• Nie Znaleziono Wyników

The tectonic interpretation of longitudinal profiles of the Carpathians rivers

N/A
N/A
Protected

Academic year: 2022

Share "The tectonic interpretation of longitudinal profiles of the Carpathians rivers"

Copied!
20
0
0

Pełen tekst

(1)

R O C Z N I K P O L S K I E G O T O W A R Z Y S T W A G E O L O G I C Z N E G O A N N A L E S D E L A S O C I É T É G É O L O G I Q U E D E P O L O G N E

V o l. L — 3/4: 311—328 K r a k ó w 1980

Witold

Z u c h ie w ic z *

THE TECTONIC INTERPRETATION OF LONGITUDINAL PROFILES OF THE CARPATHIAN RIVERS

(5 Figs.)

Tektoniczna interpretacja profilów podłużnych rze k karpackich

(5 fig.)

A b s t r a c t . Longitudinal profiles of 14 Carpathian rivers were analysed and compared with their theoretical analogues. It was found that there is a distinct relationship between the shape of theoretical profile of the river and the deep structure of the Carpathian substratum, the location of the main dislocation zones and the areas subjecting to young tectonic movements.

INTRODUCTION

The studies of stream long-profiles are very common in m any geolo­

gical, g earn orp'hol ogica 1 and hydrological works. The term „equilibrium profile” w as w idely explained (by Sternberg (1875), Bauliig (1925), Mackin (1948), Holmes (1952), Hack (1957) and others.

According to Baulig (1925) the topographical stream long-profile reaches th at of equihbrium w hen the riveT flows across a continuos alluvial cover, w ithout dissecting or aggrading it. Makkaveev (1955) states th a t the „norm al” stream long-profile could he considered as a profile form ed during the most probable compensation of exogenic movem ents by chan­

nel processes. Scheidegger (1961) pointed out th a t in the case of dyna­

mic equilibrium of flow the rate of erosion equals the rate of accum ula­

tion. According to Leopold and Langbein (1962), the „equihbrium profi­

le” of the graded riv er is the profile of m axim um probability and th e one in which entropy is equally distributed, constituting a kind of the isotropic curve.

* Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego ul. Oleandry 2a, 30-063 Kraków.

(2)

— 312 —

T able 1 S e le c te d fo rm u lae u s i n g . t o e x p re s s l o n g i t u d i n a l r i v e r ' s p r o f i l e

Wybrane wzory stosowane w o b lic z a n iu p r o f i l u podłużnego r z e k i

f orm ula e x p la n a tio n s a u th o r

7 = a - k lo g /p - x / у - e l e v a tio n of th e g iv e n p o in t of p r o f i l e above b ase le v e l

a , к - c o n s ta n t, p - t o t a l le n g th X - d is ta n c e from th e mouth

J .F .N . G reen /1 9 3 V

S = SQe x p /-a L / S - r i v e r g r a d ie n t, L - d is ta n c e from s o u rc e s , SQ - r i v e r g r a d ie n t a t th e mouth, a - c o n s ta n t

Б . S h u l i t s /1 9 4 1 /

У = A0e x p /- k 1k2t / У - e le v a t i o n o f th e g iv e n p o in t o f p r o f i l e above b ase le v e l AQ,k ^ ,k2 - c o n s ta n t, t - tim e

A.N. S t r a h l e r /1 9 5 2 /

X =

H =

L /p /H

lo g x - logL logp

X - d is ta n c e from so u r ce s

L - t o t a l le n g t h , H - e le v a t io n o f th e g iv e n p o in t -of p r o f i l e above b a se l e v e l , p = L /l+ 1

J . T . Hack /1 9 5 7 /

d h ô t

_ 1 ö 2h c d L 2

h - e le v a tio n o f th e g iv e n p o in t o f p r o f i l e above base le v e l t - tim e , L - t o t a l le n g th с — c o n s ta n t

W.E.H. C u llin g /1 9 6 0 /

H = h0/p/z H - e l e v a tio n o f th e g iv en p o in t o f p r o f i l e above base le v e l

HQ - e l e v a tio n o f th e i n i t i a l p o in t

X - d is ta n c e from so u rc e s P = V 1+Ho

L .B . Leopold W.B. Langbein

/1 9 6 2 /

У = C -k lo g /x + a / + + Ъ /х+а/

j — e l e v a tio n o f th e g iv e n p o in t o f p r o f i l e above b ase l e v e l X — d is ta n c e from so u rc e s c , k , a , b - c o n s ta n t

O.T. Jo n e s /1 9 7 0 /

H = С - klnL H - e le v a tio n o f th e g iv e n p o in t o f p r o f i l e above b ase le v e l L - d is ta n c e from so u rc e s c , k - c o n s ta n t

J . T . Hack /1 9 7 3 /

(3)

The mathematical model of the „equilibrium profile” was many times improved '(see Table 1). It was based on the channel equilibrium theory and the general diffusion equation (Green 1934, Strahler 1952, Culling I960, Scheidegger 1961, Jones 1970, Hack 1973). There were also nume­

rous attempts to simulate stream long-profile by computer, vising the ..random-wailk” method (Leopold, Langbein 1962; Harbaugh, Bomham- -Carter 1970). The given results seemed to support Penck’s (1894) state­

ment that „equilibrium profile” cannot be strictly expressed by a mathe­

matical equation.

In this article a formula ooming from the diffusion equation was ap­

plied. This formula describes the theoretical „equilibrium”, or quasti-equi- librium, profile of the Carpathian rivers (cf. Fig. 1). The main purpose of this paper is to test a usefulness 'of the mentioned formula for dra­

wing a conclusion connected with the sign and the intensity of young tectonic movements.

The logitudmal profiles of 14 main Polish Carpathian rivers were ana­

lysed. Nine of them had the Vlth order (Olza, W:isła, Soła, Skawa, Po­

prad, Biała Dunajcowa, Ropa, Jasiołka, Osława), three — the Vllth (Ra-

^ 313 —

Table 2 Parameters o f th e in v e s tig a te d Carpathian r iv e r s

Parametry badanych rzek karpackich

r iv e r order le n g th Inn

h eig h t m a . s . l . headwater mouth mean

slo p e

%o

parameters of th e K -str e tc h

d ista n ce e le v a tio n le n g th

from above th e %

headwater mouth

^ m a . s . l . j

Olza 6 91.9 5 860 190 7.29 27 360 4 8 . 6

W isła1 6 4 1 .8 0 528 255 6 .5 3 54 ЗО5 2 7 .9

S oła 6 89.25 830 225 6 .7 8 24 445 4 0 .0

Skawa 6 91 .9 8 725 219 5 .5 0 9 500 3 6 .4

ЕаЪа 7 124.80 790 180 4 .8 9 24 390 4 2 .1

Dunajec 7 271.79 1750 170 5.81 16 630 5 5 .4

Poprad2 , 6 63.8 5 470 292.5 2 .7 8 »

B ia ła 6 100.95 775 185 5«84 34 З05 4 5 .7

Sopa 6 83 .1 7 750 223 6 .5 4 21 415 4 2 .9

W isłoka в 160.55 587 154.5 2.6 9 28 255 4 9 .4

J a s io łk a 6 78.35 800 220 7.4 0 37 350 4 0 .7

W isłok 7 204.08 825 167.5 3 .2 2 18 285 6 4 .6

Osława 6 76 .1 0 725 292.5 5 .6 8 22 515 27.1

San 8 42 1 .70 880 138 1.76 28 340 4 5 .7

1 from th e fu n ctio n o f th e Czarna and B ia ła W isełka t o th e Goczałkowice Lake 2 - from s t a t e boundary t o th e mouth

(4)

ba, Dunajec, Wisłok) and tw o — th e V lIIth (Wisłoka, San). A stream order was defined on topographic m aps 1 : 100 000, according to H orton- -S tra h le r’s method (see Table 2), b u t long-profiles w ere collected from 1 : 25 000 maps.

The C arpathian rivers long profile studies were carried o u t only w ithin th e E astern Carpathians, both during th e 1930s and recen tly as well (Teisseyre 1938, G ofshtein 1964, Soibaikar, Somov, K uznetsova 1975).

The results of these investigations indicate the différentiation of the youngest tectonic movem ents. From the W estern Carpathians area we h a w only a work 'concerning the Podhale region rivers (Zuchiewicz 1979).

METHODS

The methods of tectonic analysis of the stream long-profile on the basis of diffusion equation (Shulits 1941, Scheidegger 1961) w ere applied by Ivanov (1951) -and fu rth e r developed by MeShcheriakov (1965) and Volkov (1964, 1977). The form ula of the theoretical stream long-profile

is as follows: :

к = f tf m„ - . » j ( £ ) ”

The construction of this profile is shown in the Fig. 1. The w orks of Ivanov (1951) and Zuchiewicz (1979) give a full description of this con­

struction. The geom etrical analogue of the riv e r’s profile has tw o points, at the headw ater and a t the mouth, in common w ith the topographical

— 314 —

Fig. 1. Principles of plotting of th e theoretical longitudinal riv ers profile, according to Ivanov’s m ethod. 1 — topographical profile, 2 — th eo retical profile

Fig 1. Zasady k o n stru k cji teoretycznego profilu podłużnego rzeki m etodą Ivanow a:

1 — profil rzeczywisty, 2 — profil teoretyczny

(5)

— 315

profile, bn com parison w ith profiles calculated by Leopold and Langbein (1962) and Hack (1957, 1973), i t is one of its most im portant advantages.

The exponent n equals, in m ost cases, 1 to 3. Ivanov (1951) stated th at the comparison of these two profiles, th e topographical and the th eo re­

tical one, allows to distinguish several stretches, in w hich th e topographi­

cal profile ru n s over th e theoretical one. The firs t m ight be connected w ith uplifted areas, th e la tte r — w ith the lowered ones. This opinion seems to be connected w ith the H ettn e r’s (1910) previous point of view.

According to Chernysheva (1979), the stream long-profile reflects the to tal Holocene movements 'but it cannot reflect recent, instrum entally m easured, m ovem ents of the earth surface. It comes from the fact th at the changes in the riv er netw ork appear la te r in comparison w ith the changes in tectonic p a ttern (of. discussion in S tark el 1978). In other words, morphogenetic processes are not directly controlled by 'uplifting or sinking.

The longitudinal profiles of the investigated riv ers are shown on th e dirnensionless diajgrams (see Fig. 2). This method, firstly applied by Le­

opold, W olman and M iller (1964) m akes it possible to compare riv ers of d different order and length.

In order to draw this diagram it is necessary to p u t on the Y axis th e ratios H /2H , th e elevation of a point of the profile above the mouth, and on the

X

axis th e ratios

L[2L,

the distance of a point of the pro­

file from the headw ater divided by the total length (cf. Figs. 1, 2). The obtained (diagram perm its an analysis of profile concavity and also a pre­

cise determ ination of the degree of riv e r m atu rity makes possible.

As a m easure of profile concavity I applied a ratio l k, calculated b y dividing the length of the stretch К (by the length of th e height of the triangle (Fig. 2), whose one side was the diam eter of the diagram. Expe­

rim ental ^investigations of the shape of riv er profile diuring tectonic dia­

gonal upheaval (M akkaveev 1955, 1978) revealed several regularities. In spite of the intensity of the uplift, th e increase of the m ean riv er gra­

dient (S) caused a translation of the K -stretch tow ards w aterheads. Du­

ring the rapid 'uplift this translation was very sm all but during the slo­

w er one — it was longer. T here was (introduced (Makkaveev 1978) a „bot­

tom erosion ra tio ” (Ek) for m ountaineous rivers which allows to compare stream s of d ifferen t orders. It was calculated as a fraction of the distan­

ce of the K -stretdh from the headw ater and the total stream length.

The zone of m axim um erosion dissection lies in th e middle riv er course but w ith the increasing siope i t moves tow ards th e headw ater. The pro­

file concavity, m easured by th e l k, grows w ith the decreasing intensity of uplifting movements. The position of the K -stretoh m arks the boun­

dary between river-'bed m odelled by intensive bottom erosion and the dow nstream situated zone of lateral channel m igration. The latter one reveals the predom inance of accum ulational processes. W ith the slow

(6)

— 316 —

Fig. 2 a

(7)

317

Fig. 2 b

(8)

Fig. 2 a, b, c. Dim ensionless diagram s of longitudinal C arp ath ian rivers profiles.

К — stre tch m easuring profile’s concavity, H — elevation difference betw een the h ead w ater and th e m outh, L — to tal length. 1 — Miocene and other foreland beds, 2 — Skole nappe, 3 — Sub-Silesian nappe, E x tern al Flysch, 4 — Silesian nappe, 5 — D ukla folds, units in th e tectonic window s below th e M agura nappe,

Fore — M agura nappe, 6 — M agura nappe, 7 — P ieniny K lippen Belt

Fig. 2 a, b, c. D iagram y bezw ym iarow e profilów podłużnych rzek karpackich. К — odcinek obrazujący wklęsłość profilu, H — różnica wysokości między źródłam i a ujściem , L — łączna długość cieku, 1 — m iocen i inne utw o ry przedm urza, 2 — płaszczowina skolska, 3 — płaszczowina podśląska, flisz zew nętrzny, 4 — płaszczo- w ina śląska, 5 — fałdy dukielskie, jednostki okien podm agurskich, łuska przed-

maigurska, 6 — płaszczowa na m agurska, 7 — P ieniński Pas Skałkow y

rate of uplift of a given drainage basin the length of the „erosiomal reach” gets shorter, i.e. the K -stretch moves tow ards the headw ater. On the contrary, during the intensive upheaval the length of the m entioned reach gets slightly longer.

RESULTS OF MEASUREMENTS

The lengths of analysed rivers vary from 40 to 420 km, an d the elevation differences betw een headw aters and m ouths reach 432— 1570 m.

The stream m ean gradients are (between 1.8%o and 7.4°/oo. Wisłok and Du­

najec reveal th e greatest value of th e profile concavity (Ik) and Osława and Wisła — the sm aller.

Wisła, Jasiołka and Biała Dunaj oowa show th e highest values of the bottom erosion index. These rivers are characterized by the presence of the longest river-bed sections modelled by bottom erosion processes. The lowest indexes belong to Skawa and Dunajec. T here is no distinct rela­

tionship betw een th e index and: the m ean stream 'gradient (S), the riv er length (L) and th e m easure of profile concavity (I*). A weak linear

Fig. 2 c

(9)

— 319 —

relationship seems to appear betw een H, th e elevation difference be­

tw een th e h eadw ater and the m outh, and Еь and Ï&.

These data lead to the conclusion th a t the V lth order riv ers have low er degree of m a tu rity w hile th e VTIth order rivers reached a high degree.

T able — T abela 3 C orrelation coefficients am ong chosen p aram eters of th e C arp ath ian rivers

Zależności m iędzy w ybranym i p aram etram i rzek karpackich

5 (%) Ik <%) L (km) H { m )

Ek (%) + 0.01 - 0 .3 8 - 0 .2 5 — о:з8

4 (%) - 0.41 X + 0.44 + 0.54

The position of the K -stretch close to the headw ater fo r all investi­

gated riv ers seems to indicate slow upheaval movem ents w ithin the higher p arts of considered drainage basins.

ANALYSIS OF THE THEORETICAL PRO FILES

The results of calculations (cf. Table 4) are shown in the figures 3, 4 and 5. The distribution of riv er reaches showing ” o r „—” values of heh0 w ere compared w ith geological (Sokołowski 1954,

Swidziński

1954, Książkiewicz 1962, Fusân e t

al.

1967), tectonic (U nrug 1979), geo- tectonic (Dewey, Bird 1970;

Slączka

1975; Książkiewicz 1977; Połtowicz 1973) and neotectonic (Kowalski et Liszkowski 1970; W yrzykowski 1971) maps. D ownstream stretches of all m vestigated rivers reveal „—”

values

of ?гг — h0. This fact m ight be connected w ith over thrusting m ovem ents of the F-lysch nappes on to th e area of the Carpathian Foredeep or w ith the backw ard thrusting of the platform u n d er the C arpathian orogene.

Only Skaw a’s dow nstream stretch, betw een Maków Podhalański and the mouth, is characterized b y negative values. This is probably caused by:

a) the presence of S kaw a’s large dislocation zone w hich runs along the riv er course and,

b) the extrem ely high (923 m) thickness of autochtonous Miocene de­

posits (O ttnangian — Karpatiam) w hich appear in Sucha Beskidzka (Slącz­

ka 1976).

The shape of th e theoretical stream profile hardly reflects lithological differentiation of the Flysch deposits (cf. Fig. 5). B ut m ain faults and overthrusts, how ever, are very distinctly pronounced in these profiles.

Interrelationship betw een profiles b reak s and the distribution of dislo-

(10)

d >>

CD

o o) ca

ю

ы -о « о

Щ) чн

5Р О -ri

Ä X r t

5 W ь

2 ç l

03 W T5

e'­er:

й ^ 3

СО со

“ clCO Д

44 o>

о

0) (D «

Я аа д

рк, •-( >S

П-i X V ■*-> • •

J I Jg ^ Л 0 О

J =H О о ^ ГЛ 1/5

: N 44 Й 5 И I И .g

1 чэ “> P I , cd

>.N* I S

S CCI

AS•N g , - T3

5 g >î I "h >> u g ö

и .5 я ч> a itn a

и 1® йю m ï o и

* U S +» g ->-■ N

N £ » w fc. *-i cd "J MîH'a/cd J й 2й

£ а д л- a> a< >.йчн

^ S OT N 1/1 •* >

я Ьщз - " ь . що

■аI s s-S-g 3 Sft

3 :±' В У p, со „

“ 3 ^ г 2 « " а »

• с » о Я I зl i

h е З s w e

„ • S f t S ^ ß

•£} ? AS О >

.У <У Д s» • - >

R Aj <U U ^ -OT N

pu ß rt')J^

Ji 3 Д M N Щ У ад У ф >, b ro -•-* y H« sj- й я я о £ q,® te Я о 'S У I) >>N U Ллнa

^ t а ^ з м 'й I

ßO) ^ о (ß u.rt I

---

d 3

ш â a -o g“ ■

-Г" О

о <u

CL) С cd ^

ад й а

S - l'S e - ÿ SW« - 'iS ’S o s-rn

. ä p b ^ ^ ö p й ? -Ï ü < • о я*- in

»-I Ci

I I

Я S2 .

^ Д ^ ÿ G о о >

3 .2 A! S

Д Г ГМai 05 ев т-55

•*-’1-1 ^ 2

у ._; м -о „j « S о

S te w фш с g

N j j “ ) дГ Я ? И Ш Л ^ I

м n ^ S JS

"Cd ÿj W к£

.Sj я -S 5 N ' »c 5

ЕчСц Я S £ со P тэ

Яcd

" IM

O o (U Й

■- й Я а N-Sи -S

320 —

(11)

cation zones are clearer in th e Ekstern Carpathians. In th e W estern Car­

pathians large w rench faults (Unrug 1979) delineate boundaries betw een riv er reaches having „—” or „ + ” values of hrh0 iin the south and the positive ones in the north.

The fractures w ithin th e C arpathian basem ent (Skawina — Skoczów, K urdw anów — Zawichost, Żywiec — Sambor) are connected w ith the stream reaches showing positive values of hrh0.

The profile of Skawa reveals a sudden change of slope and very high positive value of differences of hrhQ w ithin the „negative” reach.

It liies ju st at the point w here two large left strikeslip faults, W — E and NW — SE, cross each other. Boundaries of the positive reach in th e m iddle riv e r course are m arked by faults cutting the Carpathian substratum : K urdw anów — Zawichost and Żywiec ■— Sambor.

In the E astern C arpathian these relationships get to be m ore com pli­

cated. The negative values of hTh0 refer to facture zones {Krynica — Jasło, Dubiecko — Giraltovoe) orientated SW — NE. The highest positi­

ve values, however, link th e following dislocations: Tarnów •— Nowy Sącz (Biała), Jasło — K rynica (Ropa) and Tyczyn — B ardejov (Jasiołka).

The sharp increase of th e positive values of hrh0 in th e Wisłoka profile 'can be seen betw een Jasło and Wróblowa w here th e riv e r passes betw een two w rench faults. In the Jasiołka profile, betw een Zawadka Rym anowska and Jaśliska, th ere appear distinct disturbances connected w ith the Dubiecko — B ardejov dislocation zone. The boundaries betw een riv er reaches showing ” values of hrh0 in the n orth and ,,—” in th e south, m ark the southern extent of the P ericarpathian deep crustal fra c tu re (Pericarpathian lineam ent — cf. Sikora 1976) and the zone of regional gravim etric m inim um (Slączka 1975), as well. The „positive”

values correlate w ith the greater thicknesses of the e a rth ’s crust w ithin the fracture area (Sikora 1976).

In the W estern E xternal Carpathians, rivers crossing the structures uplifted during the Q uaternary period, are characterized by „positive”

values of hrhoy e.ig. Soła w ithin the Beskid Mały m orphostructure, Skawa in the section which lies a t th e prolongation of the axis of the Beskid Wysoki uplifted elevation, Raba north of Myślenice.

The interrelationships betw een neotectonics and the shape of Ivanov’s profile are most clearly visible in th e profiles of the D unajec and Po­

prad. The „negative” values of hrh0 characterise D unajec river-bed stretches w ithin th e low ered Nowy T arg Basin x, w ithin the river-gap at Niedzica, w hich lies in the zone of the large transversal depression of the Pieniny K lippen Belt (Grochocka 1968) and w ithin the Nowy Sącz Basin, as well. The extrem ely low, negative values of hrh0

1 The Nowy Targ and Nowy Sącz Basins belong to 'the interrrrontane depressions filled by thick Neogene and Q u atern ary deposits. They have been low ered since th e Miocene period.

— -321 —

(12)

322

(N

f—« • • i *

te “ a) С

*3 S иЯ

■£-2*S5 о ОТ

со

Стto Ф

X

S « rt и

S I J>

Ф 1 йн

** ”4* i

т

С _ г I

?! ч« м со Н >> а

g a g s

Ä 3

So 1 I iС4-

^ л . соN О О -J7 О ф UBÆ

. " • Н О О Jh M ' g l J О

I I L S »

W

03Ä ^T3 i

ю А со

^ - О

CB S Щ,_

' 3 >o w

tS rt 3

о Я w

# h s

03

*“• СО

о

■wjgg

^ S i

ш _ , 1

■и ß ^ л ^ ^ СО<■ Н а

•ч М < о I щI ф

от

=5^ £ 3

° I m

* 1 | о

to л н ®

I- о - г Рн

05 >» £

*-• g cd —I

ж £ Ь.-*

pj М ЬО W о « e ‘S S « I 'S Й rt С-2

^ S ^

« s ö b r^_ -Д «-* *н CD CO g Ф

>-i pq с Pu

5 i оо I Дй I <u 1

N С ™-,

о са гЗ œl

Cff се „ Й j ' o S Ö -гг. ° я?

И в о

с а д

CÖ t-i СО

£ Я < л

! ü

<D СО S Äсв **

О Й ,

_ XI О

Д Т З Д

w -Й it*

° i

* а i

о

6 И

£ с О о Ч-ł -г-4

+-> -ł->

cd r t

» g

Л -*-* ф - CO

о

>

а о

°И uо

- Ф О) Ł,

ч-i о v

° ^ — +3 • " н С

И « ОЧН Я

4^ гН О •

й | 0 с а» , и

с ф с

к см I тз Ф

Ф К - я

.—I „ ^ H Q,

<п -*-> > О .£*

ш 7Й О я и

~ S i '"fi ф со CQ Ф с Cl

С -ri t>

м N М ( 0 t - ° ф а

® 8 и Ь

« о О & а ф

15 ►, I *

- 2 ^ i

2Л -* 1 со

i S * . 0 *,

^ S ä “

S» I

w W P , î o a .

H « I * I

Д Й £ g .2 о ^ ф со Д

Q N

П W Й

+ J H Я о

S | ^

■3 a i cd1

W

л & 1 -p?

Г т > 2 д Д - S N О ^ ОТ

о cd о *ц?

C q ^ u

о ^ cd от

•+^ х/ i к о

■ % > *

ф ТЭ

о ст>

Wit

со ад

« гг, ^ ź (3 .а .=

ю « П яад.^ о I-,Рч и S

^ 0 м

Cd ся

Л'й I 03 S a 1 ^

й Ф ^ о

-Î £ 40 £

• I w гз

.5? I s i

г-ifc а

(13)

T ab le 4

T heoretical p r o f ile s o f the Carpathian r iv e r s Teoretyczne p r o f ile rzek karpackich

— 323 —

r iv e r order components o f Ivanov's equation

^вшзс “ но /ш/ - i 11

Olza 1-6 670.0 4.34003

Wiała 5-6 273.0 2.13104

Soła 4 -6 305.0 1.72226

Skawa 3-6 301.0 1.26614

Haha 4 -7 383.0 2.63599

Dunajec 6-7 410.0 v 2.05630

Poprad 6 177.5 0.97390

B ia ła 3-6 395.0 2.79811

Вора 3-6 319.5 1.79607

Wisłoka 4-8 318.5 3.65343

J a sio łk a 3-6 385.0 2.47325

Wisłok 3-8 377.5 3.99374

0 sława 4-6 312.5 1.49322

San 5-8 565.0 2.79632

appear near the tow n Nowy Sącz w here the highest thickness of Mio­

cene deposits in the whole Nowy Sącz Basin occurs (Oszczypko 1973).

The positive values of hrh0 appear along th e D unajec river-bed w ithin th e antecedent P ieniny river-gap and also w ithin th e Beskid Są­

decki Range w here the interrelationship betw een th e topographical and the theoretical profiles reflects the block stru ctu re of this range. The boundaries of particular blodks are connected w ith the dislocations di­

stinguished by Tokarski (1975) in this p a rt of th e M agura nappe.

The „ + ” values shows also the D unajec’s theoretical profile dow n­

stream of Rożnów, i.e. to the n o rth of the isoline of m axim um d istur­

bances of the C arpathian planation surfaces (Klimaszewski 1965). E xtre­

mely high values appear n ea r Wojnicz.

The refraction geophysical profile running N — S and crossing the Nowy Sącz Basin reveals th e presence in the surroundings of the town Nowy Sącz, of a strong negative gravim etric anom aly (—40 mgail), which could re fe r to the so u th ern boundary of th e Epivariscan platform . This border zone seems to be dow nsucked to th e south, ben eath the depth of 14 km

(Slączka

1971, 1975). To the north, however, the C arpathian substratum rises reaching n ear Zakliczyn the d ep th of 4 km. It is pro­

bable th a t this event can be correlated w ith the change of the sign of hrh0 from „—” to „ +

(14)

The topographic profile of Poprad runs above the theoretical one along the antecedent river-gap w ithin the uplifted longitudinal elevation of the eastern p art of the Beskid Sądecki Range. The negative values of hrh0 m ark the southern '(SE) boundary of the Nowy Sącz Basin.

East of Dunajec, the m orphostructures subjected to the differentiated neotectonic movements are m arked less distinctly in the riv e rs’ profiles (Besko basin, Bieszczady and Słiosrme Mts. elevations — see Fig. 3, 4).

The Jasło — Sanok Depression, lowered during the Q uaternary, is not reflected in the longitudinal theoretical profiles of Jasiołka, Wisłok and San. The reasons for th a t are not clear. The m ain fracture zones are also weakly pronounced in the stream lang-profiles. It earn be suggested th at the high thickness of the Flysch deposits supresses th e tectonic im­

pulses of the substratum . In the Polish Eastern Carpathians there appears a zone of m axim um Flysch thicknesses which reach the depth of 10.5 km to the SSW of Krosno. This zone is located beneath the C entral Car­

pathian Depression (Słączka 1975). F u rth e r to the south, the crystalline substratum of the C arpathians probably rises up. W ithin the W estern C arpathians, however, the sm all thicknesses of the Flysch deposits (3 — 5 km) do not cause this type of extinction.

Along the West C arpathian bord er the increase of positive values of КhQ an d the weak decrease of these values to the east of Dunajec can be seen.

The tectonic windows of Żywiec and Grylbôw (cf. Figs. 3, 4, 5) are m arked in the long-profiles by a rem arkable decrease of negative values of hrh0. The tectonic window of Mszana in an exception because of its location w ithin the recently uplifted stru ctu re (Kowalski, Liszkowski 1970).

The distribution of the river-bed stretches which reveal positive or negative values of hch0 seems to be connected also w ith the p attern of isolines of the velocity of recent vertical crustal m ovem ents (W yrzykow­

ski 1971). If this p attern is com pared w ith geotectonic maps it is possible to draw an interesting conclusion. The southern boundary of the zone which links „negative” stretches of the investigated rivers presum ably follows the boundary of the e x te n t of the Badenian sedim entary basin (Połtowicz 1978). The no rth ern border of the „— ” zones, however, m arks the ex ten t of the O ttnangian deposits. This „negative” zone extends to the north of the Cretaceous — T ertiary subduction (Dewey Bird 1970, Książkiewicz 1977) of the Euroasiatic plate. The above rem arks lead to the statem ent th a t the area of negative values of hrh0 w ithin the Polish C arpathians m arks th e zone of th e „C arpathian block (sensu Sikora 1976). This zone extends between the Peripieninian lineam ent to the south and the P ericarpathian one to the north. The C arpathian block is the place where th e oordilleras were probably downsucked and where

3 2 4 —

(15)

— 325

the nappes of the E xternal Carpathians were probably rooted. Along the P ericarpathian lineam ent an abrupt upheaval of th ru st planes of higher unite on to low er ones can be observed. Today it is m arked by the presence of tectonic prom ontories and outliers. The ex ten t of the plat­

form substratum is located fa r under the overthrust flysch not farther, however, th a n the axis of gravim etric m inim um th a t runs parallel to the P ericarpathian lineam ent, somewhat south of it. The boundary be­

tw een the basem ent nonregenerated by alpine orogeny and the basem ent p artly u n d er alpine regeneration As represented here (Słączka 1975). This zone reveals the tendency to the dow nw ard m ovements.

There are several geophysical data allowing a conclusion th a t in the Carpathians there occur transversal lineam ents. According to Mahél et al. (1973) these lineam ents ru n along the following lines: Banska Bistri- ca — Zazriva — Żywiec, Presov — Gorlice, V ihorlat — Sainok and Mu- kacevo — Przem yśl (cf. Fig. 4). The disruptions and disturbances of the axis of the Carpathian gravim etric m inim um are located along these lines and cause th a t surprising phenom enon th at the „.negative” Jasło — Sa­

nok Depression stru ctu re is so weakly reflected in the profiles of Wisłok, Osława and San.

It is also possible th a t the zone of positive values of hrh0 in the long-profiles of the East C arpathian rivers (Tarnów — Przem yśl) is con­

nected w ith the presence of the M id-Polish aula6ogene which seems to be continued u n d er the C arpathian Foredeep and the C arpathians them ­ selves (Pożaryski, Żytko 1979).

FINAL REMARKS

The m ethod of analysis of the stream long-profile, presented above, has been used almost exclusively for the plain rivers. In m y opinion this method m ay be useful for the interpretation of the neotectonics of young folded m ountains.

The location of the topographic prfile above the theoretical one could indicate the uplifting tendencies. Rapid changes of th e values of hrh0 m ay indicate the presence of the aetivitated T ertiary and the older fracture zones.

The greater depths to the Moho discontinuity w ithin the Carpathians, connected w ith deep crustal fractures, are strongly correlated w ith the change of th e sign of young m ovem ents from „— ” to The special distribution of the „negative” reaches of the East C arpathian rivers the extent of the zone of m axim um Flysch thicknesses. The sign of values hrh0 seems to reflect th e tectonic tendencies of the deep C arpathian substratum and th e p attern of isolines of the recen t vertical crustal mo­

vem ents as well.

2 — R o cz n ik PTG 50/3—4

(16)

A c k n o w l e d g e m e n t s . I would ilike to th a n k 'Dr. Maria Baum - gart-K otarba and Dr. Andrzej Slączka for advice and helpful discussion.

M anuscript received N ovem ber 1979 accepted A pril 1980

— 326 —

REFERENCES — WYKAZ LITERATURY

В a u l i g H. 1925. La notion de profil d’équilibre: H istoire e t critique. CR Congr.

In t. Geogr., 3: 51—63, Caire.

C u l l i n g W. E. H. 1960. A nalytical th eo ry of erosion. J. Geol., 68, 3: 336, Chicago.

D e w e y J. F., B i r d J. M. 1970. M ountain belts and th e new global tectonics.

J. Geophys. Res., 75: 2625—2647, Richmond.

F u s a n O. e t a l . 1967. Geological Map of Czechoslovakia, 1: 500 000. Ûstr. XJst.

Geol., P rah a .

G r e e n J. F. N. 1934. The R iver Mole: its P hysiography and Superficial Deposits.

Proc. Geol. Assoc., 45: 35—69, London.

G r o c h o c k a K. 1968. M esostm ctures investigated in the Niedzica Gap. ('sum­

m ary). Acta geol. pól., 13, 1: 205—231, W arszawa,

H a c k J. T. 1957. Studies of Longitudinal Stream Profiles in V irginia nad M aryland.

U. S. Geol. Prof. Paper 294-B: 45—97, W ashington.

H a c k J. T. 1973. S tream -P ro file A nalysis and S tream -G rad ien t Index. J. Res.

U. S. Geol. Sur., 1, 4: 421—429.

H a r b a u g h J. W., B o n h a m - C a r t e r C. 1970. C om puter Sim ulation in Geo­

logy. Wiley, New York.

H e t t n e r A. 1910. Die A rbeit des fliessenden W assers. Geogr. Zt., 16: 3171—3373, B erlin.

H o l m e s C. D. 1952. S tream Com petence and th e G raded S tream Profile. Am . J. Sei., 250: 899—906, New Haven.

J o n e s О. T. 1970. L ongitudinal Profiles of th e U pper Towy D rainage System (in:) D ury G. H. (ed.), R ivers and R iver Terraces, 73—94, M acm illan, London.

K l i m a s z e w s k i M. 1965. Views on th e Geomorphological Evolution of th e Polish W est C arp ath ian s in T ertiary Times. Geomorphological Problem s of

Carpathians, 1: 91—126, B ratislava.

K o w a l s k i W. C., L i s z k o w s k i J . 1972. The D ependence betw een th e R ecent V ertical M ovem ents of th e E a rth C ru st in Poland and its Geological S tru ctu re.

(Summary). Biul. Geol. UW, 14: 5—IS, W arszawa.

K s i ą ż k i e w i c z M. 1962. Geological A tlas of Poland, fasc. 13, Inst. Geol., W ar­

szawa.

K s i ą ż k i e w i c z M. 1977. Hypothesis of P la te Tectonics and th e O rigin of th e C arpathians. (Summary). Rocz. Pol. Tow. G eol, 47, 3: 329—353, Kraików.

L e o p o l d L. B., L a n g b e i n W. B. 1962. The Concept of Entropy in Landscape Evolution. U. S. Geol. Prof. Paper 500-A:l—20, W ashington.

L e o p o l d L. B., W o l m a n M. G., M i l l e r J. P. 1964. Fluvial Processes in Geomorphology., p. 1—522, Freem an, San Francisco.

M a c k i n J . H. 1948. Concept of th e G raded River. Bull. Geol. Soc. Am ., 59: 463, New York.

M a h e l M. et al. 1973. Tectonic Map of th e C arp ath ian -B alk an m oun tain System and A djacent A reas, 1 :1 000 000. Ûstr. Ûst. Géol., P rah a .

O s z c z i y p k o N, 1973. The Geology of the Nowy Sącz Basin. Biul. Inst. Geol., 271: 101—197, W arszawa.

(17)

Fig. 5a

90 100 km

Fdg. 5b

(18)

220

4

~~--- --- --- К ПАЯ« Y N PBZEHYŚL

_TL„ .

SAN

K-K

10о

-10

•30

F ig. 5с

330 •380 590 WO 410 km

E

Fig. 5a. S trea m -g ra d ien t a n a ly sis and diagram s of d ifferen ces b e tw e e n th e top ograp h ical and th eo retica l p ro files of th e W est C arp ath ian riv er s. S — strea m gradient, h r — e le v a tio n o f th e g iv e n p o in t of th e to p ograp h ical p ro file a b o v e r iv e r ’s m ou th h 0 — e le v a tio n o f t h e g iv e n p o in t of th e th e o r e tic a l

profile ab ove riv er’s m ou th . A — m a in te c to n ic u n its — cf. F ig. 2., В — T e r tia r y fa u lt zones, С — fa u lts w ith in th e C arp ath ian su b stratu m Fig. 5a. D iagram y sp ad k ów rzek zach od n iok arp ack ich oraz różn ice p o m ięd zy p ro filem rze c z y w isty m a teoretyczn ym . S — sp ad ek cieku, łir — w y so k o ść d a ­ nego punktu profilu rzeczy w isteg o nad u jściem , h0 — w y so k o ść danego p u n k tu p ro filu teo rety czn eg o nad u jściem , A — g łó w n e jed n o stk i te k to n ic z n e —

por. fig. 2., В — trzecio rzęd o w e str e fy d y slo k a cy jn e, С — u sk o k i w podłożu K arp at

F ig. 5b. S trea m -g ra d ien t a n a ly sis and diagram s o f d ifferen ces b e tw e e n th e to p o g r a p h ic a l and th e o r e tic a l profiles o f th e E ast C arpathians rivers. (Ropa, J a sio łk a , O sław a) F or e x p la n a tio n s — se e F ig. 5a

F ig. 5b. D iagram y sp a d k ó w rzek w sch o d n io k a rp a ck ich (Ropa, J a sio łk a , O sław a) o r a z różn ice p o m ięd zy profilem r z e c z y w isty m a (teoretycznym . O b ja śn ie­

n ia — por. fig . 5a

F ig. 5c. S trea m -g ra d ien t a n a ly sis and diagram s o f d ifferen ces b e tw e e n th e top ograp h ical and th e o r e tic a l p rofiles o f th e E ast C arp ath ian riv er s (W isłoka, -W isłok , S an). For e x p la n a tio n s — se e F ig. 5a

F ig. 5c. D iagram y sp ad k ów rzek w sch o d n io k a rp a ck ich (W isłoka, W isłok , San) oraz różn ice p o m ięd zy profilem r z e c z y w isty m a teo rety czn y m . O b jaśn ien ia — por. fig . 5a

(19)

P e n c k A. 1894. Morphologie der Erdoberfläche. S tu ttg art.

P o ł t o w i c z S. 1978. G rav ity Slides of th e Flysch C arp ath ian M arginal Zone in th e Light of New Global Tectonics. (Summary). Rocz. Pol. Tow. Geol., 48, 3—4: 407—444, Kraków.

P o ż a r y s k i W., Ż y t k o K. 1979. The M id-Polish Aulacogene and th e C a r­

p a th ia n GeasynoLine. (Summary). Prz. geol., 6 : 305—311, W arszawa.

S c h e i d e g g e r A. E. 1961. Theoretical Geomorphology, 333 pp., Springer, Berlin.

S h u l i t s S. 1941. R ational Equation of R iver-B ed Profile. Trans. A m . Geophys.

Union, 22: 622—630, W ashington.

S i k o r a W. J. 1976. On L ineam ents Found in th e C arpathians. Rocz. Pol. Tow . Geol., 46, 1—2: 3—37, K raków .

S o k o ł o w s k i S. 1954. C arte géologique des K arpates Polonaises, 1 :200 000, partie occidentale. In st. Geol., W arszaw a.

S t a r k e l L. 1978. F irst Stages of R elief T ransform ation of th e Young U plifted M ountains. Studia Geomorph. Carpatho-Balcan., 12: 45—61, K raków .

S t e r n b e r g H. 1875. U ntersuchungen ü ber Langen- und Q uerprofil geschiebe- fü h ren d e r Flüsse. Zt. f. Bauw esen, 25, Berlin.

S t r a h l e r A. N. 1952. D ynam ic Basis of Geomorphology. Bull. Geol. Soc. Am., 63: 923—938, Boulder.

S ł ą c z k a A. 1971. W stępne w yniki bad ań re |ra k c y jn y ch w K arp atach (in Polish only). K w art, geol., 15, 4: 1034—1035, W arszaw a.

Ś l ą c z k a A. 1975. R em arks on m orhology of th e S u b stratu m of th e Polish C a r­

path ian s. Proc. 10th Congr. C BG A, sec. 3, Tectonics: 282—290, Géol. Üst. D. S tu - ra, B ratislava.

S l ą c z k a A. 1976. P ro fil geologiczny otw oru w iertniczego Sucha IG-1 (in Polish only). K w art. Geol., 20, 4: 958—959, W arszaw a.

S w i d z i ń s k i H. 1954. C arte géologique des K arp ates Polonaises, 1 : 200 000, p artie orientale. Inst. Geol., W arszaw a.

T e i s s e y r e J. 1938. Etude des profiles longitudinaux des rivières des K arpates O rientales Polonaises. Rocz. Pol. Tow . Geol., 14: 81—154, K raków .

T o k a r s k i A. K. 1975. S tru c tu ra l A nalysis of th e M agura Unit. Rocz. Pol. Tow.

Geol., 45, 3—4 : 327—353, K raków .

W y r z y k o w s k i T. 1971. M ap of Recent A bsolute Velocities of V ertical M ove­

m ents of the E a rth ’s C rust Surface on th e T erritory of Poland, 1 :2 500 000.

Inst. Geod. i K artogr., W arszawa.

Z u c h i e w i c z W. 1979. A P ossibility of A pplication of th e T heoretical L ongitu­

dinal R iver’s P rofile A nalysis to Investigations of Young Tectonic M ovements.

(Siummairy). Rocz. Pol. Tow. Geol., 49, 3: 327—'342, Kraików.

C h e r n y s h e v a — Ч е р н ы ш е в а 3. С. 1979. Анализ продольного профиля рек.

(в:) Морфоструктурный анализ речной сети СССР. Издатель. „Наука”, Москва.

G o f s h t e i n — Г о ф ш т е й н И. Д. 1964. Неотектоника Карпат. Издатель. „Наука”, Киев.

I v a n o v — И в а н о в П. В. 1951. Метод количественной характеристики продоль­

ного профиля реки. Изв. Всес. Геогр. Об., 83, 6: 585—594, Ленинград.

M a k k a v e e v — М а к к а в е е в Н. 1955. Русло реки и эрозия в её бассейне.

Издатель. АН СССР, Москва.

M a k k a v e e v — М а к к а в е е в Н. 1978. Экспериментальная геоморфология, вып. 3.

Издатель. Моск. Унив., Москва.

M e s h c h e r i a k o v — М е щ е р я к о в И. А. 1965. Структурная геоморфология равнинных стран. Издатель. „Наука”, Москва.

S o b a k a г, S o m o v , K u z n e t s o v a — С о б а к а р ь Г. Т., С о м о в В. И., К у з ­ н е ц о в а В. Г. 1975. Современная динамика и структура земной коры Карпат и прилегающих территорий. Издатель. „Наукова Думка”, Киев.

— 327 —

(20)

— 328 —

V o l k o v — В о л к о в H. Г. 1964. К методике тектонического анализа продольного профиля реки. Тр. Инет. Геол. Наук, Киев.

V o l k o v — В о л к о в Н. Г. 1977. Локальные морфроструктуры Днепровско-Донецкой впадины. Издатель. „Наукова Думка”, Киев.

STRESZCZENIE

Przeanalizowano profile podłużne 14 większych rzek K arpat polskich i porównano je z ich profilam i teoretycznym i (fig. 3, 4, 5, tab. 1, 2) obliczonymi m etodą Ivanowa (1951). K onstrukcję profilu teoretycznego przedstawia fig. 1.

Profile podłużne zestawiono na diagram ach bezwym iarow ych (fig. 2), uniemożliwiających analizę wklęsłości profilu. Stwierdzono słaby stopień dojrzałości cieków rzędu VI (sensu S trahler) i daleko posuniętą dojrza­

łość rzek VII rzędu.

Przedstaw iona m etoda analizy profilu podłużnego, stosowana dotych­

czas prawie wyłącznie dla rzek rów ninnych, może być przydatna w in­

terp retacji meotekboniki m łodyoh gór fałdowych. Położenie profilu rz e ­ czywistego powyżej teoretycznego (fig. 5, tato. 4) zdaje się świadczyć o tendencjach w ypiętrzających, poniżej — o ruchach obniżających. Sko­

kowe zm iany wartości odchyleń m iędzy profilem rzeczyw istym a teo re­

tycznym wskazują na obecność odmładzanych dyslokacji — zarówno trzeciorzędowych, jak i starszych. Zwiększanym miąższościom skorupy ziemskiej K arpat, związanym z głębokimi rozłam am i, odpowiada zmiana znaku młodych ruchów tektonicznych z ujem nego n a dodatni.

Specyficzne rozmieszczenie odcinków rzek o odchyleniach „ujem nych”

wyznacza zasięg m aksym alnych miąższości fliszu, n a północ od kraw ędzi subdukcji k ry euroazjatyckiej.

Cytaty

Powiązane dokumenty

Najlepsze w yniki daw ała praca św ietlicowa, dobrą form ą okazały się chóry kościelne, a także am atorskie koła teatraln e. Pow stało w iele ncw ych

Warto byłoby mocniej zaakcentować — przede wszystkim ze względu na od­ biorcę mniej zorientowanego w zakresie historii teorii literatury — ze historia

Procedures for the field testing of new and existing bridges have been developed, and over time the range of applications of load tests have grown significantly from

Przez to, że ofiary urazu nie są w sta- nie dzielić się z innymi swoimi przeżyciami,. nie opowiadają o nich, pozbawiają się ko- lejnego mechanizmu radzenia sobie ze

The static slope approximation allows setup of a numerical space-marching model that enables assess- ment of the quasi-static component of quasi-equilibrium river geometry in

Spółdzielnie przy tego rodzaju zamianach często robią trudności żądając, aby członek spółdzielni, który chce zamienić lokal typu lokatorskiego na dom lub

Lis-Wielgosz mainly focuses on show- ing the continuity of medieval literary forms (hagiographies, hymnographies) in the seven- teenth century. This fact is indicative of the

In [5] we have constructed a linear orthonormai frame field along a curve in the space P(p,g) of p—dimensional planes in the (p + g)-dimensional euclidean space E p + i , i']le