• Nie Znaleziono Wyników

Inter-compartment interaction in multi-impeller mixing

N/A
N/A
Protected

Academic year: 2021

Share "Inter-compartment interaction in multi-impeller mixing"

Copied!
18
0
0

Pełen tekst

(1)

Inter-compartment interaction in multi-impeller mixing

Part I. Experiments and multiple reference frame CFD

Haringa, Cees; Vandewijer, Ruben; Mudde, Robert F.

DOI

10.1016/j.cherd.2018.06.005

Publication date

2018

Document Version

Final published version

Published in

Chemical Engineering Research and Design

Citation (APA)

Haringa, C., Vandewijer, R., & Mudde, R. F. (2018). Inter-compartment interaction in multi-impeller mixing:

Part I. Experiments and multiple reference frame CFD. Chemical Engineering Research and Design, 136,

870-885. https://doi.org/10.1016/j.cherd.2018.06.005

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

ContentslistsavailableatScienceDirect

Chemical

Engineering

Research

and

Design

j o u r n a l ho me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h e r d

Inter-compartment

interaction

in

multi-impeller

mixing:

Part

I.

Experiments

and

multiple

reference

frame

CFD

Cees

Haringa

,

Ruben

Vandewijer,

Robert

F.

Mudde

1

TransportPhenomena,DepartmentofChemicalEngineering,DelftUniversityofTechnology,vanderMaasweg9, 2629HZDelft,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19November2017

Receivedinrevisedform24April

2018

Accepted1June2018

Availableonline15June2018

MSC: 00-01 99-00Keywords: Mixing Schmidtnumber CFD Multipleimpellers Macroinstability

a

b

s

t

r

a

c

t

CFDsimulationsofmixinginsingle-phasemulti-RushtonstirredtanksbasedontheRANS

methodologyfrequentlyshowanover-predictionofthemixingtime.Thishintsatan

under-predictionofthemassexchangebetweenthecompartmentsformedaroundtheindividual

impellers.SomestudiesrecommendtuningtheturbulentSchmidtnumbertoaddressthis

issue,butthisappearstobeanad-hoccorrectionratherthanphysicaladjustment,thereby

compromisingthepredictivevalueofthemethod.Inthiswork,westudytheflowprofile

inbetweentwoRushtonimpellersinstirredtank.Thedatahintsatthepresenceof

macro-instabilities,andapeakinturbulentkineticenergyintheregionofconvergentflow,which

bothmaypromoteinter-compartmentmassexchange.CFDstudiesusingthesteady-state

multiplereferenceframemodel(unsteadysimulationsaretreatedinpartII)inherentlyfail

toincludethemacro-instability,andunderestimatetheturbulentkineticenergy,thereby

stronglyover-estimatingmixingtime.Furthermore,theresultsarehighlymesh-sensitive,

withincreasingmeshdensityleadingtoapoorerpredictionofthemixingtime.Despite

properresultsfor1-impellerstudies,wedonotdeemMRF-RANSmodelssuitableformixing

studiesinmulti-impellergeometries.

©2018InstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1.

Introduction

Computationalfluiddynamics(CFD)simulationsoffera

rela-tivelycheapandfastapproachtowardsevaluatingthemixing

performanceofa rangeofimpellerconfigurations,without

theneedofalengthyexperimentalcampaign.Thisrequires

that CFD simulations sufficiently capture the true mixing

behavior,whichgaverisetoasignificantbodyofvalidation

literature.Areviewofliteraturefocusingonsinglephaseflows

withRushtonturbines(Section2)showsthatReynolds

Aver-agedNavierStokes(RANS)simulationsyielddecentresults

Abbreviations:MI,macro-instability;CoM,coefficientofmixing;LDA,laserDoppleranemometry;PIV,particleimagevelocimetry;RANS,

ReynoldsaveragedNavierStokes;MRF,multiplereferenceframes;SM,slidingmesh;(S/R)KE,standard/realizablek−;RSM,Reynolds

stressmodel;(D/L)ES,detached/largeEddysimulation.

Correspondingauthor.

E-mailaddress:r.f.mudde@tudelft.nl(C.Haringa).

1 Currentaddress:DSMBiotechnologyCenter,AlexanderFleminglaan1,2613AXDelft,theNetherlands.

for single-impeller geometries (Coroneo et al., 2011), but

appeartoconsistently overestimatemixingtimes in

multi-impellergeometries(Montanteetal.,2005;Moˇst ˇeketal.,2005;

Kukukováetal.,2005;Jahodaetal.,2007);thisover-estimation

mayholdforotherimpellertypesatlargespacing(Montante

etal.,2005).LargeEddysimulations(LES)appeartoadequately

capturemixingbehavior,buttherequiredcomputationtime

prohibits routine application. We assess this

overestima-tion ofthemixingtimeinRushton-stirredtankswithlarge

impellerspacingbyRANSsimulations.Ouroriginal

hypothe-siswasthatofRANSsimulationsunder-estimatingtinthe

https://doi.org/10.1016/j.cherd.2018.06.005

(4)

Nomenclature Roman

an dampingcoefficient,Eq.(3),–

Ct tracerconcentration,kg/m3

C off-bottomclearanceimpeller,m

cn strengthcoefficient,Eq.(3),–

C inter-impellerclearance,m

D impellerdiameter,m

D diffusioncoefficient,m2/s

Dt diffusioncoefficient,turbulent,m2/s

Ep/Et fractionofperiodicenergyinspectrumofu,–

f frequency,s−1 f1.1 basefrequency1,s−1 f2.1 basefrequency2,s−1 f1.2 harmonicfrequency1,s−1 f2.2 harmonicfrequency2,s−1 FQ pumpingnumber,– h axialcoordinate,m H tankheight,m

k slotnumber(autocorrelation),–

kt turbulentkineticenergy,m2/s2

kMI macro-instabilitykineticenergy,m2/s2

kt,* kt+kMI,m2/s2

kt,fit ktcomputedviaauto-correlationfit,m2/s2

kt,SI ktcomputedviaspectralintegration,m2/s2

kMI,fit kMIcomputedviaauto-correlationfit,m2/s2 kMI,SI kMIcomputedviaspectralintegration,m2/s2

N impellerrevolutions,1/s

Nc no.gridcells,–

Qax axialflowrate,L/s

r radialposition,m

R tankradius,m

Sct turbulentSchmidtnumber,–

T tankdiameter,m

t timestepsize,s

u fluctuatingvelocity,m/s

U meanvelocity,m/s

Utip impellertipspeed,m/s

V tankvolume,m3

Vi gridcellvolume,m3

w Tukey–Hanningwindow,−

Greek

 laserwavelength,nm

 viscosity,dynamic,Pas

t viscosity,dynamic,turbulent,Pas

 turbulentdissipationrate,m2s3

ˆ auto-correlationcoefficient,–

l density,kg/m3

lag lagtime,s

 noisecomponent,–

95 mixingtime,s

95 mixingnumber,N·95−

horizontal plane segregating the compartments formed

around the individual impellers, hence under-estimating

mass exchange between them. During our investigation,

we additionally observed a macro-instability in the

inter-compartmentregion,whichsignificantlycontributedtomass

exchange. Inseveral prior publications,inter-compartment

mass exchange was boosted by tuning of the turbulent

Schmidtnumber,Sct=t/(Dt)(Montanteetal.,2005;Gunyol

etal.,2009;Haringaetal.,2016).Weposethatthistuningis

notbasedonphysicalreasoning.Instead,it isapatchwork

solutioncoveringexchangebyvirtueofthemacro-instability,

aswellasunder-predictedturbulentexchange,asTominaga

andStathopoulos(2007)similarlydiscussedformispredicted

scalarspreadinginjets.Suchanad-hoccorrection

compro-misesthepredictivecapabilitiesofRANS-basedstirredtank

simulations. Whereas other publications on multi-impeller

mixingfocusedprimarilyonoverallmixingbehavior,westudy

theflowinregionbetweentheimpellersindetail,usinga

com-bination ofLaser DopplerAnemometry (LDA) experiments,

RANS andLESsimulations.Wecombinetheseresultswith

both steady and unsteady CFD simulations, to answer as

to why RANS simulations poorly capturemixing in

multi-impeller tanks. In this first part of the work, wefocus on

theexperimentalassessmentandsteadyRANSsimulations,

unsteady simulations including LES are considered in part

two.

2.

Literature

overview:

RANS

simulations

of

Rushton

turbines

Inthisliteratureoverview,wediscusstheuseofRANS

simula-tionstostudymixinginvesselsstirredwithRusthonturbines.

LESandDESmodelsarethesubjectofpartIIofthiswork.

2.1. Theimpellerdischargestream

Mosthydrodynamicresearchinstirredtanksfocusedonthe

impeller discharge stream and trailing vortices, being the

regions wheremuchofthe hydrodynamic actionhappens.

Experimentstypicallymeasuredtheturbulentkineticenergy

(kt)anddischargestreamvelocitybyLDA(WuandPatterson,

1989;Ng et al.,1998;Ng andYianneskis, 2000;Murthy and Joshi, 2008; Schäfer et al., 1997; Vennekeret al., 2010; Lee andYianneskis,1998;Derksenetal.,1999)orparticleimage

velocimetry (PIV)(Khopkaret al., 2004;Ranadeetal., 2001;

Escudié and Liné, 2003; Escudié et al., 2004; Huchet et al., 2009; Baldi and Yianneskis, 2004; Baldi et al., 2004; Ducci andYianneskis,2005;Linéetal.,2013).Earlystudiestypically

computed the turbulent dissipation rate  on dimensional

grounds(WuandPatterson,1989),orviatheenergybalance

(EscudiéandLiné, 2003;Escudiéetal., 2004). Direct

mea-surements have been conducted with high-resolution LDA

andPIV(Huchetetal.,2009;BaldiandYianneskis,2004;Baldi et al., 2004; Ducciand Yianneskis, 2005). These show that

estimationsoffromdimensionalanalysisarereasonablein

thebulk,butunderestimateclosetotheblade,where

tur-bulenceisstronglyanisotropic(Hartmannetal., 2004).The

bulkofCFDstudiesreportconsensusregardingtheimpeller

dischargevelocity(GunyolandMudde,2009;Ngetal.,1998;

ZakrzewskaandJaworski,2004;Ammaretal.,2011;Laneetal., 2000;Brucatoetal.,1998;JenneandReuss,1999),while

turbu-lenceparametersyieldlessuniversalagreement.Brucatoetal.

(1998)underestimatedktusingthestandardk−(SKE)model,

usinginner–outer(IO)andslidingmesh(SM)impeller

model-ing.GunyolandMudde(2009)reportedpooragreementusing

RNG–KEbutfoundgoodresultsforktwithSKEandthe

realiz-ablek−(RKE)models,withmultiple-referenceframe(MRF)

impeller modeling. TheReynolds stress model (RSM)

com-paredlessfavorably,butoutperformedRNG–KE.Singhetal.

(2011)notedktinthedischargestreamisreasonablywell

(5)

poorer,withthetrailingvorticesbeingtoosmall,and

inward-curvedcomparedtoexperimentaldata(Derksenetal.,1999;

Ranadeet al., 2001;Escudiéet al., 2004). Underestimations

inofup to50% werereportedbyNgetal.(1998),Ngand

Yianneskis(2000),whomodeledthefull3Dimpeller

geome-try.With1–3cellsacrossthebladethickness,poorlyresolved

flowaroundtheblademaycausethisunderestimation.

Stud-iesusingsheet-bodyimpellersandbafflesperformedbetter

(GunyolandMudde,2009;Coroneoetal.,2011;Singhetal.,

2011), although high mesh densities (106+ cells for a one

impeller,360◦ domain) are required formesh independent

results(Coroneoetal.,2011).Forthese,resultsforboththe

SKEandRKEmodelagreewellwiththedimensional

assess-mentofbyWuandPatterson(GunyolandMudde,2009).This

isunsurprising,asthek−methodisbuiltlargelyonthesame

assumptions (isotropy and a single turbulent length-scale

Lres=Ak3/2t /).Singhet al.(2011)(SM–SKE)showedthatthe

agreementinbreaksdownnearthebladewhencomparedto

directmeasurements.Furtherawayfromtheimpeller,where

thek−modelassumptionsreasonablyhold(Hartmannetal.,

2004),decentagreementinwasobservedbySinghetal.

2.2. MixinginRushton-stirredtanks

2.2.1. Definitionofmixingtime

We report the 95% mixing time in dimensionless form;

95=N·95 with 95 the mixing time ins and N the

agita-tionrateins−1.Forpoint-measurementsweconsider95as

thetimewherethenormalizedtracerconcentrationCt/ ¯Ct is

between0.95and1.05( ¯Ctthevesselaverage)(Kukukováetal.,

2005;Jahoda etal., 2007; Bujalski etal., 2002a,b,c; Jaworski etal., 2000a,b;Magelli etal., 2013). Probeshavethe

advan-tageofrecordingdynamicsthatare directly comparableto

CFDsimulations,buttheresultsmaybelocationspecific,and

invasiveprobesmaydisturbthelocalflow.Thecoefficientof

mixing(CoM)(Kukukováet al.,2008;Kukukova etal., 2009;

Hartmannetal.,2006)(alternativelycalledCoefficientof

Vari-ation(CoV))isusedtoquantify95 basedonCFDfielddata.

AsCFDmeshesaretypicallynon-uniform,volume-weighing

shouldbeappliedinthedeterminationoftheCoM(Hartmann

etal.,2006): CoM=













i



Ct,i− ¯Ct ¯ Ct

2 Vi iVi

(1)

Kukukováet al.(2008) set CoM=0.05 asthe 95%mixing

limit, while Hartmann et al. (2006) report CoM=0.0283 as

95% of the volume being 95% mixed, based on numerical

experiments. We apply the limit of Hartmann, but do not

considereitherindicatortobesuperiorprovidedconsistency

isapplied.Coroneoetal.(2011)alsousedtheCoMto

quan-tifymixingbyplanelaserinducedfluorescence(P-LIF).Some

studieswithalternativemixingindicatorsarefoundin

litera-ture,suchas95%ofthevolumebeingdecolored(Moo-Young

etal.,1972).LeeandYianneskis(1997)suspendedthermally

sensitive liquid-crystal particles and applied a heat pulse,

measuring 95when95%oftheparticleshadthesamehue.

2.2.2. Singleimpellersystems

The mixing time correlation of Yeoh et al. (2005) yields

95=30.7forasingleRushtonturbine,withD=T/3,H=T.The

Ruszkowski–Grenvillecorrelation(Yeohetal.,2005),validfor

variousimpellertypes(Nienow,1997),predicts 95=27.5.

Typ-icalexperimentalandCFDresultsgive 95≈30–40(Table1),

showingthecorrelationsarereasonable.Thereisquitesome

variationintheresultshowever.Inexperiments,thismaybe

duetoprobelocation(RaghavRaoandJoshi,1988;Kukuková

et al., 2005; Jahodaet al., 2007), or dueto different

meth-odsusedto quantifythemixing time(Leeand Yianneskis,

1997;Moo-Youngetal.,1972),thatarenotmutually

compa-rable.SimilarobservationscanbemadefortheCFDresults.

LESmethods –discussed inmoredetail inpart II–

gener-allyperformwell,butdifferentmixingquantificationmethods

yielddifferent results.Especially 3D-CoM(Hartmannet al.,

2006))yieldsahigher95,asitconsiderstheentirevolume,

includingpoorlymixedregions.Thiscallscautionwhen

com-paringmixingtimesbetweendifferentstudies,experimental

ornumerical.FocusingonRANSmethods,slidingmesh

sim-ulationswerereportedtoover-predict 95(Jahodaetal.,2007;

Zadghaffarietal.,2010).Incontrast,theMRF–SKEapproach

ofJahodaetal.andKukukovaetal.underestimated 95

com-pared with their measurements. The agreement between

experimentalprobemeasurementsandnon-invasiveLIF

mea-surements(Distelhoffet al.,1997;Javed etal., 2006)makes

itunlikelythesedifferencesareduetotheprobeinfluencing

flow.Morelikely,themeshresolutionwasinsufficient.Results

byCoroneoetal.(differentgeometry:D=T/3,C=T/2,H=T)do

showgoodagreementbetweenPLIFdataandMRF–SKE

simu-lations(2D-CoM)qualitativelyandquantitatively.Theirmesh

of2000kcellswasmuchfinerthanusedinotherMRF

stud-ies.Coroneo et al.foundthe discharge velocityprofileand

torque-basedpowernumberPo,oftenusedformesh

depen-dencystudies,areratherinsensitivetomeshdetails(Coroneo

etal.,2011).ThedissipationbasedpowernumberPoismore

sensitive,andinbetteragreementwiththemeshsensitivity

of 95.

2.2.3. Multi-impellersystems

Theflowinmulti-impellersystemsdependsstronglyonthe

inter-impeller clearance (Rutherford et al., 1996). We focus

on Rushton-stirred systems with a spacing C=T, which

exhibitparallelflow(MishraandJoshi,1994;Rutherfordetal.,

1996),formingseparatecompartmentsaroundtheindividual

impellers.Werefertotheregionwherethesecompartments

meetastheinter-compartmentregion.withtheexact

hori-zontalseparationbetweenthecompartmentsreferredtoas

the inter-compartmentplane.In thisplane, themean flow

isdominantlyradial,andlittlemassexchangebetweenthe

compartmentsisexpectedbythemeanconvectiveflow.This

formsarate-limitingstepinmixing;comparingthe

experi-mental 95between1-,2-and4impellersystems(Table1–3,

respectively)shows 95morethandoublesupondoublingthe

numberofimpellers.Allsummarizedmulti-impellerstudies

report 95 basedon invasiveprobes,withtracerinjectedat

thevesseltop.Incaseofmultipleprobes,thebottomprobe

reading isreported, givingthehighest 95.Early studiesby

Jaworskietal.(2000a,b)andBujalskietal.(2002a,c),withvery

limitedmeshresolution,reporteduptoafactor2

overestima-tionof 95,bothwithSM–SKEandMRF–SKE.Kukukováetal.

(2005)reportedan8.6%over-estimationforMRF–SKE,while

Jahodaetal.(2007)observed20%and26%over-estimations

forMRF–SKEandSM–SKE,respectively.TheLESsimulations

ofJahodaetal.(2007) showedhighlysimilarprobe

dynam-icscomparedtotheirexperiments;thehigherdegreeofnoise

in experimental data did in an 11.4% under-estimationof

(6)

4-Table1–Anoverviewofmixingtimesforasingleimpellergeometry(D=T/3,C=T/3,H=T):experimental(t95).Measure

indicatesthemethodusedtoquantify95:x-P:xprobes,T:thermal,C:decolorization,3D-CoM:coefficientofmixing,

volume.MM:min–maxmethod.

Author 95 Measure Re Method Sct Mesh Ref.

Kukukovaetal. 33 1-P 46,667 Conductivity − − (Kukukováetal.,2005)

Jahodaetal. 34 1-P 46,667 Conductivity − − (Jahodaetal.,2007)

Leeetal. 21.6 T 40,000 Thermal − − (LeeandYianneskis,1997)

Distelhoffetal 36 8-P 24,000 LIF − − (Distelhoffetal.,1997)

Javedetal 32 32-P 24,000 LIF − − (Javedetal.,2006)

Moo-Youngetal. 36 C 24,000 Decolorization − − (Moo-Youngetal.,1972)

RaghavRaoetal. 48.2(avg.) 1-P >100,000 Conductivity − − (RaghavRaoandJoshi,1988)

Rewatkaretal. 39.5(avg.) 1-P >200,000 Conductivity − − (RewatkarandJoshi,1991)

Nereetal. 35.3 MM 46,722 B.C.k− Notreported 280k (Nereetal.,2003)

Kukukovaetal. 23.5 1-P 46,722 MRFk− 0.7 330k (Kukukováetal.,2005)

Jahodaetal. 13.5 1-P 46,722 MRFk− 0.7 615k (Jahodaetal.,2007)

Jahodaetal. 50 1-P 46,722 SMk− 0.7 615k (Jahodaetal.,2007)

Javedetal 27 32-P 24,000 SMk− 0.7 112k (Javedetal.,2006)

Zadghaffarietal 40–80 1-P 41,667 SMLES 0.7 971k (Zadghaffarietal.,2010)

Jahodaetal. 26 1-P 46,722 SM–LES 0.7 615k (Jahodaetal.,2007)

Yeohetal. 33.2 48-P 4000 SM–LES 0.7 330k (Yeohetal.,2005)

Hartmannetal. 39.8–54.7 3D-CoM 24,000 SM–LES 0.7 13,824k (Hartmannetal.,2006)

Table2–Anoverviewofmixingresultswith2impellergeometries:CFDandexperimentaldata.Unlessotherwise stated,D=T/3andC=T.Allmixingtimemeasurementswereprobe-based.ForturbulentSchmidtnumberSct,n.r.=not reported.

Author Geometry 95 Re Method Sct Mesh Ref.

Kukukovaetal. C=T/3 104.5 46,722 Conductivity − − (Kukukováetal.,2005)

Kukukovaetal. C=T/3 113.5 46,722 MRFk− 0.7 286k (Kukukováetal.,2005)

Jahodaetal. C=T/3 92 46,722 Conductivity 0.7 − (Jahodaetal.,2007)

Jahodaetal. C=T/3 110 46,722 MRFk− 0.7 1230k (Jahodaetal.,2007)

Jahodaetal. C=T/3 116 46,722 SMk− 0.7 1230k (Jahodaetal.,2007)

Jahodaetal. C=T/3 81.5 46,722 SMLES 0.7 1230k (Jahodaetal.,2007)

Jaworskietal. C=T/4,D=T/2 46.6 162,000 Conductivity − − (Jaworskietal.,2000a,b)

Jaworskietal. C=T/4,D=T/2 48.9 216,000 Conductivity − − (Jaworskietal.,2000a,b)

Jaworskietal. C=T/4,D=T/2 137.5 162,000 SMk− n.r. 70k/180(Jaworskietal.,2000a,b)

Jaworskietal. C=T/4,D=T/2 125.2 216,000 SMk− n.r. 70k/180(Jaworskietal.,2000a,b)

Jaworskietal. C=T/4,D=T/2 140 324,000 SMk− n.r. 70k/180(Jaworskietal.,2000a,b)

Bujalskietal. C=T/4,D=T/2 176 216,000 MRFk− n.r. 115k (Bujalskietal.,2002a,c)

Table3–Anoverviewofmixingresultsfor3and4impellergeometries.Inallcases,H=n·Twherenisthenumberof impellers,C=TandD=T/3.

Author Geometry 95 Re Method Sct Mesh Ref.

Jahodaetal. 3Imp.,C=T/2 197 21,000 Conductivity − − (JahodaandMachon,1994)

Jahodaetal. 3Imp.,C=T/2 186 25,210 Conductivity − − (JahodaandMachon,1994)

Jahodaetal. 3Imp.,C=T/2 212 33,610 Conductivity − − (JahodaandMachon,1994)

Jahodaetal. 3Imp.,C=T/2 210 42,015 Conductivity − − (JahodaandMachon,1994)

Jahodaetal. 3Imp.,C=T/2 204 50,415 Conductivity − − (JahodaandMachon,1994)

Mosteketal. 3Imp.,C=T/2 239 46,722 Conductivity − − (Moˇst ˇeketal.,2005)

Mosteketal. 3Imp.,C=T/2 286 46,722 MRFk− 0.7 1537k (Moˇst ˇeketal.,2005)

Mosteketal. 3Imp.,C=T/3 236 46,722 Conductivity − − (Moˇst ˇeketal.,2005)

Mosteketal. 3Imp.,C=T/3 273 46,722 MRFk− 0.7 1537k (Moˇst ˇeketal.,2005)

Jahodaetal.,1994 4Imp.,C=T/2 400 21,000 Conductivity − − (JahodaandMachon,1994)

Jahodaetal.,1994 4Imp.,C=T/2 387 25,210 Conductivity − − (JahodaandMachon,1994)

Jahodaetal.,1994 4Imp.,C=T/2 392 33,610 Conductivity − − (JahodaandMachon,1994)

Jahodaetal.,1994 4Imp.,C=T/2 405 420,15 Conductivity − − (JahodaandMachon,1994)

Jahodaetal.,1994 4Imp.,C=T/2 402 50,415 Conductivity − − (JahodaandMachon,1994)

Montanteetal. 4Imp.,C=T/2 461 37,500 Conductivity − − (Montanteetal.,2005)

Mosteketal. 4Imp.,C=T/2 437 46,722 Conductivity − − (Moˇst ˇeketal.,2005)

Montanteetal. 4Imp.,C=T/2 476 37,500 SMk− 0.1 350k (Montanteetal.,2005)

Mosteketal. 4Imp.,C=T/2 466 46,722 MRFk− 0.7 1984k (Moˇst ˇeketal.,2005)

Mosteketal. 4Imp.,C=T/3 439 46,722 Conductivity − − (Moˇst ˇeketal.,2005)

(7)

impellersystems.Montanteetal.requiredastronglylower

turbulentSchmidtnumber,Sct=0.1(Montanteetal.,2005),to

yieldagreementwithexperimentsina4impellertank;

simi-larobservationsweremadeinotherstudies(Delafosseetal.,

2014;Gunyoletal.,2009).Moˇst ˇeketal.(2005)didnottuneSct,

andreportedanapproximately20%overestimationin 95

com-paredtotheirmeasurementswith3impellers(40%compared

toJahodaandMachon(1994)).Theyfounddecentagreement

in4impellersystemscomparedtotheirownmeasurements

(theydidover-estimate 95comparedtoJahodaandMachon

(1994)).AnimportantobservationintheworkofMosteketal.

for3and4impellers,isthatincreasingmeshdensityledtoan

increasein 95,withmeshindependencenotyetreachedatthe

finestmeshes.Thenumberofgridcellsinallmulti-impeller

studiesreportedabovewaslowerthaninthesingle-impeller

studyofCoroneoetal.(2011),implyingthatfurtherrefinement

mayleadtoaconsiderablystrongerover-estimationof 95in

multi-impellersystems;thedecentresultsofMosteketal.for

4impellersmaybeduetoinsufficientresolution,ratherthan

inherentlygoodmodelperformance.Hydro-dynamically,the

inter-compartmentregionisunder-studied;studiestypically

focusontheimpellerdischargestreamratherthanthe

qui-escentbulkregion(Delafosseetal.,2014).Micaleetal.(1999)

reportedasmallpeakinktintheinter-compartmentregion

withLDAdata, possiblyduetothe generationofturbulent

kinetic energy by the colliding circulation loops. This

tur-bulencemayenhancemixingacrosstheinter-compartment

plane,andhencedeservesmoreattention:itmaybean

under-estimation ofturbulence inthe compartment segreregion

leadstopoormixingpredictionswithRANSmodels,masked

bytheeffectsofinsufficientmeshresolution.

A second phenomenon that may impact

inter-compartmentmixing isthe presence ofMacro-instabilities

(MIs).Thesehavebeenextensivelystudiedinsingle-impeller

geometries,bothexperimentallyandnumerically(Roussinova

et al., 2003; Hartmann et al., 2004; Nikiforaki et al., 2004).

Nikiforakietal.(2003)suggestjetinstabilitiesorinstabilities

by precessing vortices are the dominant cause. Paglianti

et al. (2006, 2008) report boththese effects are present in

Rushton-stirredtanks.As forbothphenomenafrequencyf

scaleslinearwithagitationrateN,MIfrequenciesarereported

hereinf/N.Inthedischargestreamofa2impellersystem,

frequenciesoff/N≈0.02andf/N≈0.055arefoundfor

precess-ingvorticesandjetinstabilities,respectively(Pagliantietal.,

2008). Guillard et al. similarly identified instabilities with

f/N≈0.05−0.08intheregionabovethetopimpeller(Guillard

etal.,2000a,b).Ifthesemacro-oscillationsleadtooscillations

intheinter-compartmentplane, theymaypromotemixing

betweenthecompartments.Byconstruction,frozen-flowfield

MRFsimulationsarenotabletocapturetheseoscillations.

2.3. Hypothesis

Noconsistent under- or over-estimationin 95 is observed

for RANS simulations with 1 impeller, and Coroneo et al.

(2011)showedquantitativeandqualitativeagreementin

mix-ingbehaviorcanbeobtainedwithMRF–SKE,givensufficient

meshresolution.Incontrast,multi-RushtonRANS-CFD

stud-ies showa consistentover-predictionof 95, which incase

ofMRFsimulationworsenswithincreasingmeshresolution.

Thishintsthattheoverestimationof 95insuchsystems

orig-inatesfrom poorassessmentinter-compartmentexchange,

whileintra-compartment can be properly captured. In the

inter-compartment plane, the flow is dominantly parallel

Table4–Meshesusedinthiswork.2IFrepresentsa 360domainand2IPrepresentsthe60domain.Thelast letter(s)representthemeshquality(C=crude,

M=medium,F=fine,SF=super-fine).Ncisthenumber ofgridcells.

Name Nc Domain Methods

2IP-C 94k 60◦ RKE,RSM 2IP-M 506k 60◦ RKE,RSM 2IP-F 812k 60◦ RKE,RSM, SM-RKE 2IF-C 648k 360◦ RKE,RSM, SM-RKE,LES 2IF-M 1997k 360◦ RKE,RSM, SM-RKE, SM-RSM,LES 2IF-F 5884k 360◦ RKE,RSM, SM-RKE

2IF-SF 10,584k 360◦ RKE,RSM,LES

meaning that turbulence and/or MIs control mass trans-portbetweenthecompartments.InlinewithJaworskietal. (2000b), we hence pose the hypothesis that RANS models

inherentlyover-estimate 95 by(a)anunder-predictionoft

duetoincorrectassessmentofturbulenceintheparallelflow

regionand/or(b)failingtocapturetheeffectofMIson

inter-compartmentmixing.

3.

Materials

and

methods

3.1. CFDsetup

We focus on the realizable k− (RKE) and Reynolds stress

model(RSM) withlinear-pressurestrainformulation.These

modelsarewellestablishedinstirredtankmodeling;a

sum-marycanbefoundinGunyolandMudde(2009),forexample.

A2-impellerstirredtankwithheightH=2T,impeller

diame-terD=T/3,off-bottomclearanceC=T/3andimpellerclearance

C=Twasmodeled.Here,tankdiameterT=0.29m,asused

byJahodaetal.(2007).Thetankcontains4baffleswithwidth

T/10.Allinternalsweremodeledassheetbodies(Gunyoland Mudde,2009;Coroneoetal.,2011).Botha360◦ domainand

60◦domainweremodeledtoassesstheinfluenceofa

symme-tryassumption(GunyolandMudde,2009;Gunyoletal.,2009;

Haringaetal.,2016,2017).Usinga60◦sectionintroduces6

baf-fles;theeffectofthisadditionalbafflingwasfoundtobesmall

(GunyolandMudde,2009).AsinJahodaetal.(2007),thebottom

tracerconcentrationprobeisplacedatT/4fromthebottom,

betweenthebaffles,atT/20fromthewall.Thetopprobeis

placedat1.25T,atthesameradialandangularposition.The

agitationrateissettoN=5s−1.InordertousetheMRFmethod,

the domain isseparated inastationaryzone, androtating

zonesaroundtheindividualimpellers.Theserotatingzones

donotoverlapwiththeinter-compartmentplane.Structured

hexahedralmesheswereused;thegridsizesNcarereported

inTable4,withthe2IFseriesbeingthefulldomain,andthe2IP

seriesrepresentinga60◦slice.Meshdetailsarefurther

spec-ifiedinSupplementarymaterialB.Spatialdiscretizationwas

setto2ndorderupwind(GunyolandMudde,2009;Coroneo

etal.,2011)andstandardwallfunctionswereemployed.The

vessel topwas setto no-shear tomimicafreesurface, all

other walls were no-slip. Convergence was declared when

theresiduals<10−5andthemeanvelocityremainedwithin

0.1%over1000iterations.Thevelocityandturbulencefields

(8)

pas-Fig.1–MeasurementgridfortheLDA-experimentsinthe mid-compartmentplane.Axialpositionsgivenare

non-dimensionalizedwiththetankdiameterT,radialwith tankradiusR=D/2.y=0isthecentralpositionbetweenthe impeller(themostlikelylocationoftheinter-compartment plane),atheight5T/6fromthebottom,andr=0the impellershaft.

sivescalarinasphericalvolume(witharadiusof0.0125m),

atheighth=0.551mfromthebottom,atr=0.0725m,inthe

baffleplane.Atimestepsizeoft=0.005swasusedwith

sec-ondorder implicittime discretization.Thetracer and bulk

fluidhad equalproperties, =1000kg/m3 and =0.001Pas,

suchthatthetracerwillnotdisturbtheflowfield.TheFLUENT

defaultsimplegradientdiffusionhypothesis(SGDH)wasused

todetermineturbulentscalardiffusion,modelingthediffusive

fluxasJi=−(lD+t/Sct)∇CtwithD=10−9m2/sthe

molecu-lardiffusioncoefficient,ttheturbulentviscosity,Ctthescalar

concentration.Sct=0.7istheturbulentSchmidtnumber.An

unpublishedsimulationwiththegeneralizedgradient

diffu-sionhypothesis(GGDH)yieldednosignificantchangein 95,

bothforRKEandRSMsimulations.

TheaxialflowrateQaxthroughthemid-impellerplane(y=0

inFig.1)wascomputedbyiso-clippingthissurface,retaining

onlylocationswithuax<0(downwardflow),andreportingthe

totalmass-flowratethroughtheremainingfacesinFLUENT.

Duetomassconservation,anequalvaluewasfoundwhen

iso-clippingtoretainonlyupwardflow.

3.2. LDAsetup

Weuseda2-probeTSIpowersightlasersystem(150mW)with

1=561nm(axial)and2=532nm(radial),operatedin

back-wardscatteringmode.Aglasstank(T=0.26m,H=2T,C=T/3,

C=T,4aluminumbafflesofT/10)wasplacedinawater-filled

rectangularglassboxforrefractiveindexmatching.Two

stan-dardRushtonturbinesweremountedonacenteredshaftof

diameterds=0.02m.Agraphicallayoutofthesetupisgiven

inSupplementarymaterialA.Theexperimentsreported in

thisworkwereconductedaftertheCFDsimulations.Dueto

the equipment available inour lab,the experimental tank

diameterisslightlysmallerthanthe diameterusedinCFD

simulations. All geometric ratios are equal, however. The

experimentswereconductedatN=5.78s−1duetolimitations

ofthemotor,givingRe=4.34×104,comparedto4.67×104(at

N=5.0s−1)byJahodaetal.(2007)andinourCFDwork.Wedo

notexpectthesedifferencestoinfluencetheresults,asboth

simulationsandexperimentsareconductedinthefully

turbu-lentregime,andresultsarepresentedindimensionlessform.

Hollowglassseeding(dp=8–12␮m,StokesnumberSt≈0.03)

wasused.

Verificationmeasurementswereconductedintheimpeller

outflowat6radialpositions(r=[50,60,70,77,90,102]mm),at

theheightoftheimpellerdiscofbothimpellers,inthe

baf-fle plane.Theaveragedataratewas 340–500Hz(axial) and

830–850Hz(radial).Dataintheinter-compartmentregionwas

recordedat7radialand11axialpositions,whichare

speci-fiedinFig.1,withy=0locatedatheight5T/6,measuredfrom

thebottom.Eachmeasurement50,000datapointswere

col-lected,measurementsweredonein5-fold.Theaveragedata

rateswere289Hz(axial)and343Hz(radial).Theseare

insuf-ficienttoresolvethefullturbulencespectrum,butsufficeto

measuretheenergy-carryingmotionswhichareexpectedto

berelevantforinter-compartmentmassexchange.

3.2.1. Dataprocessing

LDA data processing was conductedin MATLAB8.6.0. The

setupcontainedaburstcountertoremovefalseregistrations,

thevelocitybiaswascorrectedusinggate-timeweighing.The

meanvelocityisretrievedbytime-averagingthevelocity

sig-nal;subtractingthemeanyieldsthefluctuatingvelocity.The

contribution of noise and periodic flow components were

assessedviatheslotted auto-correlationmethodwithlocal

variancenormalization(TummersandPasschier,1772c;van

Maanenetal.,1999),withtheauto-correlationˆcomputedas:

ˆ(klag)=

u(ti)u(tj)

u2(ti) u2(tj)

(2)

withkanintegerslotnumber.Ideally,atzerolag-timeˆ=1;

(white)noisecausesalowervalueinpractice,thedifference

isusedtoassessthenoisecontribution.Tosegregate

peri-odicflowcontributions,vanMaanen (1999)proposed fitting

theauto-correlationfunctionwithadampedcosines,Eq.(3):

ˆfit()=b+c0e−˛0+ in=1cne−˛ncos(2·nf ) (3)

Summingtheamplitudes cnthengivesthecontribution

ofperiodicmotionstothefluctuatingkineticenergy.

Alterna-tively,thekineticenergycontributionofperiodicflowcanbe

estimatedfromthespectraldensityfunctionEq.(4):

S(f)= t



12ˆ(klag)w(klag)cos(kflag)



(4)

WithwaTukey–Hanningwindow(TummersandPasschier,

1996, 1772c) with width tm(f)=tmax f0/f, where lower

decreases low-frequencyresolution, but high can induce

modulation We found =5provided a good trade-off.The

relative contribution of periodic components follows from

integratingEq.(4)overtherelevantfrequencies,whichwas

doneusingtrapezoidalintegration.Withthesemethods,the

RMSvelocityurms=

¯

uu canbecorrectedfortheperiodic

components,byEq.(5)whenperiodicfittingisusedandEq.

(6)whenusingspectralintegration:

ut=u·

1−− (cn) (5)

ut=u·

1−−(Ep/Et) (6)

Here,Ep/Etisthefractionofenergycontainedinthe

peri-odicspectralcomponentsofu. Wereportkt astheMI-free

(9)

fluctu-Fig.2–LDAresults:currentdata(topandbottomimpelleroutflow)comparedwithearlierstudiesbyWuandPatterson (1989),MurthyandJoshi(2008).Thepositionisscaledwithtankandimpellertipradius,UradandktwiththetipspeedUtip.

atingenergy basedon u, and kMI as the kinetic energyof

macro-instabilities,kt*kt.Sincethetangentialvelocityisnot

measured,isotropyisassumedtoyieldkt=3/4( ¯u2t,ax+ ¯u2t,rad).

Experimentally, we use the subscripts fit and SI to

distin-guishbetweenkt and kMI computedwithcorrelationfitting

andspectralintegration,respectively.Intheimpelleroutflow

ˆ wasevaluated forlag=250mswith500 slots,which

suf-ficedtocapturenoiseandbladepassages.Thewell-defined

impeller-inducedperiodicitygavepreferencetoEq.(5)for

peri-odicestimation,taking the first 3harmonicsinto account.

In the inter-compartment region, ˆ was evaluated first for

lag=250mswith500slotstoestimatenoise(noimpeller

influ-encewasobserved),andnextatlag=40swith1600slotsto

evaluateMI-inducedperiodicity.Asahigh-resolution,longlag

timecomputationwasunfeasible,weestimatedthetotal

spec-traldensityfunctionbymatchingthespectrumofbothlag

timerangesintheoverlappingfrequencyrangetoconstruct

asinglespectrum.Intheinter-compartmentregion,ˆwas

fit-tedwith4cosines,at2frequencies(f1.1andf2.1)andtheirfirst

harmonics(f1.2andf2.2).Spectraldensityintegrationrequiresa

cut-offbetweenturbulentandMIcomponents.Weconsidered

therangef/N<0.1(10impellerrevolutions)asMI-components,

basedonvisualassessmentofthespectra.Ofcourse,the

cut-offpointcanbedebated,butasweusethesamedefinition

betweenexperimentandCFDchangingthecut-offshouldnot

affectthecomparison.

4.

Results

and

discussion

4.1. Experimental

4.1.1. LDAverification

RanadeandJoshi(1990)comparedarangeimpelleroutflow

measurements,summarizedinthegraybandofFig.2. Our

datacoincideswiththeupperbound,weobserveasomewhat

slowerdeclineinUradwithradialposition.Thedifferencesmay

arisebecauseofvariationsinsignalprocessing,LDAsetup,

andsensitivityofUrad totheaxial position.Therapiddrop

atr=102mmisattributedtothevicinityofthebaffle.Agood

agreementinturbulentkineticenergyktisobservedcompared

toWuandPatterson(1989),MurthyandJoshi(2008)reported

ahigherktnearthetip,likelysincetheymeasuredallthree

velocitycomponentsandavoidedtheisotropyassumption.

4.1.2. inter-compartmentdynamics

Wenow focus on the dynamicsin the inter-compartment

region. LDA results forthis region are presented inFig. 3,

incombinationwithCFDforMRF–RKE.TheCFDresultswill

bediscussed later,inSection4.4.1. Itcanbeobservedthat

Uradexhibitsmirror-symmetryintheplaney=0(Fig.3A),with

somedeviationsnearthebaffle,andadecreasingmagnitude

ofUradnearingthestirrershaft.Thetypicalflowpatternsof

discturbinesmeantheflowmovestowardsy=0inthewall

region(convergentpattern),thisswitchestoflowawayfrom

y=0inthecenter(divergentpattern)betweenr/R=0.694and

r/R=0.566(Fig.3B).

Thetotalfluctuatingkineticenergykt*reachesamaximum

aty=0atevery radialposition,exceptclosest tothebaffle

(Fig.3C).Thispeakinkt* couldoriginatebothfromMIsand

from turbulent kineticenergygeneratedbythe collisionof

theflowloopsofthetop-andbottomimpeller.Todiscriminate

betweenthesepossibleorigins,thepresenceoflow-frequency

periodiccomponentsintheLDAsignalwasassessedby

gen-eratingtheauto-correlationfunctionˆofthesignalandfitting

withEq.(3).ThefitsarevisualizedinFig.4,withthefit

param-etersgiveninTable5.

As noted inSection 3.2.1, two frequencies(f1.1 and f2.1)

and their first harmonics (f1.2 and f2.2) are fitted. This

givesf1.1/N=0.020±0.001andf2.1/N=0.061±0.003axially,and

f1.1/N=0.015±0.007 and f2.1/N=0.052±0.015 radially. These

valuesagreewell withthe precessingvortex and jet

insta-bility frequenciesas reportedbyPagliantietal. (2008).The

totalMIkineticenergy,kMI,fit,reachesamaximumaty=0atall

radialpositions.Anoverviewofallfittingresultsisprovided

inTable5.

The radial oscillations are comparatively weak:

Cn,rad<0.075 at all locations except at r/R=0.694. The

resultatr/R=0.694isafittingerror,nostrongperiodic

com-ponentsareobservableinFig.4,andthedampingcoefficients

an (Eq.(3))are attheconstraintvaluean=0.33,indicatinga

poor fit.Axial oscillationshavea highermagnitude; Cn,ax

variesfrom0.1attheshaftto0.22atr/R=0.694.Closetothe

shaftf1.1 istwicethestrength ofitsharmonicf1.2/N=0.040.

For r/R>0.358, f1.2/N is by far the stronger contribution.

Overall, f2.1/N=0.061hasthe highestmagnitude,exceeding

f1.2/Nbyafactor1.5−2,exceptatr/R=0.2. Thenoise

com-ponent  is around 1–6% at all points, except r/R=0.765.

This is consistent at all axial locations; the correlation

function shows a much more rapiddecay at this position

(not shown). Wehave notbeen able to pinpoint the exact

reasonforthishighernoiselevel;it couldbethatthe

pres-ence ofthe baffle leadsto relatively dominantsmall-scale

turbulence, meaning the data-rate was insufficient.

Fur-thermore, imperfections in refractive-index matching are

(10)

Fig.3–Axialprofiles(baffleplane)ofA:Urad,B:Uax,C:kt,comparingLDAresults(symbols)withCFDdata(lines)for

MRF–RKE,360◦domain.ByconstructionkMI=0forMRFsimulations,hencekt=kt*.Infig.C,theblackrectanglesrepresent

thetotalkineticenergykt*,thebluediamondstheturbulentkineticenergykt,andthereddiamondstheMIenergykMI.

Lines:CFDresultsatdifferentmeshdensities(dotted:2IFC,dash-dot:2IFM,dashed:2IFF,solid:2IFSF).Row(D) showsthetangentialaverageoftacquiredfromtheCFDsimulations.(Forinterpretationofthereferencestocolorinthis

legend,thereaderisreferredtothewebversionofthearticle.)

baffle may lead to higher background noise by reflection

effects.

The frequencies fitted by Eq. (3) contribute 8–20% to

thefluctuating kineticenergyaty=0.MIs havealess well

definedfrequencythanstirrerbladepassages,whichsuggests

auto-correlation fitting under-estimates their contribution

byexcessivedampening and/ormissingout additional

fre-quencies. This makes it likely kMI,fit is underestimated by

Eq. (5). Using the spectral density function and

determin-ing kMI,SI usingEq. (6), the kineticenergycontained inthe

rangef/N<0.1liesbetween28and49% aty=0,asreported

inTable6.However,this methoddoes notdiscriminateMI

frequenciesfromotherlarge-scalecontributions,andis

con-sidered over-estimative. The non-discriminatory nature of

the spectral density method does make comparison with

LES spectra more straightforward (part II), as LES

simula-tions showed less well-defined frequencies. Hence, the MI

energies reported in the CFD comparison come from the

spectral density method, withthe notion that the true MI

energy islikely tolie in between the estimates ofEqs. (5)

and (6). Fig. 5shows the spectral density function of ˆuax.

Inagreementwiththeauto-correlationfitsdiscussed

previ-ously,aclearbi-modalpeakrepresentingf1.2/Nandf2.1/Nis

visible,withincreasingprominenceattheouterradial

posi-tions.

Since we are interested in inter-compartment mixing,

uax,MIisofparticularinterest;inthisdirectionthejet

insta-bilityfrequencycontributesmost.WhetherMIswillstrongly

affectmixingdependsonwhethertheobservedoscillations

representacross-flowbetweenthecompartments,orthe

seg-regationbetweenthecompartmentsmovingupanddownas

(11)

Fig.4–Fittedauto-correlationfunctionsofuax(top)andurad (bottom)at3radiallocations,intheplaney=0.Blue:LDAdata. Red:fittedfunctionwith4dampedcosines,at2basefrequenciesandtheirfirstharmonic.(Forinterpretationofthe referencestocolorinthislegend,thereaderisreferredtothewebversionofthearticle.)

Table5–RMS-velocity,noisefactor,MI-correctionfactor,oscillationfrequenciesandkineticenergyintheplaney=0at differentradialpositions,usingtheperiodic-fittingapproach(Eq.(5)).Thecoefficientcrepresentthecontributiontothe Reynoldsstress ¯uu,withci.jthejthharmonicoffrequencycomponenti.

r/R 0.200 0.358 0.435 0.512 0.566 0.694 0.765 urad(m/s) 0.149 0.135 0.127 0.115 0.107 0.091 0.083 rad 0.015 0.017 0.022 0.032 0.037 0.064 0.317 c1.1,rad 0 0.006 0.016 0.017 0.006 0.032 0.010 c1.2,rad 0.037 0.048 0.040 0.007 0.003 0.002 0.001 c2.1,rad 0 0.015 0.075 0.009 0.012 0.045 0.006 c2.2,rad 0.032 0.005 0.028 0.016 0.011 0.039 0.012 f1.1,rad/N 0.020 0.001 0.015 0.015 0.022 0.017 0.017 f2.1,rad/N 0.049 0.058 0.056 0.053 0.050 0.043 0.062 uax(m/s) 0.082 0.098 0.112 0.134 0.154 0.194 0.151 ax 0.063 0.054 0.045 0.041 0.033 0.027 0.192 c1.1,ax 0.049 0.022 0.029 0.031 0 0 0 c1.2,ax 0.022 0.005 0.052 0.095 0.064 0.070 0.055 c2.1,ax 0.027 0.044 0.043 0.102 0.113 0.135 0.073 c2.2,ax 0.003 0.007 0.009 0.014 0 0.011 0 f1.1,ax/N 0.020 0.017 0.021 0.020 0.021 0.020 0.020 f2.1,ax/N 0.053 0.062 0.065 0.062 0.062 0.061 0.061 103×k t,fit/U2tip 7.73 7.63 7.49 7.54 8.85 10.80 6.17 103×k MI,fit/U2tip 0.62 0.41 0.78 1.36 1.23 2.40 0.70

Table6–MI-correctionfactorandkineticenergyintheplaney=0atdifferentradialpositions,usingthespectral integrationapproach(Eq.(6)).TheRMSvelocityandnoisefactorareasinTable5.

r/R 0.200 0.2358 0.3435 0.512 0.566 0.694 0.765 (Ep/Et)rad(Eq.(6)) 0.409 0.380 0.337 0.267 0.222 0.140 0.029 (Ep/Et)ax(Eq.(6)) 0.164 0.140 0.200 0.288 0.391 0.546 0.318 103·kt,2/U2tip 5.38 5.57 5.91 6.32 6.60 6.77 4.67 103·k MI,2/Utip2 3.04 2.47 2.35 2.58 3.52 6.45 2.22

papersuggestcompartmentcross-flowpredominantlyoccurs

closetotheshaft.However,wefirstfocusontheperformance

ofMRFsimulationswithsteady-statehydrodynamics(frozen

flowfield),whichareinherentlyunabletocaptureMIsbytheir

steadystatenature.

4.2. CFD:multiplereferenceframes

4.2.1. CFDvalidation:theimpelleroutflow

Fig.6showsUrad,ktandinthetopimpelleroutflow(360◦,

(12)

flow-Fig.5–Spectraldensityfunctionsofˆuaxatvariousradialpositionsandy=0.Dashedline:S(f/N)(f/N)−5/3.Dash-dotline:

S(f/N)(f/N)−1.Dottedline:cut-offfrequencybetweenMIandturbulence.

Fig.6–TangentiallyaveragedprofilesofUrad,ktandinthetopimpelleroutflowcomparedwithphase-averagedLDAdata,

forMRFsimulations.Toprow:realizablek−,360◦domain.Bottomrow:RSM360◦domain.LinesrepresentCFDdata;dotted line:2IFC,dash-dotline:2IFM,dashedline:2IFF,solidline:2IFSF.Symbolsrepresentexperimentaldata.

Abbreviations:W.P.WuandPatterson(1989),M.J.MurthyandJoshi(2008),D.Y.DucciandYianneskis(2005).Theblue crossesintheUradplotrepresenttheupper-andlowerboundofthestudiesreviewedbyRanadeandJoshi(1990).(For

interpretationofthereferencestocolorinthislegend,thereaderisreferredtothewebversionofthearticle.)

fieldinMRF,kMI=0byconstruction,andkt=kt*.Theprofiles

weretangentiallyaveragedinorderaccountforallimpeller

angles. In our view, this is a fairer comparison with LDA

datathantheinstantaneousoutflowprofiledirectlyfromthe

impellertip,althoughit reducesagreementnearthe baffle

wheretheflowisnotrotation-dominated.Noexperimental

profilesforhavebeenreportedforthecurrentstudy,asthe

equipment didnothavesufficientresolutionforsuch

mea-surements.

BothturbulencemodelspredictUradandktwellwithinthe

LDAdatarange;ktdoesdeviateclosetotheimpeller,wherethe

isotropicturbulenceassumptionbreaksdown.Interestingly,

thenon-isotropicRSMpredictsaktdecreaseatthetip,which

isinbetteragreementwithourdataandWuandPatterson

(13)

Table7–Comparisonofdimensionlessmixingtimes95

fortheMRFmethod:modelsandmeshdependency. Methods:P=bottomprobe,C=coefficientofmixing.The workofHartmannisfollowedtosettheCoM-boundary.

Mesh RKE,bot/top RKE,CoM RSM,bot/top RSM,CoM

2IF-C 133.5/110.5 148.5 138.1/107.1 152.0 2IF-M 146.1/120.0 162.0 157.8/127.9 173.0 2IF-F 145.2/120.3 160.5 145.2/113.1 159.5 2IF-SF 180.9/151.4 200.0 n.m. 172.5 2IP-C 96.2/n.m. 106.5 113.0/n.m 129.0 2IP-M 117.1/95.0 129.0 166.4/n.m 161.5 2IP-F 135.9/113.1 152.0 176.5/n.m 161.0 n.m.=notmeasured.

andJoshi,2008),whileonlythelattermeasuredall

(fluctuat-ing)velocitycomponents.RSMyieldsasuperiorassessment

for; atthehighestmeshdensitythepeakdissipationrate

recorded byBaldiand Yianneskis(2004),Baldi et al.(2004),

DucciandYianneskis(2005)isreasonablycaptured.TheRKE

modelagreeswiththedimensional assessmentofWuand

Patterson(WuandPatterson,1989),likelyarisingfromthe

sim-ilarunderlyingassumptions.Exceptforatthebladetipwith

2IFC,nomeshdependencyisobservedintheRKEoutflow

profiles.TheRSMmodelismoremeshsensitive,but

indepen-denceisreachedwith2IFF.Furtherparametersrelatedto

meshdependencearediscussedinSupplementarymaterial

B.Basedonimpelleroutflow data, bothturbulencemodels

performsatisfactory. Due tosimilarity thebottomimpeller

profilesandprofilesforthe60◦meshareomitted.

4.3. Mixingtimes

Wequantify 95bytwomethods;aprobeatthesamelocation

asusedbyJahodaetal.(2007)fordirectcomparison,andthe CoMasusedbyHartmannetal.(2006)toquantifymixingin

theentirevolume.Lackingexperimentaldataforthelatter,it

isreportedformutualcomparisonbetweensimulationsonly.

Theresultsare reportedin Table7. Experimentally,Jahoda

etal.reportabottomprobemixingtime 95,bot=92.Fortheir

top-probenomixingtimeisexplicitlyreported, 95,top≈75is

estimatedfromtheirproberesponseprofiles.

Forthe360◦-meshes,theprobe-based 95forbothRKEand

RSMexceedstheexperimentalforbothprobessubstantially.

Theover-predictionincreaseswithincreasingmeshdensity,

with a factor 2 over-estimation at the finest mesh, while

stillbeingpossiblymesh-dependent.Weconsideritunlikely

suchadegreeofover-estimationisaresultofthe(invasive)

probe influencing the flow experimentally, which is

sup-portedbysimilarresultsbetweeninvasiveandnon-invasive

point measurementsin singleimpeller systems (Distelhoff

etal., 1997;Javedetal.,2006).Probereadingsmay be

loca-tiondependent,implyingtheconcludedover-estimationof 95

maybelocation-specific. Toexcludethis,additionalprobes

havebeenmonitoredinthe bottomcompartment, yielding

very similar 95, both forMRF (Supplementary material C)

andSM–LESsimulations(partIIofthisstudy).Thisislogical

consequenceofinter-compartmentmixingbeingtherate

lim-itingstep,leadingtoarelativelyhomogeneousconcentration

withinthebottomcompartment.Thesimilar 95between

sev-eralbottom-compartmentprobes,combinedwiththesimilar

degree of over-estimation of 95 by the top- and

bottom-probecomparedtoexperimentaldata,givesconfidencethe

Table8–Axialflow-rateQax(downward)throughthe mid-impellerplaney=0inL/s.Forthe60mesh,the valueismultipliedby6.

Mesh RKE RSM RKE RSM

360◦ 360◦ 60◦ 60◦

X-C 1.36 1.58 3.04 2.45

X-M 1.14 1.28 2.72 1.34

X-F 1.48 1.31 1.10 2.25

X-SF 0.74 1.46 – –

concludedover-estimationin 95 isnotanartifactofprobe

location.Hence,thelogicalconclusionisthattheoffsetin 95

resultsfrominherentlimitationsinthemodelingapproach. WedonotesomeoutliersintheCFDresults;bothforRKE andRSM,95deviatesfromthetrendfor2IFF.Thisappears

to bea mesheffect, which is furtherdiscussed in Section

4.4.1.The60◦meshyieldsasystematicallylower 95withRKE.

Thiswasnotaconsequenceofthe6-foldsymmetry

introduc-ingadditionalinjectionpoints,butratherofincreasedaxial

exchangebetweenthecompartments(seeSection4.4.1).With

theRSMmodel,the60◦ meshyieldssimilarCoMfiguresas

inthe 360◦ mesh,butwhereas theCoM becomesconstant,

theprobevaluekeepsincreasing.Thisdoesindicatedifferent

mixingbehaviorwithinthecompartmentsfortheRSMmodel.

4.4. Inter-compartmentflow

4.4.1. Multiplereferenceframes

360◦ domain.Theprofiles forUrad and Uax compare

reason-ablywellwithexperimentaldatausingRKE(Fig.3AandB),

althoughbothareover-predictedclosetothebaffle,probably

duetotheuseofa2Dbafflegeometry.Thechangefrom

con-vergingtodivergingaxialflowiswellcaptured.Somemesh

differencescanbedetected,butasidefrom2IFFnomesh

performsparticularlybetterorworse.

For 2IFF, the peak in Urad and inflection point of Uax

lieslightlybelowy=0.Thisindicatestheinter-compartment

planehasshiftedcomparedtoy=0.InTable8wereportthe

integraldownwardflowrateQaxaty=0.Thehigherthisvalue,

themoreconvectiveexchangebetweenthestirrer

compart-mentsbythemeanflow(bymassconservation,theupward

flowratewasalwaysequal).Qaxtypicallydecreaseswithmesh

density,but2IFFRKEisaclearoutlier,whichagreeswith

the shiftinUrad andUaxobservedinFig. 3.Taken together,

thisexplainswhy 95iscomparativelylowin2IFF,despite

kt andtangentially-averagedturbulent viscosity¯t (Fig. 3D)

beingsimilartotheothercases:thehigherQaxpromotes

mix-ing betweenthe stirrercompartments.Neartheshaft,kt is

reasonablycaptured,butthisagreementalreadybreaksdown

forr/R=0.358.Thepeakinktaty=0,mostprominentinthe

convergingflowregion,isunderestimatedbyaboutafactor

two usingRKE; ontopofthat theenergycontainedinMIs

isnotcapturedbyvirtueofthesteadystatenatureofMRF

simulations.Thetangentialaveragesoft,Fig.3D,showlittle

differencebetweenthemeshes;thevaluefor2IFSFnarrowly

exceedsthe others.Thisindicates¯t isnotresponsiblefor

theincreasing 95 uponincreasingmeshdensity.Itis,

how-ever,likelythat¯t isstructurallyunder-predictedduetothe

poorassessmentofkt,leadingtoastructuralover-prediction

of 95asQaxconvergestoalow,mesh-independentvalue.It

isthistrendofdecreasingQaxwithanincreasinggrid

reso-lutionthat causesthe sensitivity 95 tomeshdensity.Note

(14)

Fig.7–Axialprofiles(baffleplane)ofA:Urad,B:Uax,C:kt,comparingLDAresults(symbols)withCFDdata(lines)for

MRF–RSM,360◦domain.ByconstructionkMI=0forMRFsimulations,hencekt=kt*.Infig.C,theblackrectanglesrepresent

thetotalkineticenergykt*,thebluediamondstheturbulentkineticenergykt,andthereddiamondstheMIenergykMI.

Lines:CFDresultsatdifferentmeshdensities(dotted:2IFC,dash-dot:2IFM,dashed:2IFF,solid:2IFSF).Row(D) showsthetangentialaverageoftacquiredfromtheCFDsimulations.(Forinterpretationofthereferencestocolorinthis

legend,thereaderisreferredtothewebversionofthearticle.)

increasedexchangebetweenthecompartments,asthe

inter-compartmentplane and y=0 may notexactly overlap, but

theredoesappeartobeacorrelationbetweenthetwo.TheUrad

andUaxprofilesforRSM(Fig.7)areinlesseragreementwith

experimentaldata.For2IFMthevelocityprofilesfavorably

matchtheLDAmeasurements,butforboth2IFFand2IFSF

theUradpeakshowsstrangeasymmetricbehavior.Asforthe

RKEcase,theskewedinter-compartmentplaneincreasesQax

inthey=0plane(Table8),explainingwhy 95isnearlysimilar

for2IFM,2IFFand2IFSFwithMRF–RSM.

60◦ domain,MRFIncontrasttothefulldomain,Urad and

Uaxarepoorlypredictedinthe60◦domain(Fig.8,rowsA,B).

ThemagnitudeofUradisstronglyunder-estimatedeverywhere

exceptclosetothebaffle,whilereversalfromconvergingto

divergingaxialflowisnotatallcapturedwithinthemeasured

region.ThepeakUradispredictedataloweraxialpositionthan

measuredexperimentally.TheMRF–RKEmodeldoesyielda

comparatively good estimation ofkt for the 2IPSF mesh,

resultinginahighertangentiallyaveragedt(Fig.8,rowE).

Furthermore Qax is significantly higher in the 60◦ domain

(Table8).Combined,thehightandaxialflowrateexplainthe

low 95observedforRKEinthe60◦domain.

ComparedtoRKE,RSMshows muchmoremesh

depen-dency,withunexpectedUradpeaks.ktisreasonablyassessed

forr/R<0.5.Overall,tandQaxaresimilarbetweenthe360◦

and60◦domain,explainingthesimilarityin 95betweenthem.

Aswasthecasewiththefull-domain,thereseemstobeashift

inplanepositioncomparedtotheexperimentaldataforthe

(15)

Fig.8–Axialprofiles(baffleplane)ofA:Urad,B:Uax,C:kt,comparingLDAresults(symbols)withCFDdata(lines)for

MRF–RKE,60◦domain.ByconstructionkMI=0forMRFsimulations,hencekt=kt*.Infig.C,theblackrectanglesrepresentthe

totalkineticenergykt*,thebluediamondstheturbulentkineticenergykt,andthereddiamondstheMIenergykMI.Lines:

CFDresultsatdifferentmeshdensities(dotted:2IFC,dash-dot:2IFM,dashed:2IFF,solid:2IFSF).Row(D)showsthe tangentialaverageoftacquiredfromtheCFDsimulations.(Forinterpretationofthereferencestocolorinthislegend,the

readerisreferredtothewebversionofthearticle.)

5.

Concluding

remarks

Multi-Rushtonstirredtanksarepronetocompartment

forma-tionaroundtheimpellers, withinter-compartmenttransfer

becoming the rate limiting factor for mixing. The mixing

time 95 appears to depend strongly on 2 factors:

turbu-lent exchange between the compartments, and the effect

of macro-instabilities (MIs) on inter-compartment

dynam-ics. Using LDA, we find evidence ofMIs atf/N=0.020 and

f/N=0.062,whichareinagreementwithearlierreported

val-uesfortheprecessingvortexandjetinstability(Pagliantietal.,

2006,2008).Dependingonthemethodofestimation,theMIs

containatbetween15%(fromauto-correlation)and30%(from

spectralintegration)ofthetotalfluctuatingkineticenergykt*,

althoughclosetothe bafflethismay beashighas20–50%,

mostsignificantlyintheaxialdirection.Thismakesitlikely

thatMIshaveaconsiderableeffectonmasstransferbetween

thecompartments.

Multiple reference frame(MRF) CFD modeling has been

employedinpriorliteraturetomulti-impellerstirredtanks,

exploitingitssteady-statenaturetoreducecomputationtime.

Aliteratureanalysisrevealedthat(1) 95 typicallyincreased

withmeshdensity,(2)thesimulationsreportedinliterature

wereunlikelymesh-independent,and(3)mesh-independent

results are expected to over-predict 95 strongly. Our own

MRFsimulations,focusedontheinter-compartmentregion,

confirmstheincreasingover-predictionsof 95with

increas-ingmeshdensity.Asignificantunder-estimationofkt*inthe

inter-compartmentregionisobserved.Inpartthisisdueto

the complete absenceofmacro-instabilities insteady-state

(16)

energy kt is lower than the LDA measurements; this is

attributed to Reynolds-averaged MRF simulations

predict-ingalargelyshear-freeinter-compartmentplane,leadingto

anunder-predictioninthegenerationofkt bythecolliding

compartmentflow-loops. Theturbulent viscosity t in the

inter-compartmentregion,whichviatheturbulentSchmidt

number Sct controls turbulent mixing, is nearly

indepen-dent of mesh density. While the inherent over-prediction

of 95 may be attributedto the under-predicted kt*, via an

under-estimatedt),theincreasing 95withmeshdensityhas

anotherorigin.Itwasfoundthat, despitetheradialflowin

theinter-compartmentplane,theaxialflowrateQaxthrough

thehorizontalplaney=0isnotexactly0,inducingsome

con-vectiveaxialmixing.ThisQaxreducedwithincreasingmesh

resolution,corresponding totheincreasing 95.There were

someoutlierswhereacomparativelylow 95andhighQaxwas

observed; further scrutiny revealed the inter-compartment

planewasslightlytiltedinter-compartmentplanewas

pre-dicted here. Thisimplies the presenceofMIs allowssome

ambiguityintheinter-compartmentplanepositionpredicted

insteady-stateMRF,whichcanmakethesimulationshighly

sensitiveto themesh layout andinitial conditions.In this

study we exclusively made use of structured hexahedral

meshes.Withtetrahedralmeshes,ahigherdegreeof

numeri-caldiffusionmayalsolower 95.InthelimitofNc→∞,strong

over-predictionsof 95 are still expected, regardless ofthe

meshtype.Usinga60◦sectionofthedomainyieldedgoodflow

agreementintheimpellerregion,butverypooragreementin

theinter-compartmentregion.Typically,Qaxwashigher

yield-inglower 95,butnotasaresultofbetterflowprediction.More

likely,forcingtheinherentlyunstablesegregationplaneinto

6-fold periodicity introduces artificial axial exchange. This

means the assumptionofperiodicityshould beavoided in

multi-impellermixingstudies,notbecauseitartificially

multi-pliesfeedpoints,butbecauseitpoorlycapturesflowbetween

thecompartments.Toconclude, theMRFmodelisnotable

toassesstherelevantdynamicsformixinginmulti-Rushton

tanks,andquitelikelysoinothercaseswhere

compartmen-talizedflowisobserved.TuningofSctissometimesproposed

inliteraturetoimproveagreementin 95.Thisad-hoc

solu-tionislikelytonegativelyimpactintra-compartmentmixing,

which does appear to be assessed properly, judging from

single-impellermixingsimulations(Coroneoetal.,2011).

Fur-thermore,theexact Sct correctiondependsonthe strength

ofMIs, the degree ofunderestimation of t, and the

pre-dictedpositionoftheinter-compartmentplane,whichmay

all vary on a case-by-case basis, thereby losing predictive

value.Inapplicationswheretransientmethodsmixing

simu-lationsarecomputationallyunfeasible,andcrudeagreement

inmixingbehaviorsuffices,Scttuningmaybetolerable,but

thelimitationsoftheMRFmodelmustbekeptinmind.For

detailedmixingstudies,suchasthequantitativeassessment

ofimpellerconfigurationsinmulti-impellermixingtanks,the

observedlimitationsmaketheMRFmodelwithafrozen

flow-fieldinherentlyunsuitable.Inthesecondpartofthiswork,we

willdiscusshowslidingmeshRANSandLESperforminthis

respect.

Acknowledgements

Wewish to thank our colleagues at ECUST, Shanghai and

DSMSinochem pharmaceuticals forourongoing

collabora-tion.WearegratefultoProf.H.vandenAkker,Dr.S.Kenjeres,

Dr. L. Portela and Prof.H.J. Noorman for their advice and

insights.CHacknowledgesallstudentsfollowingMSccourse

CH3421, who contributed tothe simulation resultsas part

oftheircoursereports.EvertWagner,JosThieme,Christiaan

Schinkel,StefantenHagen,YoupvanGoozenandRuudvan

Tolaregratefullyacknowledgedfortheirtechnicalassistance.

Thisworkhasbeenconductedwithinamulti-partyresearch

project,betweenDSM-SinochemPharmaceuticals,TUDelft,

East ChinaUniversity ofScienceandTechnology and

Guo-jia,subsidizedbyNWOandMoST(NWO-MoSTJointprogram

2013DFG32630).Allsponsorsaregratefullyacknowledged.

Appendix

A.

Supplementary

data

Supplementary data associated with this

arti-cle can be found, in the online version, at

https://doi.org/10.1016/j.cherd.2018.06.005.

References

Ammar,M.,Chtourou,W.,Driss,Z.,Abid,M.,2011.Numerical

investigationofturbulentflowgeneratedinbaffledstirred

vesselsequippedwiththreedifferentturbinesinoneand

two-stagesystem.Energy36(8),5081–5093,

http://dx.doi.org/10.1016/j.energy.2011.06.002.

Baldi,S.,Yianneskis,M.,2004.Onthequantificationofenergy

dissipationintheimpellerstreamofastirredvesselfrom

fluctuatingvelocitygradientmeasurements.Chem.Eng.Sci.

59(13),2659–2671,http://dx.doi.org/10.1016/j.ces.2004.03.021.

Baldi,S.,Ducci,A.,Yianneskis,M.,2004.Determinationof

dissipationrateinstirredvesselsthroughdirectmeasurement

offluctuatingvelocitygradients.Chem.Eng.Technol.27(3),

275–281,http://dx.doi.org/10.1002/ceat.200401979.

Brucato,A.,Ciofalo,M.,Grisafi,F.,Micale,G.,1998.Numerical

predictionofflowfieldsinbaffledstirredvessels:a

comparisonofalternativemodellingapproaches.Chem.Eng.

Sci.53(21),3653–3684,

http://dx.doi.org/10.1016/S0009-2509(98)00149-3.

Bujalski,W.,Jaworski,Z.,Nienow,A.,2002a.CFDstudyof

homogenizationwithdualRushtonturbines-comparison

withexperimentalresults.Chem.Eng.Res.Des.80(1),97–104,

http://dx.doi.org/10.1205/026387602753393402.

Bujalski,J.,Jaworski,Z.,Bujalski,W.,Nienow,A.,2002b.The

influenceoftheadditionpositionofatraceronCFD

simulatedmixingtimesinavesselagitatedbyaRushton

turbine.Chem.Eng.Res.Des.80(8),824–831,

http://dx.doi.org/10.1205/026387602321143354.

Bujalski,W.,Jaworski,Z.,Nienow,A.,2002c.CFDstudyof

homogenizationwithdualRushtonturbines–comparison

withexperimentalresults:PartII.Themultiplereference

frame.Chem.Eng.Res.Des.80(1),97–104,

http://dx.doi.org/10.1205/026387602753393402.

Coroneo,M.,Montante,G.,Paglianti,A.,Magelli,F.,2011.CFD

predictionoffluidflowandmixinginstirredtanks:numerical

issuesabouttheRANSsimulations.Comput.Chem.Eng.35

(10),1959–1968,

http://dx.doi.org/10.1016/j.compchemeng.2010.12.007.

Delafosse,A.,Collignon,M.-L.,Calvo,S.,Delvigne,F.,Crine,M.,

Thonart,P.,Toye,D.,2014.CFD-basedcompartmentmodelfor

descriptionofmixinginbioreactors.Chem.Eng.Sci.106, 76–85.

Derksen,J.,Doelman,M.,VandenAkker,H.,1999.

Three-dimensionalLDAmeasurementsintheimpellerregion

ofaturbulentlystirredtank.Exp.Fluids27(6),522–532,

http://dx.doi.org/10.1007/s003480050376.

Distelhoff,M.F.W.,Marquis,A.J.,Nouri,J.M.,Whitelaw,J.H.,1997.

Scalarmixingmeasurementsinbatchoperatedstirredtanks.

Can.J.Chem.Eng.75(4),641–652,

Cytaty

Powiązane dokumenty

przyjechał do Paryża, poprosił Cieszkow- skiego, u którego i Klaczko bywał, aby zorganizował spotkanie, na którym postarałby się wytłumaczyć Klaczce, iż niesłusznie się nań

I concept definition 7→ Entity 7→ Class I simple feature 7→ Attribute 7→ Field I interconnection 7→ Association I a kind of association 7→ Generalization 7→ Inheritance

The information sharing policies in the previous study were rather simple by only considering time. A more in- telligent way to limit the amount of shared information is to only

Artykuł zawiera szczegółowe i „samowystarczalne” omówienie dowodu klasycznego twierdzenia Brouwera o zachowaniu obszaru, podanego przez W.. We give a detailed and

Borys Łapicki gives his views on the relationship between religion and ethics, and Roman law also in his other publications, such as Jednost- ka i państwo w Rzymie

ɶʃɧʕɯʃɸɯȱʆʇɸʃʔɸʆɧȱ ȱ ȱȱȱ

Ponadto Autor zdaje się momentami pomijać istotne w prawie karnym zasady i obowiązujące dyrektywy (m.in. związane z za- sadą humanitaryzmu, koniecznością resocjalizacji

Po wi nien tak pro wa dzić se sję, aby uczeń mógł wy po wia dać się przez przy naj mniej 70% cza su trwa nia roz mo wy... http://www.nf.pl/News/12998/Ser ce -co achin gu -czy