• Nie Znaleziono Wyników

7, then every entral extension of Z d oA m o urs as the Galois group of a regular extension of Q(T)

N/A
N/A
Protected

Academic year: 2021

Share "7, then every entral extension of Z d oA m o urs as the Galois group of a regular extension of Q(T)"

Copied!
17
0
0

Pełen tekst

(1)

On double overs of the generalized alternating group

Z

d oA

m

as Galois groups over algebrai number elds

by

MartinEpkenhans (Paderborn)

Let Z

d oA

m

be the generalized alternating group. We prove that all

double overs ofZ

d oA

m

o ur asGaloisgroupsoveranyalgebrai number

eld. We further realize some of these double overs as the Galois groups

of regular extensions of Q(T). If d is odd and m > 7, then every entral

extension of Z

d oA

m

o urs as the Galois group of a regular extension of

Q(T). We further improve some of our earlier results on erning double

overs ofthe generalizedsymmetri groupZ

d oS

m .

1. Introdu tion and notations. Serre'sformula on tra e forms[15℄,

[16℄ relates theobstru tionto ertainembeddingproblems

1!Z

2

! e

G!G!1

ofa nitegroupG toinvariantsofthetra eformofa eldextension. Using

this,N.Vila[19℄ realizedtheunique overinggroup e

A

m ofA

m

;m8;m 

0;1mod8astheGaloisgroupofaregularextensionoftherationalfun tion

eld Q(T). J. F. Mestre [11℄ extended this result to all m 4. Following

Mestre'sideas,J.Sonn[18℄improvedoneofhispreviousresultson overing

groups of the symmetri group S

m

. We an summarize these results as

follows.

Every nite entral extension of S

m

and of A

m

, m4, is realizable as

the Galois group of a regular extension of Q(T).

Vila, Sonn and S ha her [19℄, [20℄, [17℄, [13℄ used trinomials f(X) =

X m

+aX l

+bwithGaloisgroupS

m

,resp. A

m

. We knowthetra eformof

atrinomial[15℄,[3℄. The tra eformofatrinomialwithsquare dis riminant

depends onlyon l. It is not always possible to hoose l <n su h that the

obstru tion vanishes. This explainswhyVila'sresultsare not omplete.

1991 Mathemati sSubje tClassi ation: Primary12F12.

(2)

Mestre gave a one-parameter deformation of a polynomial of odd de-

gree to an irredu ible polynomialwith the same tra e form. Volklein [21℄

obtainedMestre'sresult on e

A

m

withouttra e form onsiderations.

In a previous paper [4℄ we realized some of the double overs of the

generalizedsymmetri group Z

d oS

m

asGaloisgroupsoverK(T),whereK

isan algebrai number eldwhi h ontainsthe dthrootsof unity.

In thispaperweinvestigate double oversof thegeneralizedalternating

groupasaGaloisgroupovernumber eldsandoverrationalfun tion elds.

UsingIshanov'stheorem we prove that all double overs of Z

d oA

m

and of

Z

d oS

m

o ur as the Galois groups over any algebrai number eld. If d

is odd, then the unique non-trivial double over of Z

d oA

m

o urs as the

Galoisgroup ofa regularextension ofQ(T).

Kotlar,S ha herandSonn[8, Theorem6℄redu edthequestionwhether

a entral extension of S

m

is a Galois group over K to ertain pull-ba ks

of stem overs of S

m

with y li groups. Following their arguments we

showthat all entralextensions ofZ

d oA

m

arethe Galoisgroupsofregular

extensions ofQ(T) ifd is odd and m>7.

Let us x some notation. Let G be a nite group. Then G 0

denotes

the ommutator subgroup ofG and M(G) is the S hurmultiplierof G. Let



1 :H

1

!G; 

2 :H

2

!G behomomorphisms of groups. Then H

1



G H

2

isthe asso iated pull-ba k.

Let K be a eld. Then K denotesan algebrai losure of K. 

d

K is

the group of dth roots of unity. Let f(X) 2K[X℄ be a polynomial. Then

dis(f) is the dis riminantof f(X), and Gal(f) stands forits Galois group.

LetT;U;V;X;Y denote indeterminates.

2. The embedding problem. Let K be a eld of har(K)6=2,K

s a

separable losureofK,and

K

:=G(K

s

=K)theabsoluteGaloisgroupofK.

Let L=K be a separable eld extension of nite degree n, N L a normal

losure of L=K insideK

s

,and G =G(N=K) theGaloisgroup of N=K. By

Galoistheory we have homomorphisms%:

K

!G and e:

K

!S

n . Let

0!A



!E!G !0

be a group extension of G with abelian kernel A. We say the embedding

problem withabeliankernelde ned bythe diagram

K

1

A E

G 1

%

// // // //

hasa(proper)solutioni thereisa(surje tive)homomorphism':

K

!E

(3)

we allita entral embedding problem. An abelianembeddingproblemover

an algebrai number eldhas apropersolutionifithas asolution(Ikeda's

Theorem [6℄). If the order jAj of A is a prime and if E is a non-trivial

extension of G, then every solution of the embeddingproblem is a proper

solution.

Let H m

(G;A), m 2 Z, denote the mth ohomology group of the G-

module A. The group extension1 !A! E !G ! 1 withabeliankernel

A de nes an element "2 H 2

(G;A). Let Br(K) be theBrauer group of K

andletinf:H 2

(G;A)!Br(K)bethein ationmapindu edby%:

K

!G.

Hoe hsmann'sTheorem. Theembedding problem asso iated with"2

H 2

(G;A) has a solution ifand only if inf(")=02Br(K).

With the help of Serre's formula we are able to al ulate the obstru -

tion inf(") for some embedding problems. By Kummer theory we know

H 1

(

K

;Z

2

) ' Hom (

K

;Z

2 ) ' K

?

=K

?2

. For a;b 2 K

?

, (a;b)

K

denotes

the generalized quaternion algebra generated over K by i;j and satisfying

i 2

=a, j 2

= b,ij = ji. The lass of (a;b)

K

inBr(K) is also denoted by

(a;b)

K

. Let be a (non-degenerate) quadrati form over K. The Hasse

invariant (se ondStiefel{Whitney lass) isde nedby

w

2 :=

O

1i<jn (a

i

;a

j )

K

2Br(K);

where '

K ha

1

;:::;a

n

iisadiagonalizationof . Here'

K

denotestheiso-

metry ofquadrati formsde nedoverK. The determinant of is denoted

bydet

K .

Now were all ade nitionof two overinggroupsof S

n . S

n

hasa stan-

dardpresentationwithgenerators t

1

;:::;t

n 1 (t

i

=(i;i+1))and relations

t 2

i

=1; (t

i t

i+1 )

3

=1; t

i t

j

=t

j t

i

if ji jj2:

LetS

n

be thegroupgenerated by !;

e

t

1

;:::; e

t

n 1

withrelations

e

t 2

i

=1=! 2

; ! e

t

i

= e

t

i

!; ( e

t

i e

t

i+1 )

3

=1;

e

t

i e

t

j

=! e

t

j e

t

i

if ji jj2:

LetS +

n

be thegroupgenerated by!;

e

t

1

;:::; e

t

n 1

withrelations

e

t 2

i

=!; ! 2

=1; ! e

t

i

= e

t

i

!; ( e

t

i e

t

i+1 )

3

=1;

e

t

i e

t

j

=! e

t

j e

t

i

if ji jj2:

Denotebys

n

;s +

n 2H

2

(S

n

;Z

2

)the ohomology lassesasso iatedwiththese

groupextensions. Thesignaturehomomorphism"

n :S

n

!Z

2

istheunique

non-zeroelementofH 1

(S

n

;Z

2

) ifn2. WeknowH 2

(S

n

;Z

2 )'Z

2

Z

2

=

f0;s +

n

;s

n

;"

n ["

n

g if n  4. Here [ denotes the usual up produ t of

ohomology lasses.

The tra e map tr

L=K

:L! K de nes a quadrati form over K on the

K-ve tor spa e L by x 7! tr

L=K (x

2

). We denote the asso iated quadrati

(4)

e :

K

! S

n

de nes a homomorphisme

?

:H 2

(S

n

;Z

2

) ! Br

2

(K), where

Br

2

(K) is the subgroup of elements x 2 Br(K) with 2x =0. Now Serre's

formulaasserts:

Proposition 1(Serre [15℄). 1: e

?

(s +

n

)=( 2;det

K hLi)

K w

2 hLi:

2: e

?

(s

n

)=(2;det

K hLi)

K w

2 hLi:

3: e

?

("

n ["

n

)=(det

K

hLi; 1)

K :

Let

inf:H 2

(G;Z

2 )!H

2

(

K

;Z

2 )

bethein ation homomorphismindu edby% and let

res:H 2

(S

n

;Z

2 )!H

2

(G;Z

2 )

be therestri tion homomorphismindu edbythe inje tionG ,! S

n

. Then

e

?

=infÆres . CombiningSerre'sformula withHoe hsmann'sresult we get

Proposition 2. The embedding problem asso iated with the group ex-

tension res(s +

n

) (resp. res(s

n

)) has a solution i

w

2

hLi=( 2;det

K hLi)

K

(resp:w

2

hLi=(2;det

K hLi)

K ):

3. The wreath produ t. The generalized alternating group Z

d oA

m

is the wreath produ t of Z

d

and A

m

. We now re all the de nition of the

wreath produ tof groups.

Definition 1.Let G be a permutation group on a nite set . Let H

be a nite group and set H

= ff : ! H g. Then f 7!



f = f Æ 1

,

 2G, de nes an a tion of G on H

. Now the wreath produ t HoG of H

and G isthe semidire tprodu tof H

and G indu edbythe a tionabove.

In thesequel we needthe ommutator subgroupofa wreath produ t.

Lemma 1.Let G bea permutation group of degree m, and H ;H

1

;H

2 be

groups.

1: If G a ts transitively,then

(HoG) 0

=f(h

1

;:::;h

m

;) jh

1 :::h

m 2H

0

;  2G 0

g

and

(HoG)=(HoG) 0

'H =H 0

G=G 0

:

3: If G 0

a ts doubly transitively, then

(HoG) 00

=f(h

1

;:::;h

m

;) jh

1 :::h

m 2H

00

;  2G 00

g:

3: (H

1 oG)

G (H

2

oG)'(H

1

H

2 )oG:

Proof. 1. Let 

1

: H ! H =H 0

and 

2

: G ! G=G 0

be the anoni al

1 1

(5)

f(h

1

;:::;h

m

;)jh

1 :::h

m 2H

0

;  2G 0

g. Sin e H =H 0

is abelian,

HoG!H =H 0

G=G 0

:(h

1

;:::;h

m

;)7!(

1 (h

1 :::h

m );

2 ())

is a homomorphism with kernel K . Hen e (H oG) 0

 K . De ne f

i;a :

! H , a 2 H , by f

i;a

(i) = a, f

i;a

(k) = 1 if k 6= i. Let i 6= j. Sin e

G a ts transitively, there is a permutation  2 G with (i) = j. Then

[(f

i;a

;id);(1;)℄ = (f

i;a

f

j;a

1;id). Hen e f(h

1

;:::;h

m

;id) j h

1 :::h

m

=

1g  (HoG) 0

: If h

m 2 H

0

, then (1;:::;1;h

m

;id) 2 (HoG) 0

. We get the

assertionfrom (h;id)(1;)=(h;).

2. If G 0

a ts doublytransitively on , then we an hoose  2G 0

with

(i)=i, (j) =k,wherei6=j;k. Then

[(f

i;a

f

j;a

1;id);(1;)℄=(f

k;a

f

j;a

1;id)2(HoG) 00

:

3. De ne

':(H

1 oG)

G (H

2

oG)!(H

1

H

2 )oG

by ((h;);(g;)) 7! ((h

1

;h

2

);), where (h

1

;h

2

) : ! H

1

H

2

: j 7!

(h

1 (j);h

2

(j)): Then 'is anisomorphism.

In thefollowingtwo lemmaswestudyin ation maps.

Lemma2.LetGbeapermutationgroupofdegreem,andletHbea nite

group. Let A be a nite abelian group, onsidered as a trivial G-module.

Then the in ation map

inf:H 2

(G;A)!H 2

(HoG;A)

indu ed by the anoni al proje tion %:HoG!G isinje tive.

Proof. An element "2H 2

(G;A) orresponds to a entralextension of

G with kernel A. The image of "under thein ation map orresponds to a

pull-ba k,i.e. thereis a ommutative diagram

1

A

E

G

(HoG) HoG

1

1

A E

G 1

// //



  // //

%



'

xx

q q

q q

q q

q q

q q

// //  // //

Weknowinf(")=0ifandonlyiftheuppersequen esplits. Bytheuniversal

propertyof the pull-ba kthisis equivalent to the existen e of a homomor-

phism ' : HoG ! E making the above diagram ommutative. We know

 : G ! HoG :  7! (0;) is a monomorphism. Now '((0;)) = e gives

=%((0;))=id. Hen eG'' Æ (G)isasubgroupofE. Letx2A \ ' Æ (G).

Then x = '((0;)) and (x) =id= Æ'((0;)) = gives x = e. Hen e

E 'AG.

The next lemmaredu es ourapproa hto double overs of Z

d

oG,where

f

(6)

Lemma 3.Let G bea permutation group of degree m. Let  :H

1

!H

2

bean epimorphism of nite groups H

1

;H

2

. Let A be an abelian group with

order relatively prime tothe order of ker (). Then the in ation map

inf:H 2

(H

2

oG;A)!H 2

(H

1 oG;A)

indu ed by %:H

1

oG !H

2

oG :(h;)7!(Æh;) is an isomorphism.

Proof. The sequen e

1!ker () m

!H

1

oG !H

2

oG !1

is exa t. Sin e theorder of A isrelativelyprime to theorder of ker (), we

getH 1

(ker () m

;A)=H 2

(ker() m

;A)=0 (see [1,II.10.2℄). Hen e

0!H 2

(H

2 oG;A)

inf

!H 2

(H

1 oG;A)

res

!H 2

(ker () m

;A)=0

isan exa t sequen e (see [14, VII,x 7, Proposition5℄).

4. The restri tion map res : H 2

(S

md

;Z

2 ) ! H

2

(Z

d oA

m

;Z

2 ). The

image of the restri tion map determines the double overs whi h an be

shown to be Galoisgroupsbytheuseof Serre'sformula.

We know

H 2

(G;A)'((G=G 0

)A)(M(G)A);

with an abeliangroup A (see [7, 2.1.20℄). In [7, Theorem 6.3.13℄ we found

a listof therelevant S hurmultipliers. Together withLemma1 we get

H 2

(Z

d oA

m

;Z

2 )'



Z

2

ifd 1mod2,

Z

2

Z

2

Z

2

ifd 0mod2;

and m4. We furtherknow

Z

d oA

m

=hs

1

;:::;s

m 2

;w

1

;:::;w

m js

3

1

=s 2

j

=(s

j 1 s

j )

3

=1;

1<jm 2; (s

i s

j )

2

=1; 1i<j 1; jm 2; w d

j

=1;

w

i w

j

=w

j w

i

; s

i w

j

=w

j s

i

; j 6=1;2;i+1;i+2;

s

i w

i+1

=w

i+2 s

i

; i=2;:::;m 2;

s

1 w

3

=w

1 s

1

; s

i w

1

=w

2 s

i

; i=1;:::;m 2i:

Let 1 ! f1;!g ! E ! Z

d oA

m

! 1 be an exa t sequen e. Then eg 2 E

denotesa preimage ofg 2Z

d oA

m

inE. We an hoose a set ofgenerators

s

1

;:::;s

m 2

;w

1

;:::;w

m ofZ

d oA

m

su hthat

E =h!;es

1

;:::;es

m 2

;we

1

;:::;we

m j!

2

=1; !se

i

=es

i

!; !we

j

=we

j

!;

e s 3

1

=1; es 2

j

=

3

; ( es

j 1 e s

j )

3

=1; j =2;:::;m 2; ( es

i e s

j )

2

=

3

;

1i<j 1; jm 2; we d

j

=

2

; we

i e w

j

=

4 e w

j e w

i

; i6=j;

e s

i e w

j

=we

j e s

i

; j6=1;2;i+1;i+2; se

i e w

i+1

=we

i+2 e s

i

; i6=1;

e

s we =we es ; eswe =we esi;

Cytaty

Powiązane dokumenty

thence is derived a general result (Theorem 3.2) to the effect that when- ever the d-function is bounded, common extensions of consistent charges always exist, irrespective of the

Quasihomography is a useful notion to represent a sense-preserving automor- phism of the unit circle T which admits a quasiconformal extension to the unit disc.. Let A T denote

Using the same notation as in the field case, we will prove results analogous to (3) and (4) that hold for some infinite Galois ring

In this section, we arrive at families of semistable elliptic curves defined over Q whose Selmer groups have non-trivial Iwasawa µ 2 -invariant.. Let us describe the strategy

P roof. Let i r be a basis of r-neighbourhoods of zero consisting of solid and order closed sets.. F is of course a basis of neighbourhoods of zero of some

The minimal extension of sequences (Abstract ), presented at the Conference on Logic and Algebra dedicated to Roberto Magari on his 60th birthday, Pontignano (Siena), 26–30 April

In a construction made of Steel S235 (fig. 3b) the total mass exceeds the assumptions while stress is the lowest. in this case an intensive optimization should be implemented in

As a corollary we obtain the following fact: if G 0 contains the sin- gle point y 0 , then the ∗-holonomy group of F 0 is isomorphic to the group generated by the class of