, l T \ .

C

orollary 2

. h is seen that Theorems 3 and 4 generalize theorems on best approximation of a 2iz-periodic function as elements of Orlicz space L*M by trigonometric polynomials Tn.

Indeed, it is sufficient to apply Theorems 3 and 4 to E n(f)n

— inf I I / — Tn\\M in place of E ^ f)^ , where ||*||M is the norm in the Orlicz space L*M of 2-n:-periodic functions ([3], § 9), and the infimum is taken over all trigonometric polynomials Tn of degree < n. Then E ^ f ) - = E n(f)M and putting у — n we obtain

E n(f)M ^ cka>k{f, n~l)M.

R eferences

[1] P. А. А б б а со в , Изв. Акад. Наук А. ССР, No 5, 1966, рр. 3 -7 .

[2] J . A lb r y c h t, The theory of Mareinkiewicz-Orlicz spaces, Rozprawy Mat.

27 (1962), pp. 1-55.

[3] M. A. K r a s n o s e l ’ skii, Y. B. R u tic k ii, Convex functions and Orlicz spaces, Groningen 1962.

Cytaty

Powiązane dokumenty

Generalized analytic functions play an important role in the study of differential equations, especially with irregular singular point.. To show this observe that the operator R(x, x

Since the condition d &lt; δ 3/2 in Corollary 1 coincides with the condition given in the theorem of Becker in [B3] in the special case of rational transformations and

In fact, according to Bohr’s approximation theorem, the functions of this type form a dense subset in the set of all almost periodic functions equipped with the uniform

We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.. In our situation,

Sendov and others [5]-[7], whereas almost periodicity of bounded or bounded on every bounded interval functions with respect to this metric was first studied in Poznań in the

Bohr, Zur Theorie der fastperiodischen Funktionen, I Teil: Eine Verallgemeinerung der Theorie der Fourierreihen, Acta math. Stoiński, Real-valued functions almost periodic in

Abstract. In this note we present the definition, examples and some properties of quasi N–almost periodic functions, i. certain almost periodic functions in the sense of Levitan...

Recently in [11] and [12] a natural extension of the class of almost periodic functions was considered in connection with the theory of Musielak-Orlicz spaces, where the strict