• Nie Znaleziono Wyników

224Ra and the 224Ra/228Ra activity ratio in selected mineral waters from the Polish Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "224Ra and the 224Ra/228Ra activity ratio in selected mineral waters from the Polish Carpathians"

Copied!
8
0
0

Pełen tekst

(1)

DOI: http://dx.doi.org/10.7306/gq.1365

224

Ra and the

224

Ra/

228

Ra ac tiv ity ra tio in se lected min eral wa ters from the Pol ish Carpathians

Chau NGUYEN DINH1, Lucyna RAJCHEL1, *, Hao DUONG VAN2 and Jakub NOWAK3

1 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, al. A. Mickiewicza 30, 30-059 Kraków, Po land

2 Ha noi Uni ver sity of Min ing and Ge ol ogy, Fac ulty of Oil and Gas, Viet nam

3 AGH Uni ver sity of Sci ence and Tech nol ogy, Fac ulty of Phys ics and Ap plied Com puter Sci ence, al. A. Mickiewicza 30, 30-059 Kraków, Po land

Nguyen Dinh, Ch., Rajchel, L., Duong Van, H., Nowak, J., 2017. 224Ra and the 224Ra/228Ra ac tiv ity ra tio in se lected min eral wa ters from the Pol ish Carpathians. Geo log i cal Quar terly, 61 (4): 771–778, doi: 10.7306/gq.1365

Min eral and ther a peu tic wa ters widely oc cur ring in the Pol ish Carpathians con tain a vast amount of biogenic el e ments. How - ever, ra dio ac tive el e ments like ra dium iso topes are also found in these wa ters. This pa per pres ents the first re sults of the ac - tiv ity con cen tra tion mea sure ments of 224Ra in se lected min eral wa ters of the Pol ish Carpathians. Ad di tion ally, the con tent of

226Ra and 228Ra, and the ac tiv ity ra tios of 224Ra/228Ra, 224Ra/226Ra and 226Ra/228Ra in the wa ters were de ter mined. The work was based on a method for the si mul ta neous de ter mi na tion of 224Ra, 226Ra and 228Ra in wa ter sam ples us ing the a/b liq uid scin til la tion spec trom e ter. The re sults show that the ac tiv ity con cen tra tions of 224Ra, 226Ra and 228Ra in the min eral wa ters are com pa ra ble and vary from ca. 220 mBq/L to above 1500 mBq/L. The ac tiv ity ra tios of 224Ra/228Ra, 224Ra/226Ra and

226Ra/228Ra are vari able within the ranges of 0.68 to 1.48, 0.65 to 1.48, and 0.78 to 2.05, re spec tively. The com mit ted ef fec - tive dose re sult ing from the in take of 224Ra through the wa ter con sump tion is far lower than that from 226Ra and 228Ra.

Key words: 224Ra, ra dium, min eral wa ters, ef fec tive dose, LSC method.

INTRODUCTION

The de ter mi na tion of ra dium iso topes in wa ter sam ples is very im por tant from the hy dro log i cal and ra dio log i cal point of view. The re la tion be tween the ra dium iso topes’ con cen tra tion in ground wa ter and the li thol ogy of the host aqui fers were re - ported by many sci en tists (e.g., King et al., 1982; Sturchio et al., 1992; Mar tin and Akber, 1999; Lucivjansky, 1999; Ruberu et al., 2005; Grundl and Cape, 2006, Walencik-£ata et al., 2016). The ther mo dy namic prop er ties and ap pli ca tions of the ra dium iso - topes for in ter ac tion be tween ground wa ter and aqui fer rock were stud ied by Davidson and Dick son (1986), Langmuir and Melchior (1985) and Szabo et al. (2012). The con tri bu tion of

226Ra and 228Ra to an nual com mit ted ef fec tive dose re sult ing from the con sump tion of min eral and drink ing wa ters amounts to >70% (Bayés et al., 1996; Manjón et al., 1996; Godoy et al.,

2001; Waller and Steininger, 2007; Waller et al., 2008; Nguyen et al., 2012).

Ac cord ing to the Coun cil Di rec tive (Euratom, 2013), drink - ing wa ter is safe from the ra dio log i cal point of view if with the con sump tion of two litres per day, the an nual com mit ted dose rate orig i nat ing from the pres ence of the ra dio ac tive el e ments in this wa ter is <0.1 mSv. In gen eral, in many coun tries (for ex am - ple in Po land) there are nat u ral ar te sian wa ter in takes serv ing as di rect sources of drink ing wa ter for pop u la tion. In that case, the 224Ra should be taken into ac count in the es ti ma tion of com - mit ted ef fec tive doses.

The Carpathians are the rich est re gion of min eral and ther a - peu tic wa ters in Po land, where nu mer ous spas and bot tling plants are lo cated. A sig nif i cant num ber of min eral wa ters oc - cur ring in this re gion are avail able for con sum ers di rectly from bore holes or springs. The main aim of the work was the de ter - mi na tion of 224Ra con tent in se lected min eral wa ters from the Pol ish Carpathians. For the first time, the re sults of the ac tiv ity con cen tra tion of 224Ra in the Pol ish Carpathian min eral wa ters are pre sented. Ad di tion ally, the con tent of other ra dium iso - topes (226Ra and 228Ra) and the ac tiv ity ra tios of 224Ra/228Ra,

224Ra/226Ra and 226Ra/228Ra were de ter mined. In the pa per, some geo chem i cal and ra dio log i cal as pects of the pres ence of three ra dium iso topes (224Ra, 226Ra and 228Ra) and their ac tiv ity ra tios in stud ied min eral wa ters are also dis cussed.

* Corresponding author, e-mail: lucynar@agh.edu.pl Received: February 14, 2017; accepted: May 28, 2017; first published online: July 3, 2017

(2)

SAMPLING AND ANALYSIS METHOD

STUDY REGION AND SAMPLING

The wa ter sam ples were col lected from sev eral min eral wa - ter in takes in the Pol ish Outer Carpathians (Fig. 1). This re gion is com posed chiefly of Cre ta ceous and Mio cene sand stones and mudstone of flysch or i gin, in which car bon ate and si li ceous rocks spo rad i cally oc cur. The for ma tions are strongly folded and di vided onto dif fer ent units. Due to the very com pli cated geo log i cal struc ture, the Carpathians are re garded as a re gion of di verse hydrogeological con di tions (e.g., Rajchel, 2012;

Rajchel and Czop, 2012). This re gion hosts many valu able min - eral wa ter re sources used for balneotherapy and by min eral wa ter plants. The sam ples were col lected from some se lected re sources of ther a peu tic bicarbonated wa ters, wa ters con tain - ing car bon di ox ide, and chlo ride wa ters from the Magura Unit (Zuber-1 and Zuber-2 bore holes, and S³otwinka spring in Krynica-Zdrój; Krakus, Warzelnia and Rabka IG 2 bore holes in Rabka-Zdrój) and the Silesian Unit (Elin 7 and Emma bore holes in Iwonicz-Zdrój; Klimkówka 27 bore hole in Klimkówka;

Lubatówka 12 bore hole in Lubatówka; Ta ble 1). The wa ters are diagenetic and mixed with the in fil tra tion wa ter to dif fer ent de - grees (Rajchel and Czop, 2012).

In the Magura Unit (Inoceramian Bed; Fig. 1) the av er age ura nium and tho rium con cen tra tions are 2.06 and 8.92 ppm, but in the Silesian Unit (Godula, Istebna, Ciê¿kowice and Krosno beds; Oszczypko et. al., 2006) they vary from 1.07 to 1.98 and 4.03 to 10.05, re spec tively (Plewa and Plewa, 1992).

The wa ter sam ples were placed into 2-litre plas tic bot tles.

Be fore sam pling the bot tles were rinsed by HCl 0.1 M and dis - tilled wa ter. To elim i nate the re main ing liq uid, the bot tle was rinsed sev eral times with the wa ter in tended for anal y sis at the

wa ter in take. The sam pling time was re corded and the sam ples were trans ported to the lab o ra tory as soon as pos si ble.

METHODOLOGY

At the lab o ra tory, the wa ter sam ples were weighed and the ra dium iso topes were co-pre cip i tated from the wa ter sam ple to - gether with bar ium as a sul phate com pound. The pre cip i tate was placed into the glass vial of vol ume 22 mL, mixed with 12 mL of the gel scin til la tion cock tail, and mea sured by the Guard ian al pha/beta Wallac Scin til la tion Coun ter (LSC method). For ev ery sam ple, the mea sure ment was per formed daily for two hours. The mea sure ment pro cess lasted un til the ra dio ac tive equi lib rium be tween 226Ra and 222Rn has been es - tab lished. The ap plied chem i cal prep a ra tion and mea sure ment pro ce dures were de scribed in de tail by Nguyen et al. (1997).

Af ter ra dium pre cip i ta tion, only ra dium iso topes (226Ra,

228Ra and 224Ra) oc cur in the ob tained sam ple. 226Ra be longs to the ura nium se ries with 238U as a pri mary el e ment, 228Ra and

224Ra are the mem bers of tho rium se ries with 232Th as a first iso - tope. At the ra dio ac tive equi lib rium oc cur ring in the 226Ra group, there are four al pha de cay iso topes (226Ra, 222Rn, 218Po, 214Po) and two beta de cay iso topes (218Pb, 214Bi). In the 228Ra group, there are only two beta de cay iso topes (228Ra, 228Ac). The 224Ra group emits four al pha and two beta par ti cles. Four al pha par ti - cles are re lated to 224Ra, 220Rn, 216Po (ev ery iso tope emits one a par ti cle per de cay), and 212Bi and 212Po with emis sion of 0.337 a per de cay and 0.663 a per de cay, re spec tively. Two beta par - ti cles are emit ted from 212Pb (one b per de cay), 212Bi (0.663 b per de cay) and 208Tl (0.337 b per de cay; Brown et al. 1986).

Since the half-life (T1/2) of 226Ra is 1620 y, and the lon gest daugh ter in this group is 222Rn with T1/2 equal to 3.825 d, so the sec u lar equi lib rium in the group is es tab lished af ter nearly 500 h Fig. 1. Map of mineral waters sampling sites

(3)

from the mo ment of ra dium pre cip i ta tion. In the 228Ra group, the ac tiv ity of 228Ac can reach the 228Ra ac tiv ity in about 20 h af ter the pre cip i ta tion. With ref er ence to the lab time (one month), the

228Th can be re garded as a “sta ble” iso tope due to its T1/2 equal to 1.9 y. The T1/2 of 224Ra is 3.62 d and the lon gest lived prog eny is 212Pb with the T1/2 = 10.6 h, so the tran sient equi lib rium in the group is es tab lished af ter 53 h. Since that mo ment, the to tal al - pha and beta ac tiv i ties of the 224Ra group de crease in ac cor - dance with de cay law. Af ter 500 h, the to tal ac tiv ity of the 224Ra group is be low 2% of the ac tiv ity of this iso tope at the pre cip i ta - tion time. There fore, the con tri bu tion of the 224Ra group to the to tal al pha and beta count rates af ter 500 h elapsed from the ra - dium pre cip i ta tion can be ne glected, and the 226Ra and 228Ra can be es ti mated us ing the al pha and beta count rates mea - sured af ter 500 h from the mo ment of ra dium pre cip i ta tion. For ev ery stud ied sam ple the de pend ence of the net al pha and beta in ten si ties (the in ten si ties of the back ground sam ple were sub - tracted from the ad e quate in ten si ties of the sam ple) on the time elapsed from the pre cip i tat ing mo ment was used to de ter mine the 224Ra, 226Ra and 228Ra con tents.

The 226Ra con cen tra tion in a wa ter sam ple is es ti mated by the for mula:

226 500

500

226 60

Ra = Ra

´ ´ ´

- -

I

F V

a

a ea

[1]

where: I500a – net count rate (cpm) of the sam ple mea sured in the al - pha chan nel af ter 500 h from the mo ment of ra dium pre cip i ta tion;

Fa-Ra500-226 – fac tor cor re spond ing to rel a tive al pha ac tiv ity of the 226Ra group at 500 h elapsed from the sam ple prep a ra tion; this fac tor can be ob tained from the Bate man equa tion or em pir i cally us ing the sam ple pre pared from the 226Ra stan dard so lu tion; ea – the de tec tion ef fi ciency of the liq uid scin til la tion de tec tor for al pha par ti cle and can be es ti mated us ing the sam ple of 226Ra stan dard so lu tion or ar bi - trarily taken to be equal to 100% (Horrocks, 1974); V – wa ter sam ple vol ume; the 60 is the num ber of sec onds in one min ute.

The 228Ra con cen tra tion in the wa ter sam ple is de ter mined us ing the beta count rate. The to tal beta count rate at 500 h elapsed time con sists of both beta count rates from the 228Ra and 226Ra groups. The count rate of the beta par ti cles emit ted from the 226Ra group is cal cu lated by the fol low ing for mula:

IbRa-500-226 =I500a ´Cba [2]

where: C I I

st ba st

b a

= -

- 500 500

; Ib - 500st and Ia- 500st is the count rates for the 226Ra stan dard sam ple af ter 500 h from the mo ment of ra dium pre cip i ta - tion mea sured in the beta and al pha chan nels, re spec tively.

The count rate from the 228Ra group in the sam ple is equal to:

IbRa-500-228 =Ibtotal-500 -IbRa-500-226 [3]

Lo cal ity/type and name of wa ter in take

Depth

[m] Depth of the wa ter in take [m] Wa ter type GPS co or di nates Krynica-Zdrój

Zuberb-1 borehole 810.0 696.2–810.0 HCO3-Na+CO2

591.2 m a.s.l.

49°24’50’’N 20°57’48’’E Krynica-Zdrój

Zuber-2 bore hole 948.5 586.8–670.0 HCO3-Na-Mg+CO2

576.2 m a.s.l.

49°24’53’’N 20°57’44’’E Krynica-Zdrój

S³otwinka spring – – HCO3-Mg-Na-Ca+CO2+Fe

615.0 m a.s.l.

49°25’59’’N 20°57’25’’E Rabka-Zdrój

Warzelnia bore hole 50.2 41.0–45.7 Cl-Na+Fe+I

494.99 m a.s.l.

49°36’36’’N 19°58’02’’E Rabka-Zdrój

Rabka IG 2 bore hole 1215.0 1185–1215 Cl-Na+I+T

563.84 m a.s.l.

49°36’57’’N 19°58’30’’E Rabka-Zdrój

Krakus bore hole 19.0 19.0 Cl-Na+I

495.5 m a.s.l.

49°36’35’’N 19°57’58’’E Klimkówka

Klimkówka 27 bore hole 1255.0 417.0–481.0 HCO3-Cl-Na+CO2+I

462.8 m a.s.l.

49°33’26’’N 21°47’32’’E Iwonicz-Zdrój

Emma bore hole 283.7 102.8–263.0 Cl-HCO3-Na+CO2+I

435.20 m a.s.l.

49°33’38’’N 21°46’58’’E Iwonicz-Zdrój

Elin 7 bore hole 1030.0 85.0–238.0 Cl-HCO3-Na+CO2+I

434.80 m a.s.l.

49°33’39’’ N 21°45’02’’E Lubatówka

Lubatówka 12 bore hole 1151.5 625.0–958.0 Cl-HCO3-Na+CO2+I+T

350.7 m a.s.l.

49°33’59’’N 21°47’32’’E

T a b l e 1 Se lected data on bore holes, springs and me dic i nal wa ters

(4)

where: Ib - 500total – the count rate mea sured in the beta chan nel for the sam ple.

The 228Ra con cen tra tion in wa ter sam ple is es ti mated by the for mula:

228 500

228

500

228 60

Ra

Ra

= Ra

´ ´ ´

- -

- -

I

F V

b

b eb

[4]

where: Fb -Ra500-228– the fac tor cor re spond ing to the rel a tive beta ac tiv ity of the 228Ra group af ter 500 h from the mo ment of ra dium pre cip i ta tion, eb – the ef fi ciency of the de tec tion of beta par ti cles emit ted from the

228Ra group. The other sym bols de note the same as in For mula [1].

The count rates mea sured daily in the al pha chan nel con - sist of the count rate orig i nat ing from both the 226Ra and 224Ra groups, so the count rate mea sured at the t-mo ment from the

224Ra con tent in the pre pared wa ter sam ple is de ter mined as fol lows:

IaRa-224( )t =Ibtotal( )t -IaRa-226( )t [5]

where: Iatotal( ), It aRa- 226( ) are the to tal al pha count rate and the al phat count rate orig i nat ing from the 226Ra group, re spec tively; t – the elapsed time from the mo ment of ra dium pre cip i ta tion.

The IaRa - 226( ) can be cal cu lated by the for mula:t

IaRa-226( )t =226Ra´60´V ´FaRa 226- ( )t [6]

where: 226Ra – the ac tiv ity con cen tra tion de ter mined by For mula [1], is the fac tor cor re spond ing to the rel a tive al pha ac tiv ity for the 226Ra group at the time (t) elapsed from the sam ple.

Fa t

Ra - 226

( ) can be cal cu lated us ing the Bate man equa tion or de ter mined em pir i cally us ing the sam ple pre pared from the

226Ra stan dard so lu tion. The a and b spec tra of the pre pared

228Ra stan dard sam ple mea sured at 50 and 265 h elapsed from the ra dium pre cip i ta tion are pre sented in Fig ure 2 and Fig ure 3, re spec tively. The fig ures show that the al pha ac tiv ity de creased in agree ment with the 224Ra de cay and the beta ac tiv ity de - creased clearly more slowly in com par i son with the al pha one.

This fact is re lated to both the con stant beta ac tiv ity of the 228Ra group and the de creas ing beta ac tiv ity of the 224Ra group. The mea sured to tal al pha count rate as a func tion of the elapsed time and its sep a rated com po nents orig i nat ing from the 226Ra and 224Ra groups for the sam ple col lected from the Zuber-2 wa - ter in take is shown in Fig ure 4 as an ex am ple. In or der to es ti - mate the 224Ra con tent, the curve (ac cord ing to the de cay form – ae–bt) pre sent ing the re la tion be tween the com po nent of the al pha count rate of the 224Ra group and time elapsed from the pre cip i tat ing mo ment (af ter 53 h) is fit ted. The con tent of 224Ra is cal cu lated us ing the de cay law of the 224Ra group and Ia -

- 0 Ra 224

which is an or di nate of the in ter sec tion point of the above-men - tioned fit ted curve on the y-co or di nate.

224 0

53

60 53

Ra

Ra 224 Ra 224

Ra 224

= ´

´ ´ ´ ´

-

- - ´

- -

I e -

F V e

a

l

a ea

( )

lRa 224- ´ + Dt 53 =

= ´

´ ´ ´

-

- - ´

- -

I e -

F V

t a

l

a ea

0

60 53 Ra 224

Ra 224 Ra 224 D

[7]

Fig. 2. Al pha and beta spec tra of the 228Ra stan dard so lu tion mea sured by Wallac Winspectral 1414 al pha and beta liq uid scin til la tion coun ter at 50 h elapsed from the ra dium pre cip i ta - tion

Fig. 3. Al pha and beta spec tra of the 228Ra stan dard so lu tion mea sured by Wallac Winspectral 1414 al pha and beta liq uid scin til la tion coun ter at 265 h elapsed from the ra dium pre cip i ta - tion

Fig. 4. To tal al pha count rates and its com po nents of 226Ra and

224Ra groups for the wa ter sam ple col lected from the Zuber-2 in - take (for the fit ting curve value of l = 0.0081 h–1 cor re spond ing to T1/2 equal to 3.57 days)

(5)

where: lRa–224 [h-1] – the fit ted value of the 224Ra de cay con stant, and Fa-Ra 22453- the fac tor cor re spond ing to the rel a tive al pha ac tiv ity of the

224Ra group at 53 hours elapsed from the pre cip i tat ing wa ter sam ple, and can be es ti mated us ing the Bate man equa tion for the 224Ra group or de ter mined em pir i cally us ing the sam ple pre pared from the

232Th stan dard so lu tion, where there is ra dio ac tive equi lib rium be - tween 228Ra and 224Ra. Dt [h] – the time elapsed from the wa ter sam - pling mo ment to the pre cip i ta tion point.

In ac cor dance with the def i ni tion de scribed by Cur rie (2008) and prop a ga tion law, the limit of de tec tion was cal cu lated based on the av er age un cer tainty of the count rates in the al pha and beta chan nels for the back ground sam ple, and is equal to 11 mBq/dm3 for 224Ra, 7 mBq/dm3 for 226Ra, and 30 mBq/dm3 for 228Ra.

RESULTS AND DISCUSSION

The ac tiv ity con cen tra tions of 224Ra, 226Ra and 228Ra in the stud ied wa ters vary from 206 to 1116 mBq/L, from 213 to 1545 mBq/L, and from 186 to 752 mBq/L, re spec tively (Ta - ble 2). Fig ures 5, 6 and 7 show the re la tion ships be tween 226Ra and 224Ra, be tween 228Ra and 224Ra, and be tween 228Ra and

226Ra, re spec tively. All points (ex clud ing the wa ter from Lubatówka 12) in the fig ures are scat tered be tween line 1:1.

There are strong lin ear cor re la tions be tween the stud ied ra dium iso topes. The Pearson cor re la tion co ef fi cient for the re la tions be tween 226Ra and 224Ra, be tween 228Ra and 224Ra, and be - tween 228Ra and 226Rais equal to 0.94, 0.88 and 0.85, re spec - tively. The three ana lysed iso topes are vari ants of the same chem i cal el e ment (ra dium); thus, their chem i cal prop er ties and be hav iour in ground wa ter are the same.

The ac tiv ity ra tios of 224Ra/228Ra and 226Ra/228Ra range in the in ter vals of 0.68–1.48 and 0.78–2.05, re spec tively. The av -

er age value of 224Ra/228Ra ac tiv ity ra tio is 1.09, and, if we ex - clude the wa ter from Lubatówka 12, this ra tio de creases to 1.04. The ob served phe nom ena in di cate that the ac tiv ity con - cen tra tion of 224Ra in ground wa ter is gen er ally slightly higher than that of 228Ra, which is re lated to the re coil ef fect. In the tho - rium de cay chain, 224Ra is fol lowed by two al pha de cays, while

228Ra is fol lowed only by one al pha de cay. There fore, 224Ra shows higher prob a bil ity of mi gra tion due to di rect trans fer of the atom across the solid/liq uid phase bound ary or lat tice de - struc tion by re coil ef fect than 228Ra. It is the same pro cess which causes ura nium iso topes dis equi lib rium (the ac tiv ity ra tio of 234U/238U is gen er ally >1) in ground wa ter (Os mond and Cowart, 1976; Nguyen et al., 2011).

In such min eral wa ters, the chem i cal pro cesses dom i nate the re coil ef fect and ra dium iso topes mi grate mainly from host rocks to wa ter due to leach ing pro cesses. The lower con tent of

224Ra than 228Ra can be as so ci ated with the fact that tho rium (228Th is prog eny of 228Ra and par ent of 224Ra) forms low-sol u - ble and highly ad sorbed com pounds in con trast to ra dium (Langmuir, 1997; Nguyen et al., 2011).

The ob served av er age ac tiv ity ra tio val ues (226Ra/228Ra) for all stud ied wa ters are 1.2, be ing typ i cal for highly min er al ised ground wa ter in the Pol ish Carpathians (Nguyen et al., 2016).

Gen er ally, the ac tiv ity con cen tra tions of 226Ra, 228Ra and their ac tiv ity ra tio (226Ra/228Ra) in ground wa ter are re lated to the ad e - quate con tent and ac tiv ity ra tio of their pri mor dial iso topes (238U,

232Th, 238U/232Th) in the host aqui fers (Asikainen and Kahlos, 1979; King et al., 1982; Vesterbacka et al., 2006; Nguyen et al., 2012). For six wa ters from the Magura Unit and three wa ters from the Silesian Unit, the av er age ac tiv ity con cen tra tion ra tios (226Ra/228Ra) are 1.04 and 1.47, re spec tively. The val ues cor re - spond, to a cer tain de gree, to the ra tios of the av er age ura nium and tho rium con cen tra tions in the Magura and Silesian units.

The high est ac tiv ity con cen tra tions of the ra dium iso topes and their ac tiv ity ra tios (226Ra/228Ra and 224Ra/228Ra) were ob served

No. Lo cal ity/

wa ter in take TDS [g/L]

Ac tiv ity con cen tra tion

[mBq/L] Ac tiv ity con cen tra tion ra tio

224Ra 226Ra 228Ra 224Ra/ 228Ra 224Ra/ 226Ra 226Ra/ 228Ra 1 Krynica-Zdrój

Zuber-1 23.2 428 ± 38 568 ± 24 530 ± 38 0.81 0.75 1.07

2 Krynica-Zdrój

Zuber-2 20.5 460 ± 32 447 ± 23 312 ± 34 1.47 1.03 1.43

3 Krynica-Zdrój

S³otwinka 3.52 420 ± 17 284 ± 19 362 ± 30 1.16 1.48 0.78

4 Rabka-Zdrój

Warzelnia 20.6 216 ± 17 314 ± 19 312 ± 25 0.70 0.69 1.01

5 Rabka-Zdrój

Rabka IG 2 23.5 722 ± 45 619 ± 25 598 ± 39 1.21 1.17 1.04

6 Rabka-Zdrój

Krakus 23.8 331 ± 23 442 ± 30 485 ± 41 0.68 0.75 0.91

7 Klimkówka

Klimkówka 27 12.2 218 ± 34 333 ± 15 215 ± 25 1.01 0.65 1.55

8 Iwonicz-Zdrój

Emma 5.92 206 ± 13 213 ± 8 203 ± 18 1.01 0.97 1.05

9 Iwonicz-Zdrój

Elin 7 5.80 245 ± 23 231 ± 17 186 ± 19 1.31 1.06 1.24

10 Lubatówka

Lubatówka 12 20.5 1116 ± 71 1545 ± 88 752 ± 61 1.48 0.72 2.05

T a b l e 2 The ac tiv ity con cen tra tions of 224Ra, 226Ra and 228Ra and their ac tiv ity ra tios

in the stud ied Carpathian min eral wa ters

(6)

in the wa ter from Lubatówka 12. This fact can be re lated to the lo cal ge ol ogy and hydrogeological con di tions in this area.

The TDS in the in ves ti gated ground wa ter var ies from 3.5 to 23.8 g/L. The re la tions be tween ac tiv ity con cen tra tions of three ra dium iso topes (224Ra, 226Ra and 228Ra) and TDS are pre - sented in Fig ure 8. There is no clear re la tion be tween the ra - dium con tent in in ves ti gated wa ters and TDS, or it is dif fi cult to no tice be cause of the small amount of data.

Based on the ob tained ac tiv ity con cen tra tions of the ra dium iso topes, the an nual com mit ted ef fec tive doses (E) re sult ing from con sump tion of two litres of the min eral wa ters a day for adults were cal cu lated us ing the fol low ing equa tion:

( )

E V Ai DCFi

i N

= ´ ´

=

å

1

[8]

where: V stands for con sump tion of wa ter (2L per day), Ai – the ac tiv - ity con cen tra tion of the given radionuclide in wa ter ex pressed in

Bq/L, and DCFi stands for the DCFs (Dose Con ver sion Fac tor) for in - ges tion by hu mans be long ing to the given age group (adults in this case). The DCF is equal to the dose in Sv re sult ing from the in ges - tion of 1Bq of the given radionuclide (ICRP, 1995; WHO, 2008).

The cal cu lated com mit ted ef fec tive dose from 226Ra and

228Ra changes in the range from 44 to 316 µSv/year and from 94 to 379 µSv/year, re spec tively. The data show that the dose from the 224Ra var ies from 7.5 to 53 µSv/year and its con tri bu - tion to the to tal an nual com mit ted ef fec tive dose is <8% (Ta - ble 3). Thus, the in take of 224Ra with con sumed wa ter does not pose a sig nif i cant ra dio log i cal risk to hu man health in com par i - son with other two ra dium iso topes (226Ra and 228Ra).

CONCLUSIONS

The ac tiv ity con cen tra tions of 224Ra in the stud ied min eral wa ters are com pa ra ble to that of 226Ra and 228Ra. There is a Fig. 5. 226Ra concentration vs. 224Ra concentration

in the water samples

Fig. 6. 228Ra concentration vs. 224Ra concentration in water samples

Fig.7. 226Ra concentration vs. 228Ra concentration in the water samples

Fig. 8. Activity concentrations of radium isotopes (224Ra, 226Ra and 228Ra) vs. TDS in the water samples

(7)

strong lin ear cor re la tion be tween 224Ra and the other two ra - dium iso topes.

The av er age value of the ob served ac tiv ity ra tio (224Ra/228Ra) is slightly above 1 (1.04). This is re lated to the re - coil ef fect; the same pro cess which causes the dis equi lib rium of ura nium iso topes in ground wa ter. The ac tiv ity ra tio of

224Ra/228Ra lower than 1 can be re lated to the fact that tho rium forms low-sol u ble and highly ad sorbed com pounds in an aque - ous en vi ron ment. The ac tiv ity ra tios of 226Ra/228Ra in the Magura and Silesian units are re lated to the av er age con cen tra - tions of ura nium and tho rium in wa ter-bear ing for ma tions oc cur - ring in the units.

The in take of 224Ra with con sumed wa ter does not pose a sig nif i cant ra dio log i cal risk to hu man health in com par i son with

226Ra and 228Ra.

The LSC method is clearly use ful for the si mul ta neous de - ter mi na tion of 224Ra, 226Ra and 228Ra in wa ter sam ples.

Ac knowl edge ments. The au thors would like to ex press their thanks to the anon y mous re view ers for their valu able re - marks. This work was sup ported by the AGH Uni ver sity of Sci - ence and Tech nol ogy pro jects Nos.: 11.11.140.645, 11.11.140.862 and 15.11.220.717.

REFERENCES

Asikainen, M., Kahlos, H., 1979. An oma lously high con cen tra tions of ura nium, ra dium and ra don in wa ter from drilled well in the Hel sinki re gion. Geochimica et Cosmochimica Acta, 44:

1681–1686.

Bayés, J.C., Gómez, E., Garcias, F., Casas, M., Cerdá, V., 1996.

Ra dium de ter mi na tion in min eral wa ters. Ap plied Ra di a tion and Iso topes, 47: 849–853.

Brown, E., Firestone, R., Shir ley, V., 1986. Ta ble of Ra dio ac tive Iso topes. John Wiley & Sons, New York, Chichester, Bris bane, To ronto, Sin ga pore.

Cur rie, L.A., 2008. De tec tion and quan ti fi ca tion ca pa bil i ties in nu - clear an a lyt i cal mea sure ment. In: Anal y sis of En vi ron men tal Radionuclides (ed. S.P. Povinec): 49–136. Elsevier.

Davidson, M.R., Dick son, B.L., 1986. A po rous flow model for steady-state trans port of ra dium in ground wa ter. Wa ter Re - sources Re search, 22: 34–44.

Euratom, 2013. Coun cil Di rec tive 2013/51/Euratom of 22 Oc to ber 2013 lay ing down re quire ments for the pro tec tion of the health of

the gen eral pub lic with re gard to ra dio ac tive sub stances in wa ter in tended for hu man con sump tion.

Godoy, J.M., da Amaral, E.C., Luiza, M., Godoy, D.P., 2001. Nat u - ral radionuclides in Bra zil ian min eral wa ter and con se quent doses to the pop u la tion. Jour nal of En vi ron men tal Ra dio ac tiv ity, 53: 175–182.

Grundl, T., Cape, M., 2006. Geo chem i cal fac tors con trol ling ra dium ac tiv ity in sand stone aqui fer. Ground Wa ter, 44: 518–527.

Horrocks, D.L., 1974. Ap pli ca tion of Liq uid Scin til la tion Count ing.

Ac a demic Press, New York.

ICRP, 1995. Age-De pend ent Doses to Mem bers of the Pub lic From In take of Radionuclides – Part 5 Com pi la tion of In ges tion and In ha la tion Dose Co ef fi cients. In ter na tional Com mis sion on Ra - dio log i cal Pro tec tion, Pub li ca tion 72, Ann. ICRP 26 (1).

King, P., Michel, J., Moore, W., 1982. Ground wa ter geo chem is try of 228Ra, 226Ra and 222Rn. Geochimica et Cosmochimica Acta, 46: 1173–1182.

Langmuir, D., 1997. Aque ous En vi ron men tal Chem is try. Prentice Hall. Up per Sad dle River, New Jer sey.

No. Town/

wa ter in take

An nual com mit ted ef fec tive dose [µSv] Con tri bu tion of 224Ra to the to tal ef fec tive dose [%]

224Ra 226Ra 228Ra

1 Krynica-Zdrój

Zuber-1 15 116 267 3.8

2 Krynica-Zdrój

Zuber-2 20 86 302 7.1

3 Krynica-Zdrój

S³otwinka 15 58 182 6.0

4 Rabka-Zdrój

Warzelnia 8.4 64 157 3.7

5 Rabka-Zdrój

Rabka IG 2 34 127 301 7.4

6 Rabka-Zdrój

Krakus 12 90 244 3.6

7 Klimkówka

Klimkówka 27 11 68 108 5.9

8 Iwonicz-Zdrój

Emma 7.5 44 102 4.9

9 Iwonicz-Zdrój

Elin 7 10 47 94 6.7

10 Lubatówka

Lubatówka 12 53 316 379 7.1

T a b l e 3 The an nual com mit ted ef fec tive doses for adults re sult ing from in take of the wa ters,

cal cu lated for three ra dium iso topes (224Ra, 226Ra and 228Ra)

(8)

Langmuir, D., Melchior, D., 1985. The geo chem is try of Ca, Sr, Ba and Ra sul fates in some deep brines from Palo Duro Ba sin, Texas. Geochimica et Cosmochimica Acta, 49: 2423–2432.

Lucivjansky, L., 1999. Nat u ral ra dio ac tiv ity of wa ter in Slovakia.

Slo vak Geo log i cal Mag a zine, 5: 53–61.

Manjón, G., Vioque, I., Moreno, H., García-Tenorio, R., García-León, M., 1996. De ter mi na tion of 226Ra and 224Ra in drink ing wa ters by liq uid scin til la tion count ing. Ap plied Ra di a - tion and Iso topes, 48: 535–540.

Mar tin, P., Akber, R.A., 1999. Ra dium iso topes as in di ca tors of ad - sorp tion-desorption in ter ac tions and bar ite for ma tion in ground - wa ter. Jour nal of En vi ron men tal Ra dio ac tiv ity, 46: 271–286.

Nguyen, D.C., Niewodniczañski J., Dorda J., Ochoñski A., Chruœciel E., Tomza I., 1997. De ter mi na tion of ra dium iso topes in mine wa ters through a- and b-ac tiv i ties mea sured by liq uid scin til la tion spec trom e try. Jour nal of Radioanalytical & Nu clear Chem is try, 222: 69–74.

Nguyen, D.C., Duliñski, M., Jod³owski, P., Nowak, J., Ró¿añski, K., Œleziak, M., Wachniew, P., 2011. Nat u ral ra dio ac tiv ity in ground wa ter - a re view. Iso topes in En vi ron men tal and Health Stud ies, 47: 415–437.

Nguyen, D.C., Rajchel, L., Nowak, J., Jod³owski, P., 2012. Ra - dium iso topes in the Pol ish Outer Carpathian min eral wa ters of var i ous chem i cal com po si tion. Jour nal of En vi ron men tal Ra dio - ac tiv ity, 112: 38–44.

Nguyen, D.C., Kopeæ, M., Nowak J., 2016. Fac tors con trol ling

226Ra, 228Ra and their ac tiv ity ra tio in ground wa ter – an ap pli ca - tion in Pol ish Carpathian min eral wa ters. Ge ol ogy, Geo phys ics

& En vi ron ment, 42: 337–351.

Os mond, J.K., Cowart, J.B., 1976. The the ory and uses of nat u ral ura nium iso to pic vari a tions in hy drol ogy. Atomic En ergy Re view, 14: 621–679.

Oszczypko, N., Uchman, A., Malata, E., 2006. Rozwój paleotektoniczny basenów Karpat zewnêtrznych i pieniñskiego pasa ska³kowego (in Pol ish). Instytut Nauk Geologicznych Uniwersytetu Jagielloñskiego, Kraków.

Plewa, M., Plewa S., 1992. Petrofizyka (in Pol ish). Wyd. Geol., Warszawa.

Rajchel, L., 2012. Car bon ated wa ters and wa ters con tain ing car bon di ox ide of the Pol ish Carpathians (in Pol ish with Eng lish sum - mary). Wydawnictwo AGH, Kraków.

Rajchel, L., Czop, M., 2012. Hydrogeochemical mod el ling of chlo - ride min eral wa ter from Rabka spa (Carpathians Moun tains, Po - land). Geo log i cal Quar terly, 56 (4): 681–690.

Ruberu, S.R., Liu, Y.G., Perera, S.K., 2005. Oc cur rence of 224Ra,

226Ra, 228Ra, gross al pha, and ura nium in Cal i for nia ground wa - ter. Health Phys ics, 89: 667–678.

Sturchio, N.C., Bohlke, J.K., Markun, F.J., 1992. Ra dium iso tope geo chem is try of ther mal wa ter, Yel low stone Na tional Park, Wy o - ming, USA. Geochimica et Cosmochimica Acta, 57: 1203–1214.

Szabo, Z., DePaul, V.T., Fischer, J.M., Kraemer, T.F., Jacobsen, E., 2012. Oc cur rence and geo chem is try of ra dium in wa ter from prin ci pal drink ing-wa ter aqui fer sys tem of the United States. Ap - plied Geo chem is try, 37: 729–752.

Vesterbacka, P., Turtiainen, T., Heinävaara, S., Arvela, H., 2006.

Ac tiv ity con cen tra tions of 226Ra and 228Ra in drilled well wa ter in Fin land. Ra di a tion Pro tec tion Do sim e try, 121: 406–421.

Walencik-£ata, A., Koz³owska, B., Dorda, J., Przylibski, T.A., 2016. The de tailed anal y sis of nat u ral radionuclides dis solved in spa wa ter of the K³odzko Val ley, Sudety Moun tains, Po land. Sci - ence of the To tal En vi ron ment, 569–570:1174–1184.

Waller, G., Steininger, G., 2007. Ra dium iso topes and 222Rn in Aus - trian drink ing wa ters, Jour nal of Radioanalytical and Nu clear Chem is try, 274: 511–516.

Waller, G., Wag ner, R., Katzlberger, Ch., 2008. Nat u ral radionuclides in Aus trian min eral wa ter and their se quen tial mea sure ment by fast meth ods. Jour nal of En vi ron men tal Ra dio - ac tiv ity, 99: 1090–1094.

WHO, 2008. Guide lines for Drink ing-Wa ter Qual ity. World Health Or - ga ni za tion, Geneva.

Cytaty

Powiązane dokumenty

The petrographic diversity of the examined succession of the Krosno shales stems from the interplay of three factors: proportion of hemipelagic to turbiditic material – it

Stromatoporoids were present principally in the Middle and Late Devonian; they show an indistinct diversity peak in the Givetian (81 species).. Tabulate corals were most diverse

The in ves ti ga tion, in spite of the small num ber of tax o nom i - cally iden ti fied culturable bac te ria, ex hib ited that ba cilli and micrococci are com mon in hab

On ly the meridional fault east of the Rot n6w reservoir (op. cit.) is manifested on the radar image as a concemration of faults of both sets. It can be thus suggested that

The top surface of the consolidated basement, the surface of the Carpathian overthrust and the base surface of the Magma unit have been accepted as the main surfaces

limburgites or their augite-rich varieties - augitites, embedded in Miocene molasse deposits. Roundstones up to 8 cm large show many similarities in petrographic and

Chlorides in waters in the western part of the Polish Flysch Carpathians are of marine origin, but the isotopic composition of these waters is in most cases completely changed

ding only the lower p art o f the Niebylec shales is exposed in the field road running.. The spots, sometimes observed, are probably due to weathering and are