• Nie Znaleziono Wyników

Ice loads and ship response to ice A second season

N/A
N/A
Protected

Academic year: 2021

Share "Ice loads and ship response to ice A second season"

Copied!
138
0
0

Pełen tekst

(1)

,411,/

SSC-339

ICE LOADS AND SHIP

RESPONSE TO ICE

A SECOND SEASON

This document has been approved for public release and sale; its

distribution is unlimited

SHIP STRUCTURE COMMITTEE

1990

(2)

SHIP STRUCTURE COMMI1TEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships and other marine structures by an extension of knowledge pertaining to design, materials, and methods of construction.

RADM J. D. Sipes, USCG, (Chairman) Chief, Office of Marine Safety, Security

and Environmental Protection U. S. Coast Guard

Mr. Alexander Malakhoff Director, Structural Integrity

Subgroup (SEA 55Y) Naval Sea Systems Command Dr. Donald Liu

Senior Vice President American Bureau of Shipping

CONTRACTING OFFICER TECHNICAL REPRESENTATIVES

Mr. Albert J. Attermeyer Mr. Michael W. Tourna Mr. Jeffery E. Beach MARITIME ADMINISTRATION Mr. Frederick Seibold Mr. Norman O. Hammer Mr. Chao H. Lin Dr. Walter M. Maclean

U. S. COAST GUARD ACADEMY LT Bruce Mustain

CADE MY

Dr. C. B. Kim

U.S. NAVAL ACADEMY Dr. Ramswar Bhattacharyya

STATE UNIVERSITY OF NEW YORK MARITIME COLLEGE

Dr. W. R. Porter

WELDING RESEARCH COUNCIL Dr. Martin Prager

Mr. H, T. Haller

Associate Administrator for S hip-building and Ship Operations Maritime Administration Mr. Thomas W. Allen Engineering Officer (N7) Military Sealift Command

CDR Michael K. Parmelee, USCG, Secretary, Ship Structure Committee U. S. Coast Guard

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for determinating the goals and objectives of the program and by evaluating and interpreting the results in terms of structural design, construction, and operation.

AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND

Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski

Mr. John F. Conlon Mr. Charles L. Null

Mr. William Hanzalek Mr. W. Thomas Packard

Mr. Philip G. Rynn Mr. Allen H. Engle

MILITARY SEALIFT COMMAND U. S. COAST GUARD

SHIP STRUCTURE SUBCOMMITTEE LIAISON MEMBERS CAPT T. E. Thompson CAPT Donald S. Jensen CDR Mark E. NoII

NATIONAL ACADEMY OF SCIENCES -MARINE BOARD

Mr. Alexander B. Stavovy

NATIONAL ACADEMY OF SCIENCES -COMMITTEE ON MARINE STRUCTURES Mr. Stanley G. Stiansen

SOCIETY OF_NAVAL ARCHITECTS AND MARINE ENGINEERS

-HYDRODYNAMICS COMMITTEE Dr. William Sandberg

AMERICAN QNANDS1LEELJNSTITUTE

Mr. Alexander D. Wilson

Mr. William J. Siekierka Mr. Greg D. Woods

SEA 55Y3 SEA 55Y3

Naval Sea Systems Command Naval Sea Systems Command

(3)

Member Agencies: United States Coast Guard Naval Sea Systems Command Maritime Administration American Bureau of Shipping Military Sea/lit Command

Ship

Structure

Committee

An Interagency Advisory Committee

Dedicated to the Improvement of Marine Structures

December 3, 1990

ICE LOADS AND SHIP RESPONSE TO ICE

A SECOND SEASON

This report is the second in a series of six that address

ice

loads,

ice forces, and ship response to ice.

The objective of

this research is to develop ice load criteria for the design

of

ships. The

data

for these

reports

were

obtained

during

deployments of the U.S. Coast Guard Icebreaker POLAR SEA.

The

first report in this series, published as SSC-329, contained an

analysis of data from a single ice season.

This report presents

the results from a second season of ice breaking and includes

a

final

analysis

of local ice load

measurements

from four

deployments.

The other reports address global ice impact forces,

hull strain and impact force time histories,

and ice ramming

forces. They are published as SSC-340 through SSC-343.

J. D. SIPES

Rear Admiral, U.S. Coast Guard

Chairman, Ship Structure Committee

'SSz-3

Address Correspondence to: Secretary, Ship Structure Committeo U.S. Coast Guard (G-Mm)

2100 Second Street S.W. Washington, D.C. 20593-0001 PH: (202) 267-0003 FAX: (202) 267-0025 SSC- 339 SR- 1308

(4)

Technicai Report Documentation Page

111

I. R.part No.

SSC-339

2. Government Acces.on No. 3. Recip.ent CataLog No.

4. TitI. d Subtitl.

.

Ice Loads and Ship Response to Ice - A Second Season

5. Report Dot.

August 1990

6. PerIOrm.flq Organ,zaeìon Codo

8. P erío,-mjn Or onizafion Report No.

AEI

1t6C

ACL 1723AC

7. Author)

C. Daley, J.W. St. John, R. Brown, J. Meyer, I.Glen

9. P.rforjnq Orglézation Name and Addre,z

ARCTEC ENGINEERING, Inc. ARCTEC CANADA Limited

9104 Red Branch Road 311 Leggett Drive

Cblumbia, MD 21045 Kanata, Ontario

USA Canada K2K 1Z8

10. Work Unit Ne. (TRAJS)

Il.

COntrOCIOrGrOntNO.

OTMA 91-84C-41032

13. Typ. al Report and Period Covered

Final Report

12. Spon.orng Aq.ncy Name ond Addr.i Fransportation EFevel opment Letltre

Maritime Administration Complex Guy Favreau

U.S. Dept. of Trans. 200 Dorchester Blvd. West

400 Seventh Street, SW Montreal , Quebec

Washinqton, D.C. 20593 Canada H2Z 1X4

14. Sponeoréng Agency Code

MAR-760

IS. Suppl.mentaryNotslThis was an international joint project between the Ship Structure

Committee (USA) and the Transportation Development Centre (Canada). The U.S.

Maritime Administration served as the sponsoring agency for the Interagency Ship Structure Committee

16. Abstract

This report presents the results and final analysis of the local ice load measurement conducted on four

deployments aboard the USCGC POLAR SEA between 1982-84. Data were collected in first year and multiyear ice in

the Bering, Chukchi, and Beaufort Seas and first year level ice in McMurdo Sound, Antarctica. The first and

second deployment results from trips to the Alaskan Arctic as well as the instrumentation and data analysis

tech-niques were presented in 'Ice Loads and Ship Response to Ice (SSC-329) (Reference 1). The third deployment

results from the Antarctic were presented in a report to the Maritime Administration (Reference 2). The intent

of this report Is to present the data collected in the Beaufort Sea in the suirmier of 1984 (the fourth data

col-lection program presented in Volume I), to sutmiarize the previous three data colcol-lection programs and to provide

the final analysis of all data as a whole (Volume II).

The objective of the most recent data collection effort (Beaufort Sumer 84), was to gather additional

data in heavy first year and multi-year ice In the Beaufort and North Chukchi Seas. A total of 337 events were

analyzed of which 32 are known multi-year Ice Impacts. Level ice conditions varied in thickness from 2 to 3 ft

(.6 to .9 m) and pressure ridges were transitted with sail heights as high as 8 ft (2.4 m). Speeds of advance

during Impacts varied from less than 1 kt to 7.5 kts (0.5 to 3.9 MPS).

The highest single subpanel pressure measured was 1041 psi (7.2. MPa) and the highest peak force measured

was 374 LT (380 MT). These values are about 25 smaller than the peak values for multi-year Ice impacts measured

on previous deployments.

A statistical analysis of extreme pressures and forces was performed for the data collected on all four

deployments and Is presented In Volume II. Pressures over one subpanel, four subpanels, and total forces were

fitted to 3 parameter extreme value distributions. The results of the statistical analysis were then used to

suggest ice load criteria In support of Icebreaking Ship design and hull design regulations for icebreaking

ships.

17. Key Words

Classification Society Rules

Design Criteria Extreme Value Statistids

Ice Loads

Ice Pressure Measurement ,Icebreakers

-bicboard J_oad.s.J1eaciremnt

1 18. Distr,bution Statem.,,?

Document is available to the U.S. Public through the National Technical

Informa-tion Service, Springfield, VA 22161

19. Secur.ty Cla.sef. IaL tfii report> . Secu,ty Class,L. (of this page)

Unclassified Unclassified

21. N0. of Pogee 140

21 Price

(5)

Approximate Conversioni to Metric M.asur.s

is

tip Thip

n.'

C p. qt

.4

ft3

'Ois

12000 Ib) tIud ountss ps pInts

quai

Ilons

sublc fait

a

LENGTH

MASS (w.lØit)

VOLUME

s 11

a

0.24 o-47 0.00

3.'

0.03 0.7$

TEMPERATURE (exact)

METRIC CONVERSION FACTORS

a

Symbol

$

1 In. - 3.54 sin (isacey). Pat .Wiat suin C.AVW.InII.

end miss d.isM Obis sss

NM NNe. Pub. 35S. UnIs .4 WiIØi sad Msssut.s.

Pilca $2.35 SO Cs'Ofs 'Os. C13 102S.

s

s

p k, t 4 Oc 23

-

-=

22

-

-

-= -=

'3

n

n

n

=

=

n

n

= 21 20 18

Il

16 I5

'4

12

I'

io a $ ial mölUllisns I Niais I lItan 7 I Iltets ml cubIc mitai 6 m3 cubIc meters s TEMPERATURE (exact) 4 Oc Celsius IlS liNen f elwsnhsit

i-,-.

siN 33) umPitituis 3 OF 0f 33 00.5 212 -.40 0 lEO $0 120 100 300

J¿IJL.,l 4ff

$ £J L,' PT1 %

t'i L,' 1I

-40 -20 I 20 J40 50 SO 100 Oc 0 37

Approximate Conversions from Metric Measures

Symbol

When You Know

mm an m in km kml h.

millImeter. csntlmstsvi m.Ians mitais kilometers squats isatlinsisns squate messrs

sq.s

kilometers lct.nes 110.000ml) p kg t tonn.s(l000kp) 25 MASS (w&gnt) 0.03$ 2.2 1.I VOLUME 0.03 2.1

los

0.25 35 1.3

.

Ofl lois nub ounsa

quai

cubIc Isst cubIc ysals

fr. '25 centimetan an f' fist

a

c.ntèmitats an yd yscds o.. mitin in milis I .5 k14om.tsn AREA $5 squats nvlMnutirs hi ssusIs fist 0.00 squat. mitin ml yd1 »i.1i yw OS squats mitin ml mfl squats milis 2.S sq.ise kêI.mWs km1 Multiply by LENGTH To Find Symbol 0.05 In 0.4 in 3.3 fist h 1.1 yd O.' mIlis ml AREA 0.15 squats Inth« 1n 1.2 SQuats yds

y'

0.4 To Find Symbol

When You Know

Multiply by 0.4 pl.

a

o. 0.9 kilo5. ums Fifwatths4t tsatp.1it.&re Ñ (eh« C.iskas btisct)ng tainpititats 32) 2 cm sa Ib

noi

Pt q.

0

yd3

'F

(6)

PREFACE

This report presents the results and final analysis of the local ice

load measurement conducted on four deployments aboard the USCGC POLAR SEA

between 1982-84. Data were collected in first year and multiyear ice in the

Bering, Chukchi, and Beaufort Seas and first year level ice in McMurdo Sound,

Antarctica. The first and second deployment results from trips to the Alaskan

Arctic as well as the instrumentation and data analysis techniques were

pre-sented in RIce Loads and Ship Response to Icefl (SSC-329) (Reference 1). The

third deployment results from the Antarctic were presented in a report to the

Maritime Administration (Reference 2). The intent of this report is to

pre-sent the data collected in the Beaufort Sea in the summer of 1984 (the fourth

data collection program presented in Volume I), to summarize the previous

three data collection programs and to provide the final analysis of all data

as a whole (Volume II).

The objective of the most recent data collection effort (Beaufort

Summer 84) reported herein, was to gather additional data in heavy first year

and multi-year ice in the Beaufort and North Chukchi Seas. A total of 337

events were analyzed of which 32 are known multi-year ice impacts. Level ice

conditions varied in thickness from 2 to 3 ft (.6 to .9 m) and pressure ridges

were transitted with sail heights as high as 8 ft (2.4 m). Speeds of advance

during impacts varied from less than 1 kt to 7.5 kts (0.5 to 3.9 MPS).

The highest single subpanel pressure measured was 1041 psi (7.2. MPa)

and the highest peak force measured was 374 LT (380 MT). These values are

about 25% smaller than the peak values for multi-year ice impacts measured on

previous deployments.

Extreme value analysis of the pressure and force data was performed for

the data collected on all four deployments and is presented in Volume II.

Pressures over one subpanel, four subpanels, and total forces were fitted to 3

parameter extreme value distributions. The results of the extreme value

sta-tistics performed were then used to suggest ice load criteria in support of

icebreaking ship design and hull design regulations for icebreaking ships.

(7)

INTRODUCTION

TABLE OF CONTENTS

Page

2

2. NARRATIVE OF DATA COLLECTION ACTIVITIES

AND OBSERVED ICE CONDITIONS 4

TEST RESULTS 6

3.1 Overview of the Measured Loads 6

3.2 Pressure Variation with Contact Area

and Comparison with the Previous Data 10

3.3 Pressure and Contact Area Variation with Time 12

3.4 Statistical Analysis of Extreme Loads 14

VERTIFICATION OF CONSISTENT PANEL RESPONSE 18

SUMMARY AND CONCLUSIONS 20

REFERENCES 21

APPENDIX A - SUMMARY OF MEASURED DATA RANKED BY SINGLE

SUB-PANEL PRESSURE A-1

APPENDIX B - SUMMARY OF MEASURED DATA RANKED BY

TOTAL PANEL FORCE B-1

APPENDIX C - THE FIVE EVENTS OF HIGHEST SINGLE SUB-PANEL

PRESSURE C-1

APPENDIX D - THE FIVE EVENTS OF HIGHEST PANEL FORCE D-1

APPENDIX E - THREE EVENTS SHOWING THE TIME VARIATION OF PEAK

AND AVERAGE PRESSURE AND CONTACT AREA E-1

(8)

LIST OF FIGURES

Number Title Page

1 Strain Gage Locations for Instrumented Bow Panel Aboard

POLAR SEA 3

2 USCGC POLAR SEA Position at 0800 Hours November 12

-December 4, 1984 5

3 Highest Average Pressure on One Sub-Panel

versus Ship Speed 9

4 Total Panel Peak Force versus Ship Speed 9

5 Highest Average Pressure for All Data from

Beaufort Summer 82 and Beaufort Summer 84

versus Impact Area 10

6 Envelope of Highest Average Pressure vs. Length Along a

Frame (Vertical Slice Through the Panel) 11

7 Envelope of Highest Average Pressure vs. Length Along a

Waterline (Horizontal Slice Through the Panel) 11

8 Event of 28 November 1984 at 19:19:4 Showing Peak and

Average Pressure Variation with Time 13

9 Event on 28 November 1984 at 19:19:4 Showing Contact

Area Variation with Time 13

10 Extreme Value Distribution of Highest Average Pressure

on a Single Sub-Panel for the Beaufort Summer 84 Data . . . 15

11 Extreme Value Distribution of Highest Average Pressure

on Four Sub-Panels for the Beaufort Summer 84 Data . . . . 15

12 Extreme Value Distribution of Highest Force on the

Entire Panel for the Beaufort Summer 84 Data 16

13 Extreme Value Distribution of Highest Average Pressure on

a Single Sub-Panel for the Beaufort Summer 84 Data . . . 16

14 Extreme Value Distribution of Highest Force on Four

Sub-Panels for the Beaufort Summer 84 Data 17

15 Extreme Value Distribution of Highest Force on the

Entire Panel for the Beaufort Summer 84 Data 17

(9)

LIST OF TABLES

Number Title Page

1 Conversion from Number of Sub-Panels to Area 6

2 Frequency of Impacts Versus Highest Average Pressure for

Beaufort Summer 1984 Data 7

3 Frequency of Impacts Versus Highest Average Pressure for

Known Multiyear Impacts in the Beaufort Summer 1984

Program 7

4 Frequency of Impacts Versus Location at Time of Peak

Pressure 8

5 Frequency of Impacts Versus Location at Time of Peak

Pressure 8

6 Comparison of Measured and Computed Strains at the

Upper Padeye 18

7 Comparison of Measured and Computed Strains at the

Middle Padeye 19

8 Comparison of Measured and Computed Strains at the

Lower Padeye 19

(10)

1.0 INTRODUCTION

In 1982, USCGC POLAR SEA was instrumented with an array of strain gages

on the port bow for the purpose of measuring ice impact pressures. Two trips

to the Alaskan Arctic were made in October of 1982 and in March-April 1983

during which time about 1400 impact events were collected. The research was

carried out on behalf of the Interagency Ship Structures Committee, the U.S. Maritime Administration, and Transport Canada (Transportation Development

Cen-tre). Work was performed in conjunction with environmental data collection

programs sponsored by the Alaskan Oil and Gas Association and the U.S. Mari--

-time Administration.

Ten cant frames (CF 35 to CF 44) were instrumented at 8 vertical locations by strain gauging the webs of the frames in compression

perpendicular to the shell plating (Figure 1.1). A total of sixty active

channels of strain gauges allowed contact pressures over an area of up to 98

ft2 (9.1 m2) to be measured. An individual strain gauge channel was related

to an area of 1.63 ft2 (.15 m2) for which a uniform pressure was computed for

a measured strain. A complete description of the data acquisition system and

the data reduction procedures as well as the results of the two deployments

can be found in Reference [1]*.

The POLAR SEA's trip to the Antarctic in January 1984 offered a third opportunity to collect ice impact data in thick level ice in conjunction with resistance tests sponsored by the Maritime Administration (MARAD), Naval

Engineering Division of U.S. Coast Guard and Canadian Transportion Development

Centre (TDC). An additional 310 ice impact events were collected by this

effort and are reported under contracts to MARAD [2] and TDC [3].

A fourth data collection program was conducted in October and November

of 1984, termed the 1984 Summer Deployment, to gather additional data in

sum-mer multiyear ice conditions where the highest loads could be expected. This

deployment recorded 337 impact events which are presented and analyzed in

Volume I. Volume II summarizes data from all four deployments and presents

further analysis of the complete data set.

* Numbers in brackets refer to references listed in Section 6.

(11)

I ST PLAIF

Figure 1

STRAIN GAGELOCATIONS FOR INSTRUMENTED BOW PANEL

ABOARD POLAR SEA

(12)

2.0 NARRATIVE OF DATA COLLECTION ACTIVITIES AND OBSERVED ICE CONDITIONS

Ice impact data were collected during the transit of POLAR SEA from

Barter Island to Nome, Alaska. Operations were conducted in the Beaufort Sea

from November 18 until November 30, 1984 and in the north Chukchi Sea on

November 30 and December 1, 1984. Three hundred thirtyseven events, each of

five second duration, were recorded during these dates. Of the 337 events, 32

are known multiyear events.

Personnel boarded POLAR SEA on November 11 about 100 n.m. north of

Barter Island. The ship then proceeded to a position just offshore Barter

Island which was reached on November 14. Data collection software revisions

were made during this time and no data were collected.

Ice conditions from Barter Island to a position 60 n.m. offshore Prudhoe Bay were generally mild in the sense that POLAR SEA operated in a

shore lead for most of the distance. Level ice thickness in the lead was

under one foot (.3 m), but some thicknesses as high as 2 to 3 ft (.6 to .9 m)

were experienced. The largest pressure ridge transited had a sail height of

about 5 ft (1.5 m) although some were observed in the vicinity to be as high

as 15 ft (4.6 m). Multiyear ice floes were also encountered during the

tran-sit. Ice impact data collection began on November 18 and continued through

November 21. By this time about 100 ice impacts were recorded, mostly from

first year ridges. On November 21 POLAR SEA became stuck in an active shear

ridge which halted data collection for six days.

During the period of November 27 through November 29, about 300 events

were recorded, many of which were impacts with multiyear ice. During this

part of the transit, from Prudhoe Bay to Barrow, ice conditions were highly

irregular. Avoidance of difficult ice features which might cause POLAR SEA to

become stuck again was paramount. As a result, considerable ice maneuvering

was performed which allowed POLAR SEA to transit much of this distance in thin

level ice 2 ft (.6 m) or less in thickness. Pressure ridges were encountered

throughout this part of the transit as well as multiyear ice. The maximum

ridge sail height transited was reported as 8 ft (2.4 m), although the

major-ity were under 3 ft (.9 m). Multiyear ridges were relatively few compared to

the number of multiyear floes. Detection of multiyear floes could not be

determined until the ship was on the verge of impact because most of the floes

were small and many lacked pressure ridges making early detection difficult in

the available lighting conditions. The last sunrise occurred a week before.

On November 30, a partial transfer of personnel was made at Barrow. Data collection continued for two more days and on December 2, the ice impact data collection instrumentation was shut down for removal at Nome and the final departure of project personnel.

(13)

Figure 2

USCGC POLAR SEA POSITION AT 0800 HOURS

November 12 - December 4, 1984

(14)

3.0 TEST RESULTS

3.1 Overview of the Measured Loads

The 337 events that were recorded are of excellent quality. The

im-pacts are extremely well centered on the panel and occurred over a wide rar:ge

of speeds. To aid in understanding the loads measured on the panel, Table 1

gives the conversion from number of sub-panels to area in square feet and

square meters for use with Tables 2 and 3. Tables 2 and 3 show the frequency

of impacts versus highest average pressure for different contact areas for the

entire data set and the known rnultiyear data set, respectively. Approximately

37 percent of the impacts have contact areas of at least 50 ft2 (4.7 m2). One

exceptional event occurred which had a peak pressure of 1041 psi (7.2 MPa).

This was very localized affecting three sub-panels at the time of peak

pres-sure. As shown in Table 2, all the events above 400 psi (2.8 MPa) were very2

localied having contact areas at the time of peak pressure less than 9.8 ft

(0.9 m

Tables 4 and 5 show the frequency of impacts as a function of panel

location for peak pressure and peak force, respectively. These tables show

that the impacts are well centered on the panel. Frame 40 Row 6 has an

unusu-ally high number of occurrences. No obvious explanation is apparent, however.

Figures 3 and 4 are scatter diagrams showing peak pressures and peak

forces plotted versus ship speed, respectively. Impacts were recorded over a

range of ship speeds from 0.5 kt to almost 6 kts (0.25 to 3.1 mps). An

inter-mittent problem with the speed channel caused some loss of velocity data.

Impact velocities were obtained for most of this data by detailed analysis of

the velocity time-histories. Only in cases where the system was down for the

entire S second event was there a loss of impact speed. These impacts are not

included in the figures. The figures show that the impacts were distributed

evenly over the range of ship speed indicating that there is no apparent

rela-tionship between peak pressure and ship speed. The extremes of panel force

show a weak trend of increasing severity with increasing speed.

TABLE i CONVERSION FROM NUMBER 0F SUB-PANELS TO AREA

6 ri NUMBER 0F SUB-PANELS AREA FT2 M2 1 1.63 0.15 6 9.79 0.91 15 24.5 2.28 31 50.6 4.70 46 75.1 6.98 60 97.9 9.10

(15)

TABLE 2 FREQUENCY OF IMPACTS VERSUS HIGHEST AVERAGE PRESSURE FOR BEAUFORT SUMMER 1984 DATA

NUMBER OF SUB-PANELS

TABLE 3 FREQUENCY OF IMPACTS VERSUS HIGHEST AVERAGE PRESSURE FOR

KNOWN MULTIYEAR IMPACTS IN THE BEAUFORT SUMMER 1984 PROGRAM

NUMBER OF SUB-PANELS 7 PRESSURE (psi) 1 6 15 31 46 60 O-50 0 42 102 103 3 O 50-lOO 4 83 128 20 1 0 100-150 20 104 29 1 0 0 150-200 21 65 3 O 0 0 200-250 34 21 1 0 0 0 250-300 50 4 0 O 0 0 300-350 62 3 O 0 0 0 350-400 40 1 0 0 0 O 400-450 35 O 0 0 0 0 450-500 18 0 0 0 O O 500-550 20 0 0 0 0 0 550-600 12 O O O O O 600-650 3 O O O 0 0 650-700 4 0 0 0 0 O 700-750 5 0 O O 0 0 750-800 5 0 0 0 0 0 800-850 3 0 0 0 0 0 1000-1050 1 0 0 0 O O TOTALS 337 323 263 124 4 0 PRESSURE (psi 1 6 15 31 46 60 0-50 0 4 11 2 0 0 50-100 0 lO 8 3 O O 100-150 1 6 6 0 0 0 150-200 2 6 0 0 0 0 200-250 7 5 0 0 0 0 250-300 3 0 O 0 0 0 300-350 5 0 0 0 0 0 350-400 1 0 0 0 0 0 400-450 4 O 0 0 0 0 450-500 2 0 0 0 0 0 500-550 1 0 0 0 0 O 550-600 2 O 0 0 0 O 600-650 0 0 0 0 O O 650-700 1 0 0 0 0 0 700-750 1 O 0 0 O O 750-800 1 0 0 0 0 0 800-850 O 0 0 0 O O 1000-1050 1 0 O 0 0 0 TOTALS 1 32 31 25 1 5 1 O i O

(16)

TABLE 4 FREQUENCY OF IMPACTS VERSUS LOCATION AT TIME OF PEAK PRESSURE

TABLE 5 FREQUENCY OF IMPACTS VERSUS LOCATION AT TIME OF PEAK PRESSURE

8 ROWS 44 43 42 41 FRAMES 40 39 38 37 36 35 TOTAL 3 2 1 8 4 3 4 2 9 3 0 36 4 4 10 4 6 1 0 7 lo 5 4 51 2 6 11 9

- b

7 0 0 2

,2

1 5 3 18 14 4 49 8 1 5 4 3 1 6 2 2 8 0 32 TOTAL 11 34 27 22 88 21 30 52 41 11 337 FRAMES ROWS 44 43 42 41 40 39 38 37 36 35 TOTAL 3 3 3 8 2 3 1 1 4 2 0 27 4 3 13 1 7 4 0 6 5 3 3 45 5 5 11 5 3 5 1 6 14 13 3 66 6 8 3 1 0 105 0 2 0 1 0 120 7 3 0 3 1 0 1 0 10 15 8 41 8 2 7 1 6 0 11 4 3 3 1 38 TOTAL 24 37 19 19 117 14 19 36 37 15 337

(17)

3 a o

a-

o.-400 300 203 100 o -O 2 3 5 6 7 I I I O I 2 3 SHIP SPEED

Figure 4

TOTAL PANEL PEAK FORCE vs. SHIP SPEED

Kf. u g o a. 1202 U) a. 8 1100 7 1000 900 6 922 5 700 4 600 500 -3 z

-

* -400 - * - -s 2 320 202 102 2 3 4 5 0 j J M I 2 3 SHIP SPEED

Figure 3

HIGHEST AVERAGE PRESSURE ON ONE SUB-PANEL

vs. SHIP SPEED

-J

(18)

3.2 Pressure Variation with Contact Area and Comparison with Previous Data

The data analysis plots the highest average pressure during each event

verus impact area, impact length along a frame and impact length along a

waterline. These are the formats that would be most useful to a designer.

All of the events are then analyzed to determine the extremes of these data

for the deployment, i.e. the extreme envelope of pressure for all events.

Figure 5 shows a comparison of the highest average pressure versus impact area

for all data from Beaufort Summer 1982 and Beaufort Summer 1984 deployments.

In 1984, the pressures recorded for small impact areas are lower than in 1982

by a significant amount (more than 570 psi or 3.9 friPa). The 1982 envelope

curve has a more typical shape, approaching a line of constant force at large

contact areas. The 1984 curve is relatively linear over the entire range of

impact areas. Simiarly, the maximum recorded force in 1982 was significantly

higher, 495 LT versus 374 LT in 1984.

The ice conditions in 1982 and 1984 had significant differences which

presumably contributed to the differences in measured pressures. Multiyear

ice was much more severe in 1982 and, since the deployment was earlier in the season, the ship operated in open water or light refreeze between the floes. The ship therefore had room to maneuver and accelerate in open water before

impacting the floes. This was not the case in 1984. The multiyear floes were

smaller and fully embedded in first year ice about two feet thick.

Curves from the Beaufort Summer 1984 deployment are also presented for

the highest average presure versus length along a frame and a waterline in

Figures 6 and 7, respectively. Both show the typical exponential decay with

distance (these approach straight lines of constant force when translated to the log-log pressure-area curve.)

10 70.000 50

.u.

-...Iuu

--III,"

LMIIfllNIIflhI

imiirniini

iii!iIIuIIIIllhI

Rinhiiuiiiii

MI1llrnIIIIIn

iIii!ilI

.nrniuuii

RU11II1UIUiiI

uiiisisuuiii

iuiiniiaiiino

IIIIIllhIIIIIIuhI

BEAUFORT SUMMER 82 BEAUFORT SUMMER 84 500 I00 Io s 'o

AillA (lou... Y..l)

a., i I IO

ARIA (Iq..v. Uni...)

Figure 5

HIGHEST AVERAGE

PRESSURE FOR ALL DATA

FROM BEAUFORT SUMMER 82

AND BEAUFORT SUMMER 84

vs. IMPACT AREA

(19)

8 I 100 7- 1000 902 6-2 2 6 1200 5- 700 3 800 Seo 2 ¡200 8-1100 2 2 2 3 4 5 E 7 8 9

LENGTH ALONG WATERLINE

Figure 7

HIGHEST AVERAGE PRESSURE FOR ALL BEAUFORT SUMMER 84

DATA vs. IMPACT LENGTH ALONG A

WATERLINE

(HORIZONTAL SLICE THROUGH THE PANEL)

Ft

10 11 12 13 14 15 IS

ji

2 3 4 5 S 7 8

G z

GIRTh ALONG FRAME

Figure 6

HIGHEST AVERAGE PRESSURE FOR ALL BEAUFORT SUMMER 84

DATA vs. IMPACT LENGTH ALONG A FRAME

(VERTICAL SLICE THROUGH THE PANEL)

7 6 - ¡002 900 o oc 720 200 ea 40e 302 200 I 20 M o z 3 4

(20)

3.3 Pressure and Contact Area Variation with Time

To better understand the ice impact process, it is of interest to

examine the variation of peak and average pressure and contact area with time.

These are the important variables used in many mathematical models of

ice-structure interaction.

Three events have been analyzed and are presented in Appendix E. The

one of those three events presented in Figures 8 and 9 includes the highest

single sub-panel pressure recorded on the deployment (1041 psi or 7.2 MPa).

For this event, contact area increases very rapidly and then levels off while

there is a steady rise in average and peak pressure in the early part of the

impact. Maxima in average pressure occur at local minima in the contact area.

The extreme of peak pressure occurs as contact area is rapidly decreasing.

Peak pressure has less fluctuation with changes in contact area where average

pressure appears directly correlated. Similar trends were seen in the event

shown in Figures 46 and 47 of Reference i where sudden drops in the contact

area caused corresponding sudden increases in the average pressure near the

time of the maximum single sub-panel pressure. The sudden decreases in

con-tact area could be caused by flaking of ice pieces near the edge of the impact

zone typical of brittle failure of ice. The early stages of the event of

Figures 8 and 9 also shows a simultaneous increase in average and peak

pres-sure and contact area indicating confinement effects. This phenomenon is

evi-dent in other events shown in Reference i as well.

(21)

Q_ Cn a-L 22 L 1 w Cf) Cf) . w

x

Q-3 4O z 2O o za 20 LO 0 1/2

TIME (Sec)

Figure 8

EVENT ON 28 NOV 1984 AT 19:19:4

SHOWING PEAK AND AVERAGE PRESSURE VARIATiON WITH TIME

PEAK A\V E R AGE 11/2 2 TIME

(Sec)

2 21/2 2 1/2

Figure 9

EVENT ON 28 NOV 1984 AT 19:19:4

SHOWING CONTACT AREA VARIATION WITH

TIME

3

3

(22)

3.4 Statistical Analysis of the Extreme Loads

The 337 recorded impacts were rank ordered by highest single sub-panel

pressure, by highest average pressure over four sub-panels and by highest

total panel force. The probability of occurrence was computed for each

rank-ing as the reciprocal of one plus the order number. One minus the probability

of occurrence is the probability of non-occurrence or the probability that, given an impact, the measured value will be less than the given value.

The three data sets are plotted on extreme value probability paper in

Figures 10, 11, and 12. All three plots show a linear relationship of forces

or pressures to probability indicating a Gumbel type distribution. The three

types of asymptotic extreme value distributions have been discussed in

previ-ous reports [1,4].

A subset of 32 of the 337 recorded events were known multiyear events

and these were analyzed seperately. Figures 13, 14 and 15 show the extreme

value plots for highest average pressure over one sub-panel, four sub-panels

and total force on the panel, respectively. While it is much more difficult

to see a trend in the data due to a small data set, Figures 14 and 15 show a

general linear pattern indicating a Gumbel type distribution. This type of

extreme value distribution plots linearly on log-extreme value paper. The

single sub-panel pressures shown in Figure 13, however, have a definite upward

curvature indicating a Frechet or Type II distribution.

The Frechet distribution for single sub-panel multiyear events agrees

with the data from 1982 taken in the summer Beaufort Sea. The data from 1982

were much more severe, however, and the distribution of all events from that

data set was a Frechet distribution. A Gumbel distribution is appropriate for

all data from 1984 as shown in Figure 10. Upward curvature appears to

increase with increasing severity of multiyear ice. The comparison of data

sets will be discussed in more detail in Volume II.

(23)

CI)

C-

87io

-

6-

5-

45C0

-

3-

2---

o.-o e, -' ç9 19 PROBABILITY OF NON-EXCEEDANCE

Figure 11

EXTREME VALUE DISTRIBUTION OF

HIGHEST AVERAGE

PRESSURE ON FOUR SUB-PANELS FROM THE BEAUFORT SUMMER 84 DATA

I 23

.-, J

.,y.

9'S: PROBABILITY OF NON-E XCEEDANCE

Figure 10

EXTREME VALUE DISTRIBUTION OF

HIGHEST AVERAGE

PRESSURE ON A SINGLE SUB-PANEL FROM THE BEAUFORT SUMMER 84 DATA

15 502 3 400 3C 2 222

(24)

io

8 6 5 4 3 2 o 50

r

r

PROBABILITY OF NON-E XCEEDANCE

KNOWN IMPACTS WITH MULTIYEAR ICE ONLY

Figure 12

EXTREME VALUE DISTRIBUTION OF HIGHEST

FORCE

ON THE ENTIRE PANEL FROM THE BEAUFORT SUMMER 84 DATA

PROBABILITY OF NON-EXCEEDANCE

Figure 13

EXTREME VALUE DISTRIBUTiON OF HIGHEST AVERAGE PRESSURE

ON A SINGLE SUB-PANEL FROM THE BEAUFORT SUMMER 84 MULTIYEAR

DATA

500

(25)

_J__. 250

wo,

z

<o

z2

200 150 O

Ij-:J'

100

)< o

<-J

50 0

KNOWN IMPACTS WITH MULTIYEAR ICE ONLY

Q-2 O 350 300 250 200 150 100 50 O C/) Q-i I I

KNOWN IMPACTS WITH MULTIYEAR ICE ONLY

I

-'9 - 99

PROBABILITY OF NON--EXCEEDANCE

Figure 14

EXTREME VALUE DISTRIBUTION OF HIGHEST AVERAGE PRESSURE

ON FOUR SUBPANELS FROM THE BEAUFORT SUMMER

84 MULTÍY EAR DATA

-'9 99

PROBABILITY OF NONEXCEEDANCE

Figure 15

EXTREME VALUE DISTRIBU11ON OF HIGHEST FORCE

ON THE ENTIRE PANEL FROM THE BEAUFORT SUMMER

(26)

4.0 VERIFICATION OF CONSISTENT PANEL RESPONSE

As part of the 1984 Beaufort Sea tests, the panel was physically loaded with known forces to verify that the response of the panel had not changed

with time. When the strain gages were originally installed in the POLAR SEA,

padeyes were installed on the inside of the hull plating between the frames

such that the strain gages could be loaded with a known load. The padeyes

were placed between frames 37 and 38, 39 and 40, 41 and 42, and between 43 and

44 at three vertical locations in each frame bay. Each padeye was loaded

individually to approximately 40 LT (40 MT) and the strains were read at all

gages for each load. The original 1982 test results were compared to a finite

element model of the area that was given the same loading conditions. The

objective of the 1982 test was to validate the finite element model such that

it could be used to generate the data reduction matrix to reduce the strains

from an ice impact to uniform pressures on the hull.

Tables 6, 7 and 8 show the results of repeating the measured loading at

12 places on the panel in 1984. The tables compare the results to the

previ-ous test and the finite element calculations. The results of both

measure-ments are extremely similar. Overall error relative to the finite element

model results actually improved slightly from the 1982 test. The conclusion

is that the panel has not changed its response significantly over the span of

time it has been used for testing.

The 1984 tests were performed about three weeks after the measurements

were taken in the Beaufort Sea. Blanks in the tables indicate gages that

failed during the testing period or on the return trip to Seattle and were not

replaced.

TABLE 6 COMPARISON OF MEASURED AND COMPUTED STRAINS AT THE UPPER PADEYE

18 ROW FEM FRAMES ERROR AVG RMS 37 38 39 40 41 42 43 44 MAX MtN 1 10 28 28 31 26 25 25 31 23 21 13 17.1 6.1 28 28 29 25 24 24 25 26 25 14 17.4 6.3 2 63 34 51 58 50 59 56 58 57 - 4 -29 -10.1 4.5 37 53 60 55 63 60 63 58 0 -26 - 6.9 3.7 3 31 32 33 29 28 39 43 38 40 12 - 3 4.3 2.6 35 35 30 30 38 58 39 43 27 -1 7.5 4.0 4 15 12 14 17 13 17 12 20 17 5 - 3 0.3 1.0 13 16 - 14 13 11 23 19 8 -4 0.6 1.5 5 4

2-1

6

0-2-2-2-4

2 -8 -4.4 1.9 2 0 -1 0 -2 -ì -2 -3 -2 -7 -4.9 1.8 6 0 4 6 3 3 6 4 4 4 6 3 4.3 1.6 4 5 4 4 - 6 5 - 6 4 4.7 1.9 AVG - 1.8 1.3 3.5 - 0.5 3.5 2.5 4.3 2.2 1.9 - 0.7 2.3 2.8 0.8 2.6 5.8 6.7 4.0 3.1 RMS 5.8 3.9 3.7 3.6 3.3 3.7 4.1 3.3 1.4 5.3 3.7 4.1 3.0 3.4 5.3 4.8 4.4 1.6

(27)

TABLE 7 COMPARISON OF MEASURED AND COMPUTED

STRAINS AT THE MIDDLE PADEYE

TABLE 8 COMPARISON OF MEASURED AND COMPUTED STRAINS AT TI-lE LOWER PADEYE

AVG OF ALL DATA -1.4 uc

RMS OF ALL DATA 0.9 ic 19 ROW FEM FRAMES ERROR ic AVG RMS 37 38 39 40 41 42 43 44 MAX MIN 1

-5

1 1 1 2

-3

-3

-2 -4

7 1 4.1 1.7 2 1 1

1-2-3-1-4

7 1 4.4 1.7 2 - 4 - 1 - 7 - 9 - 8 - 9 - 7 - 4 - 7 3 - 5 -2.5 1.3

-2

-7

-8

-10 -10 -10

-7

-7

2

-6

-3.6 1.6 3 7 16 12 16 15 12 16 26 21 19 5 9.8 3.8 18 13 16 15 15 20 26 22 19 6 11.1 4.2 4 81 77 75 86 85 85 60 92 82 11 -21 -0.8 3.2 84 84 - 87 82 64 93 86 12 -17 1.9 3.2 5 40 33 34 27 33 31 34 29 24 - 6 -16 -9.4 3.5 42 37 23 39 32 13 29 27 2 -27 -9.8 4.6 6 5 11 11 8 7 9 9 9 10 6 2 4.25 1.6 11 12 12 4 - 10 10 - 7 - 1 4.8 2.3 AVG 2.2 0.3 0.8 1.7 0.2 - 2.5 4.3 0.3 0.9 5.2 2.7 0.2 2.0 -0.4 - 5.0 4.3 1.0 1.5 RMS 2.5 2.2 3.1 2.4 2.2 4.0 4.2 3.7 1.1 2.5 2.0 4.3 2.2 2.6 5.9 4.3 4.1 1.3 ROW REM FRAMES ERROR AVG RMS 37 38 39 40 41 42 43 44 MAX MIN 3 - 3

-1 -1-1-2-6-2-2-2

- 1 - i - 2 - 3 0 - 1 - 1 0 3 0 1.9 0.7 2

-3

0.9 0.6 4

-

G - 7 - 7 - 8 - 8 - 5 - 4 - 6 - 7 2 - 2 - 0.5 0.5

-8

-8

-

-8

-8

-4

-7

-8

2

-2

-1.3

0.7 5 -

8 -5 -4

-4

-8

-4

-2

-2

-3

6 0 4.0 1.6 - 9 - 7 - 9 -10 - 7 - 2 - 5 - 7 6 - 2 1.0 0.9 6 36 50 25 48 39 42 40 48 43 14 -11 5.9 3.3 55 26 50 - - 38 47 - 19 -10 7.2 5.6 7 102 77 75 77 76 84 73 70 78 -18 -32 -25.8 9.2 89 83 87 84 85 73 - 79 -13 -29 -19.1 7.5 8 27 - 8 50 10 6 27 17 12 15 23 -35 -10.9 6.8 -12 55 11 7 26 17 11 15 28 -39 -10.8 7.4 AVG

- 7.0 - 1.7 - 4.5 - 7.6 - 0.7 - 4.2 - 4.5 - 3.7

- 4.2 - 5.7 0.0

3.2 - 8.2 - 4.4 - 4.7 - 0.4 - 7.0

- 3.7 RMS 7.5 6.2 5.5 5.6 3.3 5.3 6.3 4.7 2.0 7.6 5.9 5.2 5.4 3.5 5.2 3.9 5.2 2.0

(28)

5.0 SUMMARY AND CONCLUSIONS

A total of 337 events were collected in the Beaufort Sea in summer

multiyear ice conditions. Ship impact speed ranged from 0.5 to almost 6 kts.

Ice conditions were generally less severe resulting in lower loads than in

1982. Extremes of the data showed a single sub-panel pressure as high as 1041

psi (7.2 MPa) and a maximum total panel force of 374 LT (380 MT). This

pres-sure and force are about 65 and 75 percent, respectively, of those recorded on

the previous deployment to the Beaufort Sea in 1982.

Conclusions from the study are as follows:

Speed effects were not apparent in the single sub-panel pressure

data and only weakly evident in the total force data.

Total force and pressue data fit a Gumbel probability distribution

for the events collected (337 events). Known multiyear data also

fit a Gumbel distribution except for the single sub-panel pressure

which fit a Frechet distribution, though there is a very small number of events.

Loading the panel with known forces, as was performed in 1982 for

validation of the finite element model, showed no significant

dif-ferences in the measured response.

No specific recommendations result from these measurements and their

analysis. The entire measurement program, encompassing four ship deployments,

is discussed in Volume II where recommendations are made for ice load design

criteria.

(29)

6.0 REFERENCES

"Ice Loads and Ship Response to Ice", for Ship Structure Committee, U.S

Maritime Administration, and Transport Canada, SR-1291, December 1984.

"Local Ice Pressures Measured in Thick Level Ice in Antarctica", for

Maritime Administration and U.S. Coast Guard, ARCTEC, Incorporated Report

No. 929C, September 1986.

Daley, C., Brown, R., St. John, J., Meyers, J., "Polar Class Antarctic

1984 Ice Impact Tests", Transport Canada TP 7184E, by Arctec Canada

Limited, March 1985.

Daley, C.G., St. John, J.W., Seibold, F., and Bayly, I., "Analysis of

Extreme Ice Loads Measured on USCGC POLAR SEA", paper presented to The

Society of Naval Architects and Marine Engineers, November 1984.

(30)

KEY:

PM1 - Maximum single sub-panel pressure (psi)

PAl - Average pressure over the contact area at

the time of peak pressure (psi)

Al - Contact area at the time of peak pressure

(sub-panels)

Fi - Total panel force at the time of peak

pressure (LT)

PM2 - Maximum single sub-panel force (psi)

PA2 - Average pressure over the contact area at

the time of peak force (psi)

A2 - Contact area at the time of peak force

(sub-panels)

F2 - Peak total panel force (LT)

VEL - Ship velocity at impact APPENDIX A

SUMMARY OF MEASURED DATA RANKED BY SINGLE SUB-PANEL PRESSURE

(31)

01 01 r) 01 01 V) V) N

01

-IS) IS) 01 NI Cx) f-i i- W Cx) 01 0) 01

-- o o

G N IO w 01 01 5) 01 5) - 5) 01 5) Cx) 5) Cx) 01 CO - Cx) 5) 5) Cx) Cx) w 01 01 01 01 -c-J N 5) 01 '5) 01 Cx) rJ - i-'S) 01 f-J '5) V) 01 Cx) N') NI f'J r-I G Cx) G N 'S) W G G G G '5) 01' 01 -O 01 0 01 01 r-_I

N

-N

NI - r--i '-NO)

N LO (n N -'t V) N .- - cx) oem V) LO -'I-r_I f1 '-'i-I-_I (Ti 01.- CTI N i) U') 't

G '

U) CX) CI) f-J NI 't F-i f- r') LI) w ft Li. r-j rl FC) r-_I V) r-_I 1- - r-J NI in r-_I f-j NI - V) Ç-J e-_I N) LI).- i) 133 -'t r-_I 01 F") 4-JJ) "t 4-LI) V)

f-_I LOU') U) Il W i-1

I') VT N) 't i_I

't

n-33

r-J In N

't

"trj w w w in in w V r -w -'t 0) 01 W V) -S 't f-J LI) f--01 5)

w co w 01 w r, co w o w

-a) 't m (xJ W 'F W (D

(tr-i.--'1--r-Jr--i--jin.---int--Jpn

't

-

_rn_cJr-J-'t-i-rnr-jr-Jr'-)-r4in---Vir_IrnIq,--

c-J----

-f4-.--f4

W-N'ri---NI -.--- c'_I-r-J---.-V)

Ç3--f_II)V)CJf.ir-J--'t1n

Q-r--j N w -'t N) - W (O Ii) N - W r- cx) N - f-_I Ui 't In

r--f-_I W r-- - IS) r- Cii

't

't N) Ui f-_I W LO r-J .- In - F--- G W f-3 w .01 't N 't V) -:1 W E CI) in t--j W 't 01 w LO 01 CI) Cx) V) r-4 CI) W W NI CX) cl) - -rj- - in w W --t-r-- W - 0) w 01 Vi --t-r-- U) - W r w N -w in 't -w 01 (CI r-- 0) U)

-

-_---

.--

..

-r-- G w r-1 - F-4 in ('-I W w ai 't w 'X) r--.t in W N -J- in W 01 11) G) ri r-- CO c-i N

W - w m in o -t

.- N U') W 't W W

V) W 01 . W

-IL. c-j c--t - r-1 - r-J

-c-j- c-J - r--j - in N) ----rd--

.cj w cJ r_ICI. rJ N) fj 't f_I --3 c-_I f-_I f V) W (J V) f-I f-i -'1-r-j 't cc) (J f- ".1

in w o 't w r3 rj in 't

-in 01 V) N -in N .-(--j 0' 't Vi II) in 't V) 0) LI) W N J) Cx) f_I i-1 LI) t (1) 't N Ni w W W '5) 1 -(t f-J

-r-J

.

-r-_I

r J

- --('-J

-'----L1)Wti--1"t.--01-.-CGf-IW't'twI--1InincX).--tIfl'*r-_Ii-1Gma)'tLOWrJWuJO3inrJ0)W't'tC)01N01fI---li

f_I c_I

N'S) '-9-4-0)01--- N LONG 'i- W tilLO

(1)0101 LI) U) CON 01011_IWI)) r_I clin

If) 01W f_I f_I LO N N01 COW in 0)010 -f_I i-) V)

0100

ca (-J f_I f_I (J f CC) W 11 G 0) 01 Cc

in G

-cl) CD f_I - 't LI) 01 .- w -(3)

r W f- 't CI) in

r-f--r_I

-.'t-'tI-1----inrJw-.'t-c-_I.-I-1wlnr-o,--r_I----f_Iti--l-u-)---f-Jw-i-)G----r-')---S)c-)-ti-')tnw'--'-)w

i9-E

. in-' Gin IT010101

't 'tin Ç-J 0)01011-1 ..

-c-_I 't LOW» wcow ...f-J..

f-' 01G

rJciJi-')CX)1OWflCxJ- -01

c-c (j)- Gr-_I Li) ill

r--J

-i-in NW - -i-in N) V) V) W-0) 'i- -i-in

r_Il-1 IC) - V) N) i') (I)

r_I 03V) f_I V) - -1 31 U) r_I W i-')) (J)

-t - (n

.--Cx) C')

I- ...In

...'t ...f ...r_I

.. ..

ri

Ii) in U) W V) V) N) i-1 ifl V) V) N

fC) G in 01 '3) W V) 01 in 't IX) N-) I-1 G i-1

i-1.. W U) 03 . N) G IC) ..

't

cl "t

IS) Vi 03 111 I-1 Cx. Cx) -'t

cl'tfl't

'J 't

't

CX) 03 01 Ci) 0) Ci) C)) W Cl) Xc cxc Cl) Cc) CD Cc) cc) (j) CI) cx) (C) O) CI) (X) CI) (D (X) CX) (O Cx) W O) W 0) W CI) CO CO W W Cl) (X) W Ci) 0) (i) 01 cx) CT) CX) (Cl 0) CX) 0) 01 01 0) (J) 0) 01 W 01 01 0) Cf) (D 0) 131 W m I_Il 01 01 w 01 w 0) w 01 cxi ai m CXI CXI W 01 01 cr1 CT) f51 01 0) 01 31 13) 13) (TI 01 Cl) 0) w I- D D D D f,) Q C) C) O D (J D D D C) D D C) f,) D Q C) D f,) D D C) C)

D C) D D D Q D O D D D D

D D D C) C) D D D D D

(t000DWWwwuJOW000wrDowwowwouJoowWoW000wOU_I0000000WW00000

DzZZZcJDDD0DzZZQZZDozODzOzZoDZaZzZoz0ZZZZZZ

ZDDZ ZZx)

cX)CO01N

---r-1

-

NI---r-J

.

-

--f--J -C--if-1 (J

fJ ---fI

(32)

f_IfJfjr-ttJtitJ-r.Jr,i----tit'itJtJ

ti-rir-jri---.

-rir-ir)I-jrì--rJrJrJ--rir-Jt-j---r)---r-iri--r-i--r'j

riti

C) C' CC D C) O O O O O O Ci O m O C) m O C D D

m o o o O o O o O o o o o o o o o o o m

o o o o o o m o o

<C 'C «C < <C ( 'C 'C 'C <C C 'C C) «C 'C C) 'C 'C C 'C C) 'C C 'C C <C <C 'C 'C (C -C <C <C «C <C <C C «C C C) C «C «Z 'C <C «C C) «Z «C -I in « LU LU w w w Lr, w W co LU to to co w W w LU w co ID W w io in w w io co W (D LO (0 LO LO (O w w in w co w w w in co Lo to w w CO (D (T) O) O) LT) C)) 01 0) CrI 0) CO C)) (I) lii W CO a) CD (T) LO CO w co w O) w Cr) co ca co W w w co W a) O) co w co co co co co CX) Co O) CO W )I 4««;-4« 4-;-;- 4«. '. 4«« o- -t--;-4«« o-4'. 4« 4'.;-4«« o- ,o-o-;-'. 4«. 4«. 4««;- o-4'. -o--o--N. 4'. -C-' 4'. 4'4«« -N.

---fiLi --- rin-ui

w----wru-c.j-r-i---.--wtuLU----m----r--im

n'i L-I G bi 01 0') t i LU LU LU 4-- w «« (n LU rD LU I_fl bi ICi . -co

bi l'i

Cf) CO bi

-. . LI b)

.. -r«. tri LU . LU co Li . -co w (n t'.

ti

4«« -. U') U') . Li O 4'. -'u Cr) c-i 4-« -o- - t'. t-J LU -C-- - LO bi t-i

.. .

4'. j) .. .. ()) )) .. -1 (il P --J LU - bi bi

. 4'

t'i Cri -

-o-t'. un x

--4-«. (iii. turi.

--.. .4««ri

. mnwr-i..o

.1'i

tn

¿L«JtJ-1---tJ;--riinbl--CO4««;-L-14r«014««tOLflcOtJ

LULUtiiiICfl-i0"-JWLULU[fl

r-,)cflLUbJ---iwbJ NiLUW Q) Ul CO t i W L-i -.

-(fi LT) (n G

-i

-LU t-J L'I - -r--O) t J LU

Citi (i ti t-J ti ti (-i

t-i Ii ti ri t-i ti r-i

r-i n-i t-i tJ t-i I-i t'i t-i l'-i t--) r-i t-i t-i

t-i r-i Ni r'i r-i r-i

t-i t'-i r--i r-i t-i t-J t--i ri t-i Ni F-J t.J t-i N,) t-i t-,) T in 01 0) cri 01 01 m (Ti in (n Ui Ui (n in in 01 Ui (fi U1 I-fl Ui 4«« --N. 4-. -P. -Ii. 4<-« bi bi bi bi 1<1 ii) bi b) bi b) t-i

t-i t-i ti Ii t-i

ti -LU NJ

ti

-T a) 4--I i 4' L,) 4«« 4' Q) (ji I_fl t-J r- i bi L«i 01 L-i 4'. (ii Ui O) I_fl t-i 4<--N. 4'.

bI

-(f) (O bi l'-J b) b) (t) t-i Ni 0) 4<-4'. bi (f) bi (J) NJ NJ t-J -J t-i 'J 3) '.

mJCtnCOO)t-)CxD-JLUCO---(n----OU1LUUiOcor-iLUcJO--«-«-,J(-Jf-icflm(nco;---;-r-im4««w-)m4<-cowW4««t-,)F-J--bi

--L.iL-J---r-i

-

Lit-J-;-t-J--bJ

-

----Nib)

(')---t-i

-t-J

---bi-r-J

bIi,1('

in (J - t- c, ri Q) G b) LU - Ui LU t-i r-1 W 4« t-) i'.) - 0) W -J LU r-J

Ci) - L-i bi r-i

<-b) - w t- Co (f) Ct) w LU n -N. LU t-i o -r'.

c bi i cl)

-

tJ----r'-i-I-Jt-i----«--r-it-J-n«itJ---r-J-r-Jr--i---.r-i-r-i---r-i---r--ir-it--i

-t--JtJ_--Nit-in-i

-('ut--i---t-iD

ri L-101W t-) LI (IC)) (n UI Cn-i L-i--I;- t-I-i L-I

WO) (D --i

J 0)10u i (fl(fl

--i (11 -1 -t-'

(flt- ww- woe w«;-;- cf) -J C)) N) bi f-i

T

- w

o-t-i (0 o-t-i -N. U') t--i fi bi ('i LA

b) -,) ti - b)

4--0) 014'. r-J 4<-L') - - -C' bi Ni - 4«« CT) t-J -N. t-4'. t- (A - b) '-J t-J .-r-) -0) r-i

-

-t-i-N.--L-)t-ibJ;-L-iL'Jbit-l-t-J

-bi

t-L'Jcsi-I-i---o-bi

---t-J---.

t--ir-J-bJ-N.bJbI-bi('-cn-oCOU'IODcoto;-t-iLnW-cor-i;-wco;-ri(n-O)LU-;-c.iblm;-L.I-.o;-cowGwcocDwUi--coNico-);-t-J

CI, LU 4-CX) (n (n L-i LU (fl Ci) (ji W -i (fi

(«i (i) W 01 ri - t-i

L-i W -' W bi Ui (fl (51 CT) co L') U] b) t-i t- 01 CO in 4«-L«i 4'. iO Ci) - LI') OD W W CO T

coin in t-t-i W [flU) tOC));- W L-10) -i L-I COCOa)

- -i -J 4-W W t- t--1W t-) -J - (Ji ('IO) --i (Ow (D t--i 0101G

t-i -i 01-J W 'SD;- con-i

C,iL-ILUGt-GOGO-LUI-i

Or--lb)

LUG-&b)CO®---LUGGt--CtJLUGLULUt-J(O-tJQO--JGO

-'C

...un

cri [n -j o co -o- - o co LU CX) CI) LU LU - LU f-) 1-i -,i O co - 0) 4<- 0 LU -N- LU LU (O O) LU C WO co co LU -« co w t- o LU o LU o io bi - r

(33)

J 15) W 5) t__1 ,5) 5) (5) (5)

'1-r-i N '5) 01 t-4 - - r

(5) (5) N CO W (5) Ni W W 't - - (5) (5) ri 5)

't

W W 't (5) 01 W Cii W W WO) V) V) O G W

't

i5)co -GW.--rCi(5) (j) N ..-- N r-i N t-i -- W In Cr) l'i N CO Co IO Ci) Cr) w iS)

.- - w -i

t--131 W W 't - 01 Ui N

't - Lii - LO W Co (O 't Ii O 't

) N V) iL) O U)

LLNWWW.-WWtU)NLflNNicOr_1rnU)WW'tWWOE)t-JV-'tI')WI-CJU)WCO(JI-1WG't(JLflWWW'tI'i.--W't(I

Zr-J'tr-ir-îtn

-.tr-'Jr-J

r_4r-i

Ni

't

t-J

Cr) (O Ui W IS) N W CO W - LO 't W '- r-i 't w LI)

.-t-- W CI) - (4 't Ci) W t--N t--N r--J W 't 't f-J )S1 01 (-4 .- (n I-i -CT) N C- W LO w 0)

r1W 't tN 'ttq

-r-- N) WV) COC'JWC-JW W - r-i

rqrirîI'itqwcJ riV) 't ri 't V) t_j. W

-'t (1j1iV) --r-î

'-t r--ri

O-E u] W N) W N 't N .- .- t-i r- is' N C-i 't r-i co

Ci) t-î U) .- 't W CI) W W 01 t-- N W ti r--i N

W Cli Ci) cl Cn W t-i

.- N

i - N -

'-Lt) U) t-1 rl r-i r-J r-j--r-4.---- C-J C--1 t-J t-4 .- C-i (rn'i t--J - f-J c--Jr-i.- - t--J (-iC-it--i (-.1 r4 -(--J - t-J ti .-Ç--i

tJ

-r-i .- ri ci r--i ç-i r-i r-î

i-i ci li

- ci N w - W - t-- N .- r_4

SI 't --t__1 - LI) O N W r N t-î w w

't t-J V) .- 't

(J) -i t) r-i

t-') W - t-î w ri 't

t-i tq r-i .-r-i w W .- W

<St-i ---r-il'i. t-J

't-.

t-Jt--i

r-_1t-ir'-)c--i.---r--1r-J--'-f-it')

't

t_1

.---rJC-1r-j

I_1'---t O..

'

-t-' r-i .-r-î - r- co w CT) W '- c-J t_-J

't 't

Ui r- t-- CO CO CT) t__-r-î 01

G

ri ri Ni -N -N Cr) (J) V) V) 't W W W CO W W W . -c-J r-î

't

't

't

Cr) .

-EwWWWNNNNNNNNt-NNN01WWWWO)W(flW01WO1WQ15)GGWWOOWW

t_iii

(1. ç-J ('J C-J C-J c-J C-J c--I r-J t-J r_-I r-J c-4 t-J r_-i t--i r-J N t-i t--J t_-4 r-J r_1 r-i r_-i r-j t--J c--J r-J t-i t-t_) t-î n r-i r-î r-î I--i r-î Ni r-î V) 1<) I-i I-i I-î V) Ni Ni N) V) Ii N CO

-W -W w co W r-ci

.-[n

- 't C!)

w 0) W CO .-N N W

C4W-.-W0010ri.---V)U)

-liIn't--WWt-)

Nui-0W

'tr-JVOCO

t-110V) riCCI

'-tWW

UiW

w .

'. u-i r-i

. . r-i In

...-.V) . 't

.

...-.. .

... w

't

't - (-i I-i In

-'

't

Ew G '.

' 't W .

't .- U) (-4 W '. (31 - W CX) l-î

-CD ' W t-i CO - « N W w

r--. N '

W 't C I - r...-f - 't

-'

H- ...l'i

...W ...O -'

« -t

t

« 't

Ii) ...- ..

ri W 't

't

i-i r- '

--i

ri 't V) W 't t-i

'i- W W W G W 01 « CT) 5) W Vi c-J W W V) -'

(r) co Ni O W -' ti t-i

"'--1

'-" r J W W ' 01

...ti

t-J t--i

Wr-i C--iC-J r-i

t--i - Ni '- .- - r-J '- W - '- In

(i) - LOW---- - W.- (J cri r- N

CO LE) - t_III)

CI) W CI) W W (D CI)

C)) CX) CO cC) CX) (o Cr) CO (0 01 (0 CD Cr) UI CC) W w Co co rJ) (O CO W O) CL) W CI) U) Cr) Cr) (1) Cn W Cl) CI) W CX) CC) CI) U) (t) (T) Cn CT) W W 01 01 CT) U) W m (t) W Cf) 0) 01 W 0' Ct) U) W UI W 01 0) 01 W 01 CT) CI) 0) CI) 01 01 (t) OE i]) CT) W 0) Ct) 13) W Cl) 0) 0' (T) (T) w

1- D D D D i' D D D D r_) D ' D

' D D

' D D :, D D

-- D D D D D D -) D D D L) -<

--D Th

D D D D D D

rc000000000w00000000000000000000000woD000000000000c)O

c z Z

Z Z Z Z Z Z O Z Z Z Z z z z z z

z z z Z Z z Z z Z z Z z Z z O

z Z Z Z Z Z Z Z Z Z Z Z Z

Z Z Z

N 01(001010101 N W-01010)

Cr) 01010) CC) WC)) (J) 0101010) (00101

WWWWCOOJW

U1 O) CI) tilt-L) 010101(0 Cr10) r--Cr)

t-j - -

t_4-- .-C-I r-i c-i - t-4 r_4 r_-i t--J r-J

'- ritiri - r-J r_-lu-JC--J

c-i c--i

.- i_1 ri

r-J r-i tif-I t_j r_i

r_J

(34)

r

Ii ri ri ri rj - - - ni ri- - ti ri ri ri r-i ri ri r--i

r-j ri r-i

r-i

r-j

r-i ri i-j - i--i

r-i

r-i

r-i ri - ri t-i ri r-i -. r-i - r-i

r-i Ni r-) rl) U) (fi (X) (i) W Cci CZ) w U) Ci) U) w

il) (1)0) w W co O) ici W O) WOE) W -J

(CI (Xl W cri (D OD IT) --1 CX) o) Ici w O) O) (1) ODo) CO CC) -(ciW

coc)oÓocDOoOoO000OOO000000000Oo)OoOoOoOooQ0000000mmoD3

z

z c c c <z:

<z: <z: <z: -C <c -C <-z: c c <C <-C <z: <C <C <C <C <C <C <C <ç <ç <C <z: <C <z: <C <c: <z <z <C C <z <z <C <C <z C <C Q C <C <C -m

LC.(C)d)(OU)WWWW(D(Z)<UCUWWWWWWWWWWW(DWWWIQWW(CIWWWWUJWWWWWWWWWWUDWW

W (1) Cl) CO U) OD CO Ci) Cl) (Xl CO CO CI) (I) (O U) Q) O) CI) (X) (X) Cr) cx)

1X1 W U) O) IX) O) W U) (I) W O) (i)

Cl) Cx) W O) (i) CI) CI) Cci Ci) CI) U) (i) (J) CI) CO ¡ 4<. i-4<.

$-

4-<44<-P4<4<-4<

--JcI)U)-U)---l-J---r--WNJU1--CO---CID-m-r-J-U)---Lflr-i-ri--Lfl-CO---r-J---U)

--.1 ...

...-..(fl..o)

3<. ...Ifl..

..

U1-4<.. 4« ...in-i

4<-t.iU)W..ci(flifl..P< ...COL.i ...

4-(-(n.. W.... (J ...<f)» 4«nj<X)4<.-..

-. -L-IL-J

.

hi--4<. " (AU) L-Jß< U)

U) ...

1:-1W--L-iLfl--JritjL.1014«L-iO)

mfl

fflU)_<J

L-Jco-J4<.r-i011----r-i

W-.-Ui

ccil<-4«< 4<.C-JL.i--in U) (fl

U) - ci

ci w -(i) 1(1 U)

-CT) CT) U) (C) 4<. 1-i 1.1 bI (4 L-J L-i L-1 L-1 L-J L-1 (<J bi L-i l_-J L-I L-J L-I LI L-1 L-I L-J L-J L-i L-i L-J L-i L--i L-J hi hi hi L-J hi L'-1 l_-J L-J (9 L-i L-1 L-J bi L-1 hi L-1 L-J L-J L-J (4 L-J (xl m ni U) (n w tri in u-i

iii w

-<. i - t--. --. -- -r-- 4-jr« L-i w L-i L-J (9 L-i hi L-J bi c-1 bi L-J w w (À (xi L-I i-i r-J ,-i ri r-i r-i r-i r-i : ci, ai .

ri ri

o) W (li CI) (o -J -i C ui in r -c-i c-i ri o o in w o) w co ni in In u-1 u-i u) -i rJ t-i r-i rJ ---J cci in L--I r-i ri

Liii

-(9

-i) i -Cl) L-1 4<. U) L-J (9 L.) 4-« iO 4<. 4<-4<. in r-i Cf) 4« L-i 171 4<. Ui in cii 01 (J) -1-« Q) (xi W r--i if) L-1 in bi r--i r-i L-J tri -4<. (xI (Ji L-J 4«- (0 4« (xi 3) ..

Cr)cJricicio)Lnu1rnrnr-J--m--ni-Jo)4<.wr-iU)r-icrI4«.m-Jcio)4<.mcainin--wU)cir-i-JW4«rnL.ici--I--.

----.4.'i----L.l-r-J

-L-i

----t-Jbl---bJ----NJ---.rJ4<.

-P.

L-i-b-ibJi--)JbJ-bi---'

-.r-ir--ir--J <fliT) (-I O -JO) ti LT) CO -J bi -J 4«< -O) W iii L-1G) Ni L-lU) L-J (1)0W -J -J CC) Ui Ui 01 - U) hi G) - -iODIO L-i hi U) r-) (n

-P. tn-lU) - -n

---J Cii Ql -J O Q -i O) ti -J -J U Ci) t L-IL-i

(T) u) CODiLlO) (n umri Orn 3<-U) Oint-i

u-i OD(I) Ql

-r-.

(OCX) OL-lciDo) ri

(0(04<-L-I-1-i (-i (J L-i L-i (4 L-J - L-J L'l L-J L-J L-i r-i I-J L-i t--i I-i L-J r-i r-i i--i r-i L-IL-il--i (i-J L--J(9-- c-i L-i

O-i -bibi-- hi c-I

r-i L--1 r-i ir-i bi (4 r--i r--i -1] m U) (f) (Ji (f) in U) Ci) (n U) --4-. -1 0 X) -J -J4«. . uf In U) 4<-L-1 4<. bi - hi 0) w c-i L-i -J r-i - r-. ci hi 01 L-i Q) r-J co -. r-J U) in Ql -J

in-f-4<.ririmno)L-Iwo)writnm<.in<.biu1---L.Jo)mLJ(O4«.wo)minw4r.cici4<.-rio)r-iciwr-Jmin4<.wwh1r.i

L

-tI c-i W 4<. L-i U) L-i l_-J 4«< 4-. (.J 4<.

i ai in

4<. Cci . L-i 4« r-i L-J in 4< CC) Ql iri 4<-. c-i L-J (ii

l-i Ui L-I U) L-I U) ri c-i in 4<.

-P. L-J Q) L-i -P. in L-i in 3i- C-Ci) r i -i -J r-i -J L-i ci 4<-U) r-i Cli -J Q) -. U) CT) p. w w (I) (T) CI) U) rl] f-i -J 4<. Ql -J U) (T)

t-i in -14<. ICI -. b-J W 4<- Ni Iii

ill 4<- (9 -J L-1 bi I-i

- - i-i

L-J -- - L-J - r-i r-j

ri - L-i - r-i -.

-P. L-i r-i L-J - L-J -< - L-J -P. - p. 1,-i b-1 -. - L-i -< ii-i r-i r-i (iJ LJ --. (r-i r-i j>

-

---.

---.

-

-

r--i--4«

I-i-ObJ(4t-J000-L-Jcicit-i(flrx)4.t-icit-i

-rJ-c-lr-jG-0ci

U)

-OONI

00000-o

r-iinci<C

ni

I-. (-iO(I) CI)

C. 0001-J U) (tOW t-j

CI)

U) Q) O COL-1 Wi--I-I -1 in CC) (no) (C)

-. cimici Gi O c;-i

(35)

A-6

Dt T E TI M E PM1 FAI Al FI FM2 PA2 A2 F VEL

19 NOt,) 1984

12:28:69

367 41 2E 112 387 41 28

H2

0.0

29 NOV 1984 1 Ø: 1. 8 :4E 367 40 3E 1 47 337 46 32 154

2.2

28 NOV 1984

13:50:0

369 53 388 23 22 6

5.7

28 NOti 1984 8:1 7 :48 J (L. 38 24 95 26E 32 38 128

4.7

18 NOV 1984

14:60:47

373 38 42 159 373 36 42 169

0.0

28 NOV 1984 o. -'- 374 34 125 180 41 31. 133 .1 "8 NOV 1984

16:5:57

375 46 12 sg 225 62 12 78 .2 28 NOt) 1.984

20:53:50

376 38 34 1 36 337 43 31 140

0.0

28 NOV 1984

19:19:18

377 50 16 79 335 54 18 102

0.0

NOV 1984 10:18:41 377 31 "8 SE 370 32 30 101 3.1 DEC 1984

21:5:5

377 44 24 111 262 59 21 130

.5

28 NOV 1934

8:51 :2

379 42 42 1 85 199 43 42 189

0.0

29 NOV 1984 3:58:1 5 379 1 4E 4 81 295 30 27 8E

.8

29 NOV 1924

1:54:52

-7 J 182 3 Es 229 2E 43 113

0.0

NOV 1884 18:41:11 382 88 s 45

"94

"2

"7

8

0 0

28 NOV 1984 18: 13:9 383 'l 34 93 299 28 34 100 1.7

28 NOV 1984

8:49:29

38E SG 28 16E 385 5E 28 165

0.0

28 NOV 1984

8:0:51

387 41 12 52 258 61 16 102 .3 29 NOV 1964

1:54:13

387 69 15 1 09 300 71 18 134

0.0

28 NOV 1 984

9:10:57

88 41 40 1 72 388 41 40 172

0.0

28 NOV 1984 14: 27: 32 388 34 32 114 388 34 32 114 .1 29 NOV 1984 2: 14 :20 388 42 30 1 32 318 58 23 140

0.0

NOV 1984 1 9:11: 36 388 34

ii

118 388 34 33 118 .1. 19 NOV 1984 1 2 :35:1 7 390 48 9 4E 280 48 9 45

0.3

NOV 1 984 2 :0 :26 392 42 "7 119 196 55 29 170

0.0

L. NOV 1984

22:15:47

392 40 20 84 __,G -7 J -7n

J.

I'#' n NOV 1984 1 8:46 :43 393 60 19 120 340 37 40 lEE

6.7

DEC 1984

22:43:55

396 1 48 6 93

337 139

7 102

3.7

18 NOV 1 984 14:28:41 398 84 9 60 317 71 19 142

0.0

18 NOV 1994 1 4:1 9 : 43 399 55 38 1 44 399 35 38 144

0.0

NOV 1984

20:17:28

399 87 11 1 00 196 31 48 155 .1 28 NOV 1984 B : 0:44 401 I 76 -j 5E 210 29 20 61

3.0

28 NOV 1984 8:31 :39 40 34 15 54 401 40 13 5E

3.0

29 NOV 1984

10:18:34

402 67 204 402 57 29 204 .1 NOi 1984 20: 23: 33 402 21.5 68 7JOG J0 L.) ni

(i

28 NOi 1984

18:47:47

403 43 IS 85 40 43 19 86 1.7 -'G NOV 1 984 12:95:41 403 271 67 202 39 21 86 1.7 NOV 1964 23: 20: 55 404 36 30 11 404 35 30 112

0.0

19 NOV 1984 405 =0 46 1 4E 406 30 46 1.45

0.0

NOV 1984

19:17:23

406 106 43 271 42 16 65 .1 28 NOV 1984 18: 9: 53 407 45 1.9 SE 407 45 18 88

2.2

29 NOV 1984 20: 23 39 407 72 9e 334 34 3E 128

2.0

28 NOV 1954

3:57:53

409 346

7:

409 345 2 73

0.3

-1-, 28 NOV NOV 1984 1984 20:1.9:24

8:24:65

410 410 55 38 10 3E 59 136 38E 266 41 48 14 29 60 14E

0.3

3.2

28 NOV 1.984 1 8 : 40 : 7 413 69 10 7% 413 69 10 72 28 NOV 1994

3:24:50

416 90 19 159 221 89 5 181

2.3

28 NOV 1.984

8:31:3

415 51. IB I IS 41.5 61 3 11.5 .4 NOV 994

8 :5:27

415

:9

76 415 8 2E 75

0.0

NOV 954 I 7: .Ej: 46 4.15 11S 44 41.5 1:5 i t .8

(36)

--r)

' G G r-J G

G .- G G r- G

C) C) C) G r-J C) G

- N O G * C) N V) r-J G G G - ri V) [J

'J- ç J W

G w C) - C) r-j

C)

-LLLCI<)tN-COWNWCOwNLJ1ç-J.-W'f

'fWWWWG-NU)LflGNWNo)tW--ODo1ON-GU)W-.niØ)ij

--'---(-Jr'J

---r-J

--- r-J

.-N W V) w N

(i

G - - W (J) G W

'--r-i W V) V) - N U) N W In LT) U) W W Ci IT) ri N r-- G tj V) CO G (i) W W 't .-LI)

't

V) 't N I) C)

<CN-JrqJ-r-i--rq--ç-Jr-i

Ntq-inr-Jr'jIn--Jq

r-l'tr-Jrqr-Jr-Jrqr-j---r-J--I-irJ

-l:1JJ--F-lr,V)rjrJrj

.JlN

ri [Ji G 't V) G U) G N 't N Q N r-J W W N V) N W W G 't N IN r-J Ui JT) N V) t- W W U) U) 't

't

(J si (O(I) G V) (Ji w N G LU V) O

IL-

.-

--

IL'trJJqV)V)I't't'tlq't-rqfqr-J'tIq'tN't't.---fstJ--UJ'tI.)'tI)rJ.tWI)LJ)f'tJJ)WU1tLfl'tI.)LJ)IJJU)I11

LLWWÇ-JGWWO)c(J

't

'LflU)wWr-JGU)'t 'tGW(flL!)QLflWIJLflV)J'lUJGNO)WWU)N

WwGwG(-- 't r- rJ)J)r)

---r,

--

.--

.

-

-- w V) G W 't 't G -- -- --mC)

't

W r-i W

't

N - N W (.1) W W W.- (j (-J Ql f- -W O) (J U) Cr) W ) u)

't

-t W V) 't

t

r-J-j C) -cr-I

r.J(-J'tN---rq

rJ---ci---rq--(-q-'t

r't

Nr-Jr-J

.---J')CJ

r-)CJ---J-i

lir-ir-Iri

-t?J

N-W (J - N J-1 J-1 G t-'1- V) G W LU CO V) N cri CT) J-1 LU G G) t--- r-J -t CI) V) t-J-1 U' W In C)) U) G si [J W C)) st C) V) U) V) N I)) W V) C) U) w w V)

't

N CO N 'I-V) Li) N 't O) LT) N LT) 't In q

't

Ww N r-j W N U) w

't

N (X) W V) t-i W - C) 't W N Jo

U) rl N W I-J r' 'i

-t

-'t

't

-'t

-'t

- G 't 't 't N r-Ci) (T) r-J J') 't U]

G Io N V] 1°) V) N ) (J (Ji C)) '-t W U) CI)

(CI W U) LI) r- CI)

Il in N U) CT) -U) a) G GV) -i J

-I--C) U) If] N

't

LT) N

- 't

U)

- W

W

() 't

T J 1U - 'i (f) J

't

G)

Wf-lGr-J-(L)Jo)

't-'tG-.--

.-GTJI---.-J-rJ'-)Lfl---J-1WTIJJ)I-iJ-1J-)tJ)Jj'LJ)I.fl-ÇJrJ

I

TJ'tJj)

Ii)

Ui...'St..rlstrJr

. .

'tI-1J-)Ij)..rJ-J

Z W LT) W

. Q ..

(N W -W CI) . If) .. çJ .. m (Ji .. .. in . Q U) . W W LI) U) W Ji) J-) -J .

.

V) J) J-)

W -

r-r-J (o W r-r-J W J

I') V) LI) U) W C)) (J - C) J'1 W V) LI) - - (n 't W O) W W

't

J

-f ri V) - J) (j) - N V)

--Il) -t I-

stW

-J)

-- W -O

st .

.-'t

.

-. In If) rJ .

.- ri

-i-Y O - W i'

G

't

. (31 ..

-- N G ..

(X) Q V) C) .. T)) 't (J) .. .. (.J C) C) .. r--i 't W

...W

st-r J st-r j C) Q CT) (J)

't

-t

...

['J

CI) - Ui W - N - - (-Jr--i

.-t--J a)

- - r-J

U) r-J

r-, - U) - - CO - ri W

U)

J'l

-CT) r-J

r-J - (JI)--- - - C

r-i w --- ---

r--'t't't't't't't't't't't't't't't't't't't't't't't't't't't't't't't't'tstt't'ts't'tt't't'tst*'t-

O) O) W U) U) W W C)) (C) Ci) C)) W (X) W cx) W CO (i) CT) (O Q) (C) (T) (C) (I) O) (C) (I) U) O) W CO CI) CT) (1) W (O (1) CC) [[I (X) W (1) W (n U) (i) W (I) w w > , , , r) 1) . > X -) -, i C) D

' t)

'

'

) , -)

tOOOOODOOCOOOUJCOOOOOQUJQQQoQQoOoOoouJoC)wc00000Qjoo-'r''.i-;,, U) U) CO U) (I) O) O) O) W W W W -- U) W CO (O U) CT) W - W (J) U) (J) (O CX) W (C) CO CU CT) (EJ - W CT) - U) W (7) (rj (T) CI) W ci O) CX) (O T)) t)

r-J-t--J(Jr-Jr-Jr-Jr-Jr-Jr-Jr-JISJ

f--Jf--JI'J---r-Jr-Jr-J

r-Jr-JN--r-Jr-iç-Jr-.jr-Jr-Jr-Jr'J

tiri

r-JrJr-JrJt-Jr-J-r-JT-JrJrJrJrJ

(37)

in LO (D (Xi W W W W (C W (n (n W (û (D W n w ci) in w w in w W (n W (D

w n io

LO (n io in in w W (O (f) C) (J) (L) CC CL) OEl ci) Q) W ii) in in ti) in (O in (J) (O Q) O) CC in (O O) W CO (J) CI) O) W (J) () in CO -. . 4 .i. 4 . 4- 4- 4 - -t--P 4 t -4 4 . 4 -t--f'-.

-t

-t-CC ti Q) f'..) (n rJ -r-J (.0

ti

t) O) t.) CO ri w

--.

ri .

-(n W CI) CO U) in û) t-J F.) t-J G O (I) - in W in O) L-1 W (0 t.) (O G 1(1 L-I --J -t- 4-(n in

-i

w t-J

L-I G in ii) m in Ui r-i

. a)

in in t-i In . W Ql O) in in .. Ci O) (n (À . CO t.4 in t-i in r-) .

ti

(fi

bS.ti

(-im 4

L'iLflrJ[fl4-4.COt-J1flt)4.LsiL-4L4(flU)WL-JLfl--4--L-iL-J---ifl--.

t-(flU11>i-4

01 t) L-1 01 G LI

J ti

-Li (>I bi t-i Ci U) (J) (j) -) Q) t-i in in in Co 4 1 J J ) J --1 01 CrI 0) 01 0')

CI) 0) Ui cii in u-i In Ui (Ji (n U) in

i w ui vi w (Ji

-.t-L.l-'---cnwo)--J--)LIL-Ir-.)rio)mUiiflbIr.i--wwwQ)cnCflcnGirniflwiflt--t-.t-L-IZ

W 0) -. Ci

L'-I

Iii [n Ui L-i - w ((I

ir) -i tn in ti) -(j) G jj fi -. W (4 r) -. in W O) Cfi

-- -- Cri

-L-Iii

ti

r-j (TI

riW

..f'J

r-J (Cl (i) LO (D (n if) O) in ---.1 In (n In -i U) 01 (4 (11 -J L-1 (I) t-i (fi w L-1 (Ji -bi O in 01 0) bI t- - O) (-9

iflG-4IflL-IJLflCflinCIL-JWWCflW--1(COiflGtiL.iW-4fl(flU-JWW-CiW4'.in-'

11

-L4---t-F-J-t---FitJ

-

NJ-

(À---t-L-i

f'JL13

L.J(Obl-(flrJt-t-lt-i-.iflG-t-G--cO-itfl--inin-t-(flWCflinCJ(nbINJ(nt-Jin--.

tiLl -.F-i rir-j

---'

---.----'

r-i---Un cri (fi G LI r-i ri w

LI i inri

--i

-(n i-. -i Cn t-J -. ri in in in -s--. L-1 [Ii (-1 -t-k in in . -i (0 (-.1 -r-i --r-j F-i

-r-..) (J) -Q) ..) (fi (o ¿ -.) cri (À Ui CTJ (fi r-i in in ( Ci -J in (fl r in L-I r-i -3 -. c ri -J 0) Ni -t-(Ji bI (À

L-IU11I4LflW4-UiinL-I--JQlW(o-JWW--r-'-NiWiniflL-IL-iinbI--f'i.t-GN)OOlWinbINi

r-iL-l-t- ---L-l-- (9

t-L-IL.)L'I(if'iN)

riL4r-iLslr-iL-J--r-J-p.19

blbIr>

-Jcr)L-l(.orJGWir-jbimo1CninwLsIO&bI--uib1t.i-r.Jriin---wC1--i(Or-Jinwwr-i

LiuJ----bJ--r.i---rJr-ir-i----r-Jr-Jr-i

---

----t-i----i-i rì ti ri ti r-J Ri Ci ri ri r-.i

r-j ri r-i t-i ri rJ F-) r-.) t-J r-i (i N.) Li C) t-) F-J Ni t-i F.) Ni

-Z -Z -Z -Z -Z =

Z Z Z Z Z Z Z O Z Z Z Z Z Z

Z Z D D D Z Z Z Z Z D Z Z Z Z D

oD0000Ö000cDoomoocD000000mmm00000m0000>

rn

in 3

-L-I G F-i

- in LI in

in t-) U) - -t-in LI - 19 -t-in G t-) -t-in -. in in in C m

inWj(fla-.int-iinininwt-inGinrn4r.Jt-)OWtjWGOWG---WGi-iinGr

(38)

KEY:

PM1 - Maximum single sub-panel pressure (psi)

PAl - Average pressure over the contact area at the time of peak pressure (psi)

Al - Contact area at the time of peak pressure

(sub-panels)

Fi - Total panel force at the time of peak

pressure (LT)

PM2 - Maximum single sub-panel force (psi)

PA2 - Average pressure over the contact area at

the time of peak force (psi)

A2 - Contact area at the time of peak force

(sub-panels)

F2 - Peak total panel force (LT)

VEL - Ship velocity at impact APPENDIX B

SUMMARY OF MEASURED DATA RANKED BY PEAK FORCE

DURING EACH EVENT

Cytaty

Powiązane dokumenty

Na podstawie opinii respondentów weryfi kowano hipotezę będącą przypuszczeniem, że występowanie luki w obszarze kluczowych kompetencji banku powoduje, że pracownicy nie

3 września 1935 roku o godzinie 11 zakończył się rejs dookoła świata – „Dar Pomorza” zacumował przy nabrzeżu w Gdyni.. Rejs trwał 352 dni: na morzu spędzono 263 dni,

Na jednej ze stałych wystaw tego muzeum, ekspozycji poświęconej dawnym właści- cielom kamienicy, w której się ono znajduje – rodzinie Riabininów, można obejrzeć

• stosowanie zaczynu o niewłaściwej gęstości, co może doprowadzić do zachwiania równowagi hydrostatycznej w przestrzeni pierścieniowej i w konsekwencji do migra- cji gazu

Nel quadro del presente contributo ci si propone di trattare due argomenti in particolare: i fenomeni del cambio di codice (code-switching lingua/dialetto) nella

ISBN: 9781510839144.. along the trajectory by the fully unsteady aeroacoustic methodology, and then the noise is radiated from the hemispheres to the ground through a

Tu dostrzegamy chyba najw yraźniej rozejście się dróg niemieckiego i polskiego piśmiennictwa końca XVIII w.: w Niemczech przeważał opis zachowań jednostki w