• Nie Znaleziono Wyników

Calculation of still-water resistance according to J. Holtrop and G.G.J. Mennen

N/A
N/A
Protected

Academic year: 2021

Share "Calculation of still-water resistance according to J. Holtrop and G.G.J. Mennen"

Copied!
17
0
0

Pełen tekst

(1)

Calculation of still-water resistance accotdting to

J.. Holtrop and G.G:. J. Mennen by

ing. A.P. de :Zwaan Report No. 777

(2)

INDEX.

Introduction.

General.

1.1 Program definitions. 1.2 Aim.

Organisation of the proram. 2.1 Formulas.

2.3 Explanation of used symbols,.

Program application. 3.1,. In-output parameters.. 3.2 Remarks. Bibliography.. page 1 1 1. 9 12 14 15

(3)

Introduction.

In this report a. description is given of a computer program in Fortran 77 to calculate the still-water resstance of a ship according to (1], (2] and t3I.

The program can be used for the speed range 0 < F > 0.55 where

V

../ g*L

General.

1.1 Program definitions.

a). Language Fortran 77

b) a Calculation time 1 sec

c). Computer configuration : IBM compatible. Ms-Dos

1.2 Aim.

Calculating the still-water resistance of a ship;, the wake number, thrust deduction factor and the relative rotative efficiency.

Organisation of the program.

The program uses different formulas for the following speed ranges (3]:

0 0.40

0.40 < 0.55 a). 0.55 < F

2.1 Formulas.

The total resistance of a ship has been devided into:

Rrotai = RF (1+k1) + Rpp+

Rw +RB + R+RA

(3]

Where:

frictional resistance according to the ITTC-1957 formula

form factor of the hull. appendage resistance

wave resistance =

(4)

Frictional resistance. Sh 11

V*L

V where :

p - mass density of water

V

-. speed of the ship in knots B - moulded breadth

T - draught

L - length on the waterline

V - .mouIded displacement volume

C

- prismatic coefficient

lob - Longitudinal position of the

centre of, buoyancy

forward. of 0.5L as a percentage of: L

The wetted area of the hull is

be

approximated by [21 : =

L(2T + BL/(0.453 + O.4425C8 - O.2862CM:

- O.003467

+

0.3696C) + 2.3.8_!!

where :

CM - midship section coefficient

CB - block coefficient on the basis of the waterline

length

C - waterplane area coefficient

ART - transverse sectional area of the bulb at the

po-sition where the still--water surface intersects

the stem.

1/2 p V2*O.075 0hull (1og(R-2)) 1 k1 = 0.93+0.487118C14(!)06806(-!)0.4606

(0.i2I563 ()

°36486(1-Ce) -0.604247 V L = L(1 - + O.O6CP1Cb) Afterbody form

Pram with gondola

-25

V-shaped sections

-10

014 = 2. + 0.0I1C,, Normal section shape 0

U-shaped sections with

Rogner stern

10

- wetted area of

the hull

(5)

Appendage resistance.

R,

=1/2pV2S(1 +

k2)

where :

0.075 (log R-2)2

p - mass density of water

V

- speed of the ship in knots - wetted area of the appendages

l+k2 - appendage resistance factor (2].

The equivalent 1+k2 value for a combination of appenda-ges is determined from (2]:

(1 +k2) -

E

(l+k2)s

The appendage resistance can be increased by the regis-tance of the bow thruster tunnel openings according to

(2]

.RBTO = pV2itd2C8

where:

d - tunnel diameter in rn

CB - ranges from 0.003 to 0.012

For openings in 'cylindrical part of the bulbous bow, the lower figures should be used.

Approximate 1+k2 values

rudder behind .skeg 1.5' - 2.0

rudder behind stern 1.3 - 1.5 twin-screw balance rudders 2.8

shaft brackets 3.0 skeg '1.5 -strut bossings 3.0 hull bossings 2.0 shafts 2.0 - 4.0' stabilizer fins 2.8 dome 2.7 bilge keels 1.4

(6)

Wave resistance. P

> 0.55

: = 017c2c5.vpge (m3F' +m4coa(AF2)) where,: = 6919. 3C3346 (_._!_)2.00977 _2),1.40692 L3 B rn3=-7.2035 (!.)0.326869(L L 0.605375 C2=

-i.89.J)

C' =1-0.8

5 BTCM = 1.446C - 0.03- for - <.12 = i.446C, -

0.36

for. -= -0.9 C3= 0.56

BT (0. 31/

+ TF

- hB)

-3.29 m4- c150.4e' .0 4F

05

-1.69385 when <

512

L

c

15,= -1.69385 + 2.36 L3 when 512 1726.91 V 15= 0 when -- >

1726.91

kr - iersed transom area at .res.t m2

AliT - transverse area. of the. bulbous bow. m2

- vertical positIon of the centre of AliT above the keel 0.6 TF (rnoulded draught on F.P.)

(7)

o < F

0.4

RW_AT.. C1C2cvpge (mFm4cou(AF1))

with

c1=

2223105c.78613(..!.) 1.07961(90

- 1B)

iE=is9exP [- (-k)

°80856(i.-C,,)

o.3o4e4

(i_C-o.o225icb)0.6367(.)034574

( iOOV)0.16302] c7=

when

0.11

c7= -

When 0.1i<- 0.25

c7= 0.5 -

0.0625-i when

-

>0.25

L B m1= 0.0140407--1.75254 L -4.79323--cj6 c6=' 8. 07981C-i3 .8673C6 ..984388C:' when C 0.8 c16=1.73014 - O.7067C when C > 0.8

rn4 as in the R formula for the high speed

range.

0.40 <

0.55:

-

i10E-4) (Rw8-RwA0)

R1, R,,A0

1.5

with

fa the wave resistance for .F 0.4' R.,-B059 is the wave resistance f or .Fn =

0 55

(8)

Additional pressure resistance of bulbous bow.

0. 11exp(-3P)FjA5pg

Where the coefficient P11 is a measure for the emergence

of the bow and F i.g the Froude number based on the immersion: O.56/ABT

T-1.5h8

and

V /g(T_h11_0.25fA) + 0 .i5V

Additinal pressure resistance of immersed transom

stern

R=0 i.5pV2ATC6.

with

COr2(i0.2FflT) when F < 5

or

C6=O when FflT

nT

has

been defined as:

V

2gA

N B+BC

in this definition C

is

the waterplane area coeff:i-cient.

Model -ship corxeiation. resiStance.

RA=

1/2 PV2SOcA

where:

CA= 0.O06(L+100)06_0...0O2O50.003J

75

Cc2(O.O4-c4)

with

04= -

when TF

O.04

c4= 0.04 when

TF> 0.04

(9)

Pro sulsion

data

for a). Wake fraction

w

= cgc2oCv*(0.050776 +

O.934O5c11

00= S

B

L D(--3)

TA 09,= C when

0 < 28

or

09 32

Cr24

when c

28

TA T

-- when-<2

or

When!

TA T T

o.oa333aa(-)

+

.3333 when

-_-0.12997 0.11056

whenC <0.7

.O.95-CB

0.95-C

P

or

c19-l.S.-CM

- 0.71267

+ 0.38648C

when C

0.7.

c3= 1

+ 0 015 CBtern

C1= 1.45C -

0.315 -

O.02251b

3: +

0. 279i5c2o

L(I -

20

The coefficient

c9 depends

on the coefficient c8, def

i-ned as:

BS

tot

B

when -

<5

LDTA

TA or a.

.e screw

shi 7B 25 TA

(10)

The coefficient C, is the viscous resistance coeffi,-cient with

C=

(14k)

CF + CA where

1 + k =

1+k1

+ ((1 + k2) -

(1 + k1)) tot b). Thrust deduction,. B 0.28956

,,

0.2624

0 .25014 (-)

(VJ)

L D

(1 - C + 0.0225 lcb)

0.01762

C).

'Relative-rotative efficiency.

i= 0.9922 - 0.05908! + 0.07424(C - 0;.02251Cb)

Propulsion data for multiple-screw ships [2].

Wake fraction

V =

O.3O9SCB + 1OCVCB -

0.23

D

Thrust deduction.

t = 0.325C - 0.1885

D

Relative- rotative efficiency.

1h

=0.9737 + 0.1i1(C-0.0225lcb) - 0.06325-!

(11)

2..3 Explanation of used symbols.

Symbol Program Dimension Description

ABT ABULB m2 Transverse sectional area of the bulb at

the position where the still water surface

intersects the stem.

AE/AO

___

- Expanded blade area

ratio of the propeller

Ar AT m2

Xersed transom area.

B BR

m

Moulded breadth.

CA CA - Model-ship correlation

allowance coefficient.

Cli CB - Blockcoefficient on

basis.

of the waterline length. CB CBTH - Coefficient bowthrus-ter openings. 0.003

CYJ

0.012

CF - Frictional resistance coefficient.

CM cM - Midship section

coef-ficient.

C CP - Prismatic coefficient.

CAPT - Stern shape parameter. CWP - Waterplane area

coef-ficient. c, cv - Viscous resistance coefficient. D DP

m

Propeller diameter. d DBTT

m

Tunnel diameter. F FN - Froude number.

FNI - Froude number based on

the immersion of the bow.

(12)

Explanation of used symbols (continued).

10

Symbol Program Dimension Description ALFA

H

degrees 'angie of the waterline at the bow with

refe-rence to the centre plane but neglecting

the local shape of the stem.

L SLWL

m

Length on waterline.

lab SLCB Longitudinal, position

of the centre of buo-yancy forward of 0.5L as a percentage of, .L.

SLR

m

Length of the run.

PB PB - A measure for the

emergence of. the bow.

RA R.A N. Model- ship correlation

resistance.

R.APP N Appendage resistance.

RB RB . N. Additional pressure

resistance of bulbous bow near the water

surfaced

RBT(J RBTH N Resistance of bow

thruster tunnel ope-nings.

RF RF1KI N Frictional resistance

'according to iTTC19!57 formula. RN - Reynoldsnumber. RTR N Additional presSure resistance due to

transom iersion.

Rw RW' N. Wave resistance.

SAPP m2 Wetted area appendages SHULL m2 Wetted area of the

hull.

STOT m2 Total 'wetted area.

T DRAFT

m

Moulded draugth.

T - Thrust deduction,.

TA TA

m

Draught moulded on A.P

(13)

Explanation of: used. srnibolS (continued).

Sy]nbol Program Dimension Description

V

ITK VM: knots rn/sec Ship Speed.

w

w - Wake fraction.

RRE - Relative-rotative

ef-ficiency.

p RHO kg/rn3 Mass density of water.

V RN rn2/sec Coefficient of

kinema-tic viscosity.

V VOL rn3 Displacement volume

(14)

3. Proqrarn application.

3.1 In-and output parameters.

i = input, 0

= output

12

SLPP

i:

- Length between perpendiculars

(m)

SLWL

i:

Length on the waterline (rn)

BR

i:

Moulded breadth (rn)

DRAFT

i:

Midship draft (m)

TRIM

i:

Trim (m)

VOL

i:

Moulded volume of displacernent (m3)

SLCB

ii

0:

C.O.B. forward of SLPP/2 in % of SLPP

C.O.B. forward of SLWL/2 in % of SLWL

CWP

i:

Waterplane area coefficient (-)

i:

Midship section coefficient (-)

SHULL

i:

Wetted area hull (m2)

If unknown : SHULL=0

CAPT

i:

Shape coefficient aft (-)

U-form with Hogner stern : CAFT=+10.0

Normalform.

. . .

.:CAPT=

0.0

V-form

. .

. ...:CAFT=-10.0

Pram with gondola .

. .

.: CAPT=-25.0

SRUD

i:

Wetted area rudder (rn2)

CRUD

i:

'Rudder

Rudder coefficient C-')

Rudder behind skeg

. . .

.:CRUD=1.5-2.0

behind stern

. .

.:CRtJD=1.3-1.5

'Twin-screw balance rudders:CRUD=

2.8

SAPP

i:

Wetted area appendages (rn2)

SAPP=SUM[sapp(i)]

CAPP

i:

Equivalent appendage factor C-)

CAPP=SUM[capp(i)*sapp(i)] /SuMisapp(i)i

Shaft brackets

:

capp(i)=

'

3.0

Skeg

. . .

.: capp(i)=1.5-2.0

Strut bossings

: cappU)=

3.0

'Hull bossings

.: capp'(i)=

2.0

Shafts .

. . .

.: capp(i)=2..0-4.0

Stabilizer fins

:

capp(i)=

2.8

Dcme .

. . . .

.: capp(i)=

2.7

Bilge keels

.

.: capp(i)=

1.4

ABULB

i:

Cross section area bulbous bow (rn2)

No bow correction : ABULB=0

HBULB

i:

Centroid of bulbous bow cross section

to keel (rn). If ABULB=0 HBULB can have

(15)

Inand output

ararneters (continued). i = input, o = output

DBTT i: Diameter of bow thruster tunnel (rn)

If no bow thruster DBTT=O

If N bow thusters DBTT=DBTT*sqrt(N)

CBT.T i,: Resistance coefficient of bow thruster

tunnel '(-).

IF no bow thruster CBTT=O Thruster in cylindrical part CBTT=O.003 Thruster at the worst location CBTT=O.012

AT

1: Area of iersed transom (rn2)

SLR i: Length of the run (rn) if unknown SLR=O

ALFA i: Half angle of entrance of the waterline (degrees). If unknown ALFA=O

NPROP : Number of propellers (-)

NPROP=O : No calculation of W,T and RRE NPROP=i : Calculation .of W,T and RR NPROP=2 : Calculation of W,T and RRE NPROP=1 or 2 DP i: AAE i: PPD 1: Diameter of propeller (rn) Expanded blade area (-)

Pitch diameter ratio (-)

NV

i: Number of ship speeds (-) max 25

VK (NV) i: Array with ship speeds (knots)

RSW(NV)

0:

Array with still water resistances (kN) W(NV)

0:

Array with wake fractions (-)

T(NV)

0:

Array with thrust. deduction fractions (-) RRE(NV)

0:

Array with relative-rotative efficiences

IERR

0:

In case of an error the program returns with IERR=- 1

(16)

3.1 Remarks.

There are three posibilities if the error message XERR=- 1 occurs:

Prismatic coefficient CP=CB/( > 1.0 with

CB=VOL/SLWL/ BR/DRAFT is given by input.

Action : Correct. the input value CB or Length of the run SLR c 0.01

Action : If the value SLR is calculated in the pro-gram, (SLR=0 in the input file) give the value for SLR by .input.

1.0 - CP 0.025*SLCB < 0 : see formula for half angle of entrance iR on page 5 or formula for the thrust deduction fraction t on page 8.

Action : CP or/and SLCB has to be corrected.

The input value for the center of buoyancy SLCB is gi-ven in a percentage of the length between.

perpendcu.-lars. The foulas in the program needs the value in a percentage of the length on the waterline.

The value of SLCB is recalculated fOr this value: SLCB=SLCB*SLPP/1 00

SLCB=SLCB+(SLWL-SLPP) /2 SLCB=SLCB* 10 0/SLWL

(17)

Bibiioqraphy.

Holtrop,J. and Mennen,G.G.J.

A statistical power prediction method, International Shipbuiding Progress, Vol. 25, October 1978

Holtrop,J., and Mennen,G.G.J.

An approximate power prediction method, International Shipbuilding Progress,, Vol. 29, July 19.82

Hoi,trop,J.

A statistical re-analysis of resistance ad propulsion data,

international Shipbuiding Progress, VOlume 31, November 1984

Cytaty

Powiązane dokumenty

The results of wall dampness measurements for the selected churches are compiled in table 2. Andrew the Apostle's church in Barczewo and St.. Temperature and

the building still rise to a height of 3.6 m. The floor in the narthex and the north-western part of the naos was made of broken sandstone slabs. The narthex was a narrow space

Even though the possibility of working, of being employed in a given workplace, allows an individual to develop, to advance professionally, and to gain new experience,

Kryteria przyjęte przez autora wzbudzają szereg zastrzeżeń. Przede wszystkim należałoby jednak w yróżnić osiedla z czasów ks. Zastrzeżenie budzi z kolei

Praca składa się ze w stępu, sześciu rozdziałów tem atycznych oraz „Katalogu krakow skiej prasy k o n spiracyjnej” ukazującej się w latach okupacji

Coraz trudniej uwierzyć w rozumne i dobre anioły, które z własnej woli bun- tują się stając się złe i głupie (bunt przeciwko wła- dzy absolutnej i kochającej jest

Firstly, we derive a mag- netic susceptibility estimation method to compute spatial mag- netic susceptibility distributions of linearly reacting materials, for which the

The test scores of a group of students are shown on the cumulative frequency graph below.. (a) Estimate the median